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Abstract

Light-field imaging systems have got much attention re-

cently as the next generation camera model. A light-field

imaging system consists of three parts: data acquisition,

manipulation, and application. Given an acquisition sys-

tem, it is important to understand how a light-field camera

converts from its raw image to its resulting refocused image.

In this paper, using the Lytro camera as an example, we de-

scribe step-by-step procedures to calibrate a raw light-field

image. In particular, we are interested in knowing the spa-

tial and angular coordinates of the micro lens array and the

resampling process for image reconstruction. Since Lytro

uses a hexagonal arrangement of a micro lens image, ad-

ditional treatments in calibration are required. After cali-

bration, we analyze and compare the performances of sev-

eral resampling methods for image reconstruction with and

without calibration. Finally, a learning based interpolation

method is proposed which demonstrates a higher quality

image reconstruction than previous interpolation methods

including a method used in Lytro software.

1. Introduction

In conventional cameras, we capture a 2D image which

is a projection of a 3D scene. In light-field imaging sys-

tem, we capture not only the projection in term of im-

age intensities but also the directions of incoming light-

ing that project onto an image sensor. Light-field mod-

els the scene formation using two parallel planes, i.e. st

plane and uv plane as shown in Figure 1(Left). Coordi-

nates in the st and uv planes represent the intersection of

incoming light from different view perspectives and we de-

note it as L(s, t, u, v). Using this representation, many

applications such as refocusing[17, 16], changing view

point[11, 10], super-resolution[3, 8, 10, 15, 21, 2], and

depth map estimation[1, 6, 4, 20] can be achieved.

In practice, light field images captured by a light field

camera are not perfect. Due to manufacturing defection, it

is common to have a micro-lens array that does not perfectly

align with image sensor coordinates. Blindly re-sample a

Figure 1. Left: Two planes parameterizations of light field. Right:

a Lytro camera.

RAW image into L(s, t, u, v) can be easily caused color

shift and rippled like artifacts which can hammer the per-

formances of many post-processing applications. To accu-

rately convert a light field raw image into the representation

in L(s, t, u, v) requires careful calibration and resampling.

In this paper, using the Lytro camera as an example, we de-

scribe step-by-step procedures to calibrate and to convert

the raw image into L(s, t, u, v) representation. Although

this is a reverse engineering of existing Lytro software, we

demonstrate how we can further improve the resulting im-

age in L(s, t, u, v) through a better resampling algorithm.

While this paper was under review, Dansereau et al. [7]

simultaneously developed a toolbox to decode, calibrate,

and rectify lenselet-based plenoptic cameras. However their

reconstructed lightfield images have low resolution, e.g.

380 × 380. In contrast, we demonstrate better and higher

resolution, e.g. 1080 × 1080, lightfield image reconstruc-

tion through a better resampling strategy.

To summarize, our contributions are as follows:

1. We model the calibration pipeline of the Lytro light-

field camera and describe step-by-step procedures to

achieve accurate calibration.

2. We analyze and evaluate several interpolation tech-

niques for pixel resampling in L(s, t, u, v). We show

that direct interpolation in RAW images for hexagonal

grid produces better interpolation than first making a

low resolution regular grid image followed by interpo-

lation.

3. A dictionary learning based interpolation technique is

proposed which demonstrates a higher quality image



Figure 2. The raw image from Lytro image and enlarged one. Note

the micro lens array is not parallel to image coordinate.

reconstruction than previous interpolation methods in-

cluding method used in Lytro software.

2. Related Works

Recent works that are the closest to ours are reviewed

in this section. Since Ng et al. [17] presented the pro-

totype light-field camera utilizing micro lens array, many

progresses have been made in plenoptic camera develop-

ments [19, 12, 13, 18, 14, 5, 7]. A major application

of light field camera is the post-digital refocusing which

changes focus on a image after a picture is taken. The

drawback of such a system, however, is the low resolu-

tion that the final images have. To overcome this limita-

tion, many light field super-resolution algorithms have been

developed [2, 3, 8, 13, 10].

In [16], Nava et al. use ray tracing in light field to get

a high resolution focal stack image. They utilize light ray

from different direction to obtain sub-pixel details. To ren-

der a high resolution image from a micro-lens image, Lums-

daine et al. [12, 13] consider the trade off between spatial

and angular information in light field capturing. They de-

veloped the focused plenoptic camera called plenoptic 2.0

which places the micro lens array behind the main lens im-

age plane and with a small distance in front of image sen-

sor. The plenoptic 2.0 camera sacrifices angular resolution,

i.e. u-v plane, to increase spatial resolution, i.e. s-t plane.

In [8], Georgiev et al. shows a super-resolution algorithm

using a plenoptic 2.0 camera to further enhance spatial res-

olution.

There are also works that utilize light field representation

for super-resolution which is independent of hardware con-

figuration knowledge. In [2, 3], Bishop and Favaro analyze

the epipolar plane of light-field for depth map estimation

and then use deconvolution to reconstruct super-resolution

image from micro-lens image. In [21], Wanner and Gold-

luecke propose a variational model to increase spatial and

angular of light-field by utilizing the estimated depth map

Figure 3. Left: Micro lenses are arranged in hexagonal shape,

Right: One micro-lens image.

from EPI image. Levin et al. [10] suggest a dimensional-

ity gap prior in the 4D frequency domain of light field for

view synthesis and to enhance resolution through frequency

domain interpolation without using depth information.

The aforementioned super-resolution algorithms demon-

strated high quality super-resolution. Among the discussed

techniques, many of them are built on the L(s, t, u, v) rep-

resentation with regular grid. As noted in our introduc-

tion, although the performance of their algorithms highly

depends on the process to convert a light-field RAW image

to the L(s, t, u, v) representation, not many works have de-

scribed the conversion procedures systematically. Some of

the works assume their initial input is from the light field

L(s, t, u, v) representation. In this paper, we systematically

analyze the quality of RAW images from the Lytro cam-

era and describe step-by-step procedures to convert RAW to

L(s, t, u, v). In our experiments, we also demonstrate dif-

ferent sampling methods that can abruptly affect the quality

of the reconstructed L(s, t, u, v). To this end, a dictionary

learning based interpolation method is presented for high

quality light field image reconstruction.

3. RAW data analysis and calibration

In this section, we analyze the RAW data from the Lytro

camera and describe our calibration procedures to correct

the misalignment error between micro lens array and image

sensor. In the next section, we evaluate different resam-

pling methods and propose our learning based interpolation

method for high quality light field image reconstruction.

3.1. Raw Data Analysis

After an image is captured by the Lytro camera, the RAW

data is stored in their .lfp file format. The .lfp file contains

camera parameters such as focal length in the file header

and a RAW image file as shown in Figure 2. The RAW

image file is a gray-scale image with ’BGGR’ Bayer pat-

tern to store values of different RGB channels. The resolu-

tion of the RAW image has 3280×3280 pixels and it stores

12-bits per pixel. The micro lens array in a Lytro camera

has a hexagonal shape arrangement as shown in Figure 3

instead of a grid arrangement which has smaller gaps be-



Algorithm 1 Calibration Procedures

Capture multiple white RAW images

Gamma correction

Compute Average White Images (Figure 4(a))

Demosaicking (Figure 4(b))

Grayscale image conversion (Figure 4(c))

Contrast stretching (Figure 4(d))

1: procedure Rotation Estimation

Find Local Maxima in the Frequency Domain

(Figure 5(a))

Rotate Image by the Estimated Angle

(Figure 5(c))

2: procedure Center Pixel Estimation

Erode Rotated Image (Figure 6(a))

Find Local Maxima and Fit paraboloid

(Figure 6(b))

Estimate Center Points (Figure 6(c))

Fit Delaunay Triangulation (Figure 6(d))

tween micro lenses and therefore allows more light rays to

be captured. For each micro lens, the diameter is around

10 pixels and the physical size of each micro lens is around

1.4× 10−5m. If we divide the image dimension by the size

of micro lens (assuming grid based micro lens array), the

effective resolution of the reconstructed light field image is

328×328. However, the rendered refocus image using the

Lytro software has a resolution 1024 × 1024. This implies

that the Lytro software has a algorithm to enhance the reso-

lution of rendered images instead of using a naive method to

reconstruct a low resolution light-field image for rendering.

3.2. Calibration

In order to convert the RAW image file to the light field

image representation effectively, we need to calibrate the

RAW image. The main goal of this calibration is to identify

center point locations of each micro-lens sub-image and re-

arrange them in a regular basis for better resampling which

will be described in the next section. Our calibration proce-

dure is summarized in Algorithm 1.

To calibrate the RAW image, we capture a white scene

such that the captured images should be all white and ho-

mogeneous in color. To reduce the effects of sensor noise

in calibration, the white images are captured multiple time

and we use the average image for our calibration. For each

individual capture, we apply Gamma correction to correct

intensity where the gamma value can be found in the .lfp

header file. Since the captured image is white in color, the

color value of RGB channels should be the same and we use

it to demosaick the true color image. Next, we convert the

RGB image into a Gray scale image and stretch the intensity

range so that we can easily process the image in later steps.

The intermediate results of these calibration processes are

Figure 4. (a) Averaged white raw image, (b) Result of demosaick-

ing and stretching, (c) Gray scale image, (d) Contrast Stretched

image.

Figure 5. (a) Frequency domain of micro lens image. Note the

periodic pattern of coefficients due to the repetition micro lens im-

age. (b) Initial rotation of micro lens image in RAW, (c) Rotation

compensated micro lens image.

in Figure 4.

Our next step is to estimate the rotation of micro lens

array to compensate the misalignments between micro lens

array and image sensor. We adopt the frequency domain

approach to estimate the rotation of the micro-lens array. In

the frequency domain, strong periodic components in the

spatial domain produce peak value coefficients. We esti-

mate the rotation of micro lens image by looking for a local

maxima coefficient closest to the zero frequency location as

shown in Figure 5(a). The selected frequency represents the

direction that has the most repeated of the periodic patterns,

i.e. micro lens image, and hence we get the rotation of mi-

cro lens array. Note that if the micro lens array aligns with

pixel axis, the peak frequency should be in vertical or hori-

zontal direction, but we barely find such case in our calibra-

tion. Using the estimated axes, we rotate the RAW image to

align with pixel axis as shown in Figure 5(c).



Figure 6. (a) Eroded image, it has max value in center point, (b)

paraboloid fitting to find precise local maximum, (c) Estimated

center point, (d) Delaunay Triangulation on micro-lens image.

Finally, we estimate the center point of micro lens by ap-

plying the eroding operation as shown in Figure 6(a). The

non-uniformity of micro-lens center can be due to manu-

facturing defection where each micro lens have slightly dif-

ferent shape. Because each micro-lens diameter is around

10 pixels, integer pixel unit is not sufficient to represent

the exact center points. Thus, we take the sub-pixel unit.

To get the sub-pixel precision, we apply the paraboloid fit-

ting to the eroding result as illustrated in Figure 6(b). This

is reasonable since the micro-lens array is a 2D periodic

paraboloid. Figure 6(c) shows the estimated center points of

each micro lens image. Lastly, we use the Delaunay Trian-

gulation to fit a regular triangle grid to the estimated center

points of micro lens image and shift the micro lens image

locally to obtain our calibrated image. Once we obtain the

calibrated parameters, we can apply them to other images

captured from the same Lytro camera. Comparing our cali-

bration with Dansereau et al. [7], they additionally perform

rectification to correct radial distortion, we refer readers to

Dansereau et al. [7] for the details of the rectification pro-

cess.

4. Light field image Reconstruction

Using the calibrated data from Section 3.2, we can re-

construct a regular grid light-field image by interpolation.

Decoding and rectification methods for Lytro are suggeted

in [7]. However, their target resolution for reconstruction is

small. In this section, we analyze and evaluate the effective-

ness of several interpolation methods and propose our own

dictionary learning based interpolation method. Since the

resulting image size from Lytro software is 1080 × 1080,

we set the target resolution of our reconstructed light field

image to be 1080× 1080.

4.1. Downsampling followed by bicubic interpola
tion

As described in the previous section, the size of a RAW

image is 3280×3280 (> 1080×1080). However, when tak-

ing the diameter of micro lens (10 pixels) into account, the

effective resolution is lower than the target resolution. A

naive interpolation method is to first downsample the RAW

image by a factor of 10 (i.e. diameter of micro lens) to ob-

tain a well sampled low resolution regular grid light field

image at a resolution of 328×328. Then, we use bicubic

interpolation to upsample the low resolution light field im-

age to the target resolution. We consider this method as the

baseline method. In our experimental analysis, this method

creates unnatural aliasing due to the downsampling and up-

sampling processes. In addition, some high frequency de-

tails are lost in the downsampled light field image.

4.2. Barycentric interpolation at target resolution

To fully utilize the hexagonal layout of the micro lens ar-

ray, we resize the triangular grid from the calibrated data to

the target resolution. Then, we apply Barycentric interpola-

tion to directly interpolate the pixel values from the micro

lens centers at triangle corners. This is given by:

I(p) = λ1I(x1, y1) + λ2I(x2, y2) + λ3I(x3, y3), (1)

and λ1, λ2, and λ3 can be obtained by solving:

x = λ1x1 + λ2x2 + λ3x3

y = λ1y1 + λ2y2 + λ3y3

1 = λ1 + λ2 + λ3 (2)

where p is the center point coordinate, and I(x1, y1),
I(x2, y2), I(x3, y3) are the intensity values at the three cor-

ners. The Barycentric interpolation produces higher qual-

ity interpolation comparing to the previous method since it

does not involve any downsampling. Also, the hexagonal

layout of the micro lens array gives smoother edges with

less aliasing artifacts.

4.3. Refinement using MultipleViews

The Barycentric reconstruction uses only one pixel per

micro lens image to reconstruct the light field image. In or-

der to reconstruct a higher quality light field image, we can

use more pixels from each micro lens image for reconstruc-

tion. Since pixels in a micro lens image represent rays from

slightly different perspectives, we use ray interpolation to

find the intercepting point of the ray direction and the cur-

rent image plane and then copy the color value of rays to

the intercepted pixel location.

In order to get the ray direction of each pixel, we ana-

lyze the epipolar image as discussed in previous light field



Figure 7. Top left: Epipolar image from the Barycentric recon-

struct light field image, Bottom left: Red points are from other

view. Top right: Pixels from one view, Bottom right: Pixels from

multiple view.

super-resolution techniques [20, 21]. Specifically, the gra-

dient direction in the epipolar image is proportional to the

depth of a 3D scene. Once we know the depth, we can ap-

ply ray tracing to fill in the pixel values from adjacent views.

This method is similar to the method in [16] for making high

resolution focal stack images. Figure 7(Top Left) shows an

example of epipolar image from the Barycentric reconstruc-

tion lightfield image. Figure 7(Bottom Left) illustrates the

copied pixels from adjacent views which follow the hexag-

onal arrangement of micro lens array in the Lytro camera.

The increase in number of sampled pixels is illustrated in

the Figure 7(Top and Bottom Right). The remaining empty

pixels within the triangle area are again interpolated by the

Barycentric interpolation. After this multi-view refinement,

we obtain more details in the reconstructed light field im-

age.

4.4. Learning based Interpolation

The multi-view refined light field image still contains

aliasing which is unnatural. In this section, we adopt a

learning based technique to train a dictionary that encodes

natural image structures and use it to reconstruct our light

field image. Our learning based interpolation is inspired

by the work in [22, 9] in which they use dictionary learn-

ing with sparse coding to reconstruct super-resolved image

from a low quality and low resolution image. To prepare

our training data, we use our calibrated Lytro parameter to

generate a synthetic triangular grid image by dropping pixel

values at the location that were interpolated by the Barycen-

tric interpolation. After that, we use the Barycentric inter-

polation to re-interpolate the pixel values to get a synthe-

sized image after the multi-view refinement. Using these

image pairs, we train a dictionary by solving the following

sparse coding equation:

{Dh, Dl} = argmin
Dα

‖Dα− T‖
2

2
+ λ ‖α‖

1
(3)

where D = {Dh, Dl} is the trained dictionary which con-

sists of high quality and low quality dictionary pair, T is our

training examples, and α is the sparse coefficient. We refer

reader to [22] for more details about the dictionary learning

process. In the reconstruction phase, we estimate the sparse

coefficients which can faithfully reconstruct the multi-view

refined light field image using the low quality dictionary by

solving the following equation:

argmin
φ

‖Dlφ− Il‖
2

2
+ λ ‖φ‖

1
. (4)

Next, we substitute the low quality dictionary with the

high quality dictionary and then reconstruct the light field

image again using the high quality dictionary and the es-

timated sparse coefficients. After the learning based inter-

polation, our reconstructed light field images are of high

quality which contains high resolution details without any

aliasing.

5. Experimental Results

This section shows our reconstructed light field images

from the Lytro RAW data. We examine the effects of the

calibration by comparing the reconstructed light-field im-

ages with and without the calibration. In our experiment,

we reconstruct light field images, L(s, t, u, v), with size

7 × 7 by using only the pixels around the calibrated cen-

ter points of micro lens images. This is because the mi-

cro lens has vignetting and other non-uniform effects which

greatly degrade the reconstructed light field image from

the border pixels of micro lens images. Also, 7 × 7 light

field images are already sufficient for post-focusing meth-

ods [17, 16] and many light field super-resolution algo-

rithms [3, 8, 10, 15, 21, 2].

Effects on Calibration. We compute the results with and

without calibration by assuming the positions of each cen-

ter pixel of micro lens which are fixed on a given hexagonal

grid. We show the reconstructed center view image in Fig-

ure 8 for comparisons. As shown in the leftmost column, re-

sults without calibration have blur, aliasing and color shift

artifacts. This is because the reconstructed images with-

out calibration can contain pixels from other view perspec-

tive. After calibration, the aliasing artifacts are reduced and

edges are sharper as shown in the center images respec-

tively. For references, we also show the reconstructed center

view on the rightmost column after multi-view refinement.

Effects on Sub-pixel precision estimation of center

points. We examine the reconstructed center view with

and without sub-pixel precision estimation of center points



Figure 8. Comparison with results without calibration indoor

scene. Left: without calibration, Center: with calibration, Right:

multiple images are used with calibration. Results without calibra-

tion has many artifacts compared with calibrated results. Multiple

images which have different view points make more details.

in Figure 9. Since the micro-lens array does not fully align

with image sensors, using the integer pixel unit to represent

micro lens centers can cause large errors especially when

each of the micro lens is very small. As shown in Figure 9,

result without sub-pixel precision estimation shows block

artifacts around diagonal edges. In contrary, the results with

sub-pixel accuracy of center points has less aliasing artifacts

and straighter lines.

Comparisons of different resampling methods

In order to examine the effect on different resampling,

we compare the reconstructed center view from the bicubic

interpolation method described in Section 4.1, the Barycen-

tric interpolation method described in Section 4.2, the

multi-view refinement method described in Section 4.3,

and the dictionary learning based interpolation method de-

scribed in Section 4.4 in Figure 10 and Figure 11.

In Figure 10 (b), blur and aliasing artifacts appear partic-

ularly in the edge region of resolution chart because some

high frequency details have lost in the downsamping pro-

cess. The Barycentric reconstruction at the target resolution

with downsampling shows distinguishable lines in the reso-

lution chart in Figure 10 (c) and better results in Figure 11.

In Figure 8, Figure 10 (d), and the third column of Fig-

ure 11, we show the reconstructed results with multi-view

refinement which contains more details comparing to sin-

gle view Barycentric reconstruction method. We also ap-

ply learning based interpolation on top of calibration and

sub-pixel precision processes. As shown in Figure 11, the

learning based result shows the most sharper edges and less

jagged artifacts among comparing results. Since a low res-

olution image is directly replaced by high resolution based

on the dictionary, it has less aliasing artifacts, while other

results based on the interpolation method still have jagged

Figure 9. Barycentric reconstruction without (Left) and with

(Right) sub-pixel precision estimation of micro lens center.

Figure 12. Comparison with Dansereaus et al. [7].

lines as clearly seen in the top row. Lastly, we show re-

sults from Lytro built-in software in the rightmost column

in Figure 11. Comparing the Lytro software results, our

multi-view refinement has similar quality reconstruction.

We can also see that the dictionary learning interpolation

outperforms Lytro software results with more details and

less aliasing. Finally, we compare our reconstructed im-

age with the reconstructed image using the toolbox from

Dansereau et al. [7] in Figure 12. Note that our results are

of higher resolution and with more details and less aliasing

artifacts.

6. Conclusion and discussion

We have presented the calibration pipeline of Lytro and

several resampling algorithms for light field image recon-

struction. Although this work is mostly engineering, it

gives a good case study to understand the process of cali-

bration and demonstrate the importance of developing bet-

ter light field reconstruction algorithm for converting RAW

to L(s, t, u, v). In the calibration, the Lytro RAW data

is converted into the light-field representation L(s, t, u, v)
and we estimate the center points in raw data which has a

hexagonal formation. Then, we sample the pixels preserv-

ing the hexagonal formation. To reconstruct high quality

light field images, we design the learning based interpola-

tion algorithm and demonstrate that our learning based al-

gorithm outperforms other resampling methods including

results from the Lytro software.

In this paper, we have also shown that the importance of



Figure 10. Real world examples using resolution chart. (a) Extracted pixels on hexagonal grid, (b) Bicubic interpolation on low resolution

image, (c) Barycentric interpolation, (d) Using multiple images, (e) our learning based method, (f) Lytro built-in.

knowing calibration parameters for high quality light-field

reconstruction. While most previous works assume that the

light field representation is given from plenotic cameras,

the quality of light field images can vary a lot and hence

can greatly affect the performances of post-processing algo-

rithms. In the future, we plan to extend our work to combine

with other light-field super-resolution algorithms to further

enhance the resolution and quality of the light field image.
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