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The cerebellar microcircuit has been the work bench for theoretical and computational

modeling since the beginning of neuroscientific research. The regular neural architecture

of the cerebellum inspired different solutions to the long-standing issue of how

its circuitry could control motor learning and coordination. Originally, the cerebellar

network was modeled using a statistical-topological approach that was later extended

by considering the geometrical organization of local microcircuits. However, with

the advancement in anatomical and physiological investigations, new discoveries

have revealed an unexpected richness of connections, neuronal dynamics and

plasticity, calling for a change in modeling strategies, so as to include the multitude

of elementary aspects of the network into an integrated and easily updatable

computational framework. Recently, biophysically accurate “realistic” models using

a bottom-up strategy accounted for both detailed connectivity and neuronal non-

linear membrane dynamics. In this perspective review, we will consider the state

of the art and discuss how these initial efforts could be further improved.

Moreover, we will consider how embodied neurorobotic models including spiking

cerebellar networks could help explaining the role and interplay of distributed

forms of plasticity. We envisage that realistic modeling, combined with closed-

loop simulations, will help to capture the essence of cerebellar computations

and could eventually be applied to neurological diseases and neurorobotic control

systems.
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Abbreviations: aa, ascending axon; APN, anterior pontine nucleus; ATN, anterior thalamic nuclei; BC, basket cell; BG,
basal ganglia; cf, climbing fiber; Ca2+, calcium ions; cGMP, cyclic GMP; DCN, deep cerebellar nuclei; DAG, diacyl-glycerol;
GoC, Golgi cell; glu, glutamate; GC, guanyl cyclase; GCL, granular cell layer; GrC, granule cell; IO, inferior olive; IP3,
inositol-triphosphate; LC, Lugaro cell; ML, molecular layer; MLI, molecular layer interneuron; mf, mossy fiber; MC,
motor cortex; NO, nitric oxide; NOS, nitric oxide synthase; PKC, protein kinase C; pf, parallel fiber; PC, Purkinje cell;
PC, parietal cortex; PIP, phosphatidyl-inositol-phosphate; PFC, prefrontal cortex; PCL, Purkinje cell layer; RN, reticular
nucleus; SC, stellate cell; TC, temporal cortex; STN, subthalamic nucleus; UBC, unipolar brush cell.
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INTRODUCTION

The “Realistic” Modeling Approach
In contrast to the classical top-down modeling strategies
guided by researcher’s intuitions about the structure-function

relationship of brain circuits, much attention has recently
been given to bottom-up strategies. In the construction of
bottom-up models, the system is first reconstructed through
a reverse engineering process integrating available biological
features. Then, the models are carefully validated against
a complex dataset not used to construct them, and finally
their performance is analyzed as they were the real system.
The biological precision of these models can be rather
high so that they merit the name of realistic models.
The advantage of realistic models is two-fold. First, there
is limited selection of biological details that might be
relevant to function (this issue will be important in the
simplification process considered below). Secondly, with these
models it is possible to monitor the impact of microscopic
variables on the whole system. A drawback is that some
details may be missing, although they can be introduced
at a later stage providing proofs on their relevance to
circuit functioning (model upgrading). Another potential
drawback of realistic models is that they may lose insight
into the function being modeled. However, this insight
can be recovered at a later stage, since realistic models
can incorporate sufficient details to generate microcircuit
spatio-temporal dynamics and explain them on the basis of
elementary neuronal and connectivity mechanisms (Brette et al.,
2007).

Realistic modeling responds to the general intuition that
complexity in biological systems should be exploited rather
that rejected (Pellionisz and Szentágothai, 1974; Jaeger et al.,
1997; De Schutter, 1999; Fernandez et al., 2007; Bower, 2015).
For example, the essential computational aspects of a complex
adaptive system may reside in its dynamics rather than just in
the structure-function relationship (Arbib et al., 1997, 2008),
and require therefore closed-loop testing and the extraction
of rules from models running in a virtual environment (see
below). Moreover, the multilevel organization of the brain
often prevents from finding a simple relationship between
elementary properties (e.g., neuronal firing) and higher functions
(e.g., motor control or cognition). Network connectivity
on different scales exploits local neuronal computations
and eventually generates the algorithms subtending brain
operations. An important new aspect of the realistic modeling
approach is that it is now much more affordable than
in the past, when it was less used due to the lack of
sufficient biophysical data on one hand and of computational
power and infrastructures on the other. Now that these
all are becoming available, the realistic modeling approach
represents a new exciting opportunity for understanding
the inner nature of brain functioning. In a sense, realistic
modeling is emerging as one of the most powerful tools in
the hands of neuroscientists (Davison, 2012; Gerstner et al.,
2012; Markram, 2013). The cerebellum has actually been
the work bench for the development of ideas and tools

fuelling realistic modeling over almost 40 years (for review
see Bhalla et al., 1992; Baldi et al., 1998; Cornelis et al.,
2012a; D’Angelo et al., 2013a; Bower, 2015; Sudhakar et al.,
2015).

Cerebellar Microcircuit Modeling:
Foundations
In the second half of the 20th century David Marr, in a
classical triad, developed theoretical models for the neocortex,
the hippocampus and the cerebellum, setting landmarks for the
development of theoretical and computational neuroscience (for
review see, Ito, 2006; Honda et al., 2013). Since then, the models
have advanced alternatively in either one or the other of these
brain areas.

The striking anatomical organization of the cerebellar circuit
has been the basis for initial models. In 1967, the future Nobel
Laureate J.C. Eccles envisaged that the cerebellum could operate
as a neuronal ‘‘timing’’ machine (Eccles, 1967). This prediction
was soon followed by the theoretical models of Marr and Albus,
who proposed the Motor Learning Theory (Marr, 1969; Albus,
1971) emphasizing the cerebellum as a ‘‘learning machine’’ (for
a critical vision on this issue, see Llinás, 2011). These latter
models integrated a statistical description of circuit connectivity
with intuitions about the function the circuit has in behavior
(Marr, 1969; Albus, 1971). These models have actually been
only partially implemented and simulated as such (Tyrrell and
Willshaw, 1992; see below) or transformed into mathematically
tractable versions like the adaptive filter model (AFM; Dean and
Porrill, 2010, 2011; Porrill et al., 2013).

While Marr himself framed his own efforts to understand
brain function by contrasting ‘‘bottom up’’ and ‘‘top down’’
approaches (he believed his approach was ‘‘bottom up’’), in
initial models the level of realism was limited (at that time,
little was known on the ionic channels and receptors of the
neuronal membrane, by the way). Since then, several models of
the cerebellum and cerebellar subcircuits have been developed
incorporating realistic details to a different extent (Maex and De
Schutter, 1998; Medina et al., 2000; Solinas et al., 2010). In the
most recent models, neurons and synapses incorporate Hodgkin-
Huxley-style mechanisms and neurotransmission dynamics
(Yamada et al., 1989; Tsodyks et al., 1998; D’Angelo et al.,
2013a). As far as microcircuit connectivity is concerned, this
has been reconstructed by applying combinatorial rules similar
to those that have inspired the original Marr’s model. Recently,
an effort has allowed the reconstruction and simulation of
the neocortical microcolumn (Markram et al., 2015) showing
construction rules that may also be used for different brain
areas. The approach used for the neocortical microcircuit
is based on precise determination of cell densities, on cell
morphologies and on a set of rules for synaptic connectivity based
on proximity of the neuronal processes (density-morphology-
proximity or DMP rule). One question is now whether the
construction rules used for the neocortex can also be applied
to the cerebellar network. Moreover, since ontogenetic factors
play a critical role in network formation, taking a snapshot
of the actual state of the mature cerebellar network may
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not be enough to implement its connectivity and investigate
its function. Again, while developmental models have been
devised for the cerebral cortex (Zubler et al., 2013; Roberts
et al., 2014), their application to the cerebellum remains to
be investigated. Therefore, advancement on the neocortical
front may now inspire further development in cerebellar
modeling.

The most recent realistic computational models of the
cerebellum have been built using an extensive amount of
information taken from the anatomical and physiological
literature and incorporate neuronal and synaptic models
capable of responding to arbitrary input patterns and of
generating multiple response properties (Maex and De Schutter,
1998; Medina et al., 2000; Santamaria et al., 2002, 2007;
Santamaria and Bower, 2005; Solinas et al., 2010; Kennedy
et al., 2014). Each neuron model is carefully reconstructed
through repeated validation steps at different levels: at present,
accurate models of the GrCs, GoCs, UBCs, PCs, DCN neurons
and IOs neurons are available (De Schutter and Bower,
1994a,b; D’Angelo et al., 2001, 2016; Nieus et al., 2006,
2014; Solinas et al., 2007a,b; Vervaeke et al., 2010; Luthman
et al., 2011; Steuber et al., 2011; De Gruijl et al., 2012;
Subramaniyam et al., 2014; Masoli et al., 2015). Clearly,
realistic models have the intrinsic capacity to resolve the still
poorly understood issue of brain dynamics, an issue critical to
understand how the cerebellum operates (for e.g., see Llinás,
2014).

That understanding cerebellar neuron dynamics can bring
beyond a pure structure-function relationships was early
recognized but the issue is not resolved yet. There are several
correlated aspects that, in cascade from macroscopic to
microscopic, need to be considered in detail (see below).
Eventually, cerebellar functioning may exploit internal
dynamics to regulate spike-timing and to store relevant
network configurations through distributed plasticity (Ito,
2006; D’Angelo and De Zeeuw, 2009; Gao et al., 2012). The
testing of integrated hypotheses of this kind is exactly what a
realistic computational model, once properly reconstructed and
validated, should be able to promote.

A further crucial consideration is that the cerebellum
has a similar microcircuit structure in all its parts, whose
functions differentiate over a broad range of sensori-motor and
cognitive control functions depending on the specific anatomical
connections (Schmahmann and Sherman, 1998; Schmahmann,
2004; Ito, 2006; Schmahmann and Caplan, 2006; D’Angelo and
Casali, 2013; Koziol et al., 2014). It appears therefore that the
intuition about the network role in learning and behavior of
the original models of Marr-Albus-Ito can be implemented
now by integrating realistic models into a closed-loop robotic
environment. This allows the interaction of the microcircuit with
ongoing actions and movements and the subsequent learning
and extraction of rules from the analysis of neuronal and
synaptic properties under closed-loop testing (Caligiore et al.,
2013, 2016). In this article, we are reviewing an extended set
of critical data that could impact on realistic modeling and
are proposing a framework for cerebellar model development
and testing. Since not all the aspects of cerebellar modeling

have evolved at similar rate, more emphasis has been given
to those that will help more in exemplifying prototypical
cases.

Realistic Modeling Techniques: The
Cerebellum as Workbench
Realistic modeling allows reconstruction of neuronal functions
through the application of principles derived from membrane
biophysics. The membrane and cytoplasmic mechanisms can be
integrated in order to explain membrane potential generation
and intracellular regulation processes (Koch, 1998; De Schutter,
2000; D’Angelo et al., 2013a). Once validated, neuronal models
can be used for reconstructing entire neuronal microcircuits.
The basis of realistic neuronal modeling is the membrane
equation, in which the first time derivative of potential is
related to the conductances generated by ionic channels. These,
in turn, are voltage- and time-dependent and are usually
represented either through variants of the Hodgkin-Huxley
formalism, through Markov chain reaction models, or using
stochastic models (Hodgkin and Huxley, 1952; Connor and
Stevens, 1971; Hepburn et al., 2012). All these mechanisms can
be arranged into a system of ordinary differential equations,
which are solved by numerical methods. The model can
contain all the ion channel species that are thought to be
relevant to explain the function of a given neuron, which can
eventually generate all the known firing patterns observed in
real cells. In general, this formalism is sufficient to explain
the properties of a membrane patch or of a neuron with
very simple geometry, so that one such model may collapse
all properties into a single equivalent electrical compartment.
In most cases, however, the properties of neurons cannot be
explained so easily, and multiple compartments (representing
soma, dendrites and axon) have to be included thus generating
multicompartment models. This strategy requires an extension
of the theory based on Rall’s equation for muticompartmental
neuronal structures (Rall et al., 1992; Segev and Rall, 1998).
Eventually, the ionic channels will be distributed over numerous
different compartments communicating one with each other
through the cytoplasmic resistance. Up to this point, the
models can usually be satisfactorily constrained by biological
data on neuronal morphology, ionic channel properties and
compartmental distribution. However, the main issue that
remains is to appropriately calibrate the maximum ionic
conductances of the different ionic channels. To this aim,
recent techniques have made use of genetic algorithms that
can determine the best data set of multiple conductances
through a mutation/selection process (Druckmann et al., 2007,
2008).

As well as membrane excitation, synaptic transmission
mechanisms can also be modeled at a comparable level of
detail. Differential equations can be used to describe the
presynaptic vesicle cycle and the subsequent processes of
neurotransmitter diffusion and postsynaptic receptor activation
(Tsodyks et al., 1998). This last step consists of neurotransmitter
binding to receptors, followed by the opening ion channels or
modulation of intracellular cascades, and it is often accounted
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by stochastic receptor models. The synapses can also be
endowed with mechanisms generating various forms of short-
and long-term plasticity (Migliore et al., 1995). Appropriate
synaptic modeling provides the basis for assembling neuronal
circuits.

In all these cases, the cerebellum has provided a work
bench that has remarkably contributed to write the history
of realistic modeling. Examples are the development of
integrated simulation platforms (Bhalla et al., 1992; Bower
and Beeman, 2007), the definition of model optimization and
evaluation strategies (Baldi et al., 1998; Vanier and Bower,
1999; Cornelis et al., 2012a,b; Bower, 2015), the generation
of complex neuron models as exemplified by the Purkinje
cells (De Schutter and Bower, 1994a,b; Bower, 2015; Masoli
et al., 2015) and the GrCs (D’Angelo et al., 2001; Nieus
et al., 2006; Diwakar et al., 2009) and the generation of
complex microcircuit models (Maex and De Schutter, 1998;
Medina and Mauk, 2000; Solinas et al., 2010). Now, the
cerebellar neurons, synapses and network pose new challenges
for realistic modeling depending on recent discoveries on
neuron and circuit biology and on the possibility of including
large-scale realistic circuit models into closed loop robotic
simulations.

CRITICAL STRUCTURAL PROPERTIES OF
THE CEREBELLAR NETWORK

In the Marr-Albus models, the core hypothesis was that the
GCL performs sparse coding of mf information, so that the
specific patterns of activity presented to PCs can be optimally
learned at the pf-PC synapse under cf control. In these models
the cerebellar cortex processes incoming information serially
(Altman and Bayer, 1997; Sotelo, 2004) and its output impinges
on the DCN, while the IO plays an instructing or teaching
role by activating PCs through the cfs. These models reflect
the anatomical concept of the cerebellar cortical microzone,
which, once connected to the DCN and IO, forms the cerebellar
microcomplex (Ito, 1984) representing the functional unit of
the cerebellum. Recently, this fundamental modular organization
has been extended by including recurrent loops between DCN
and GCL and also between the DCN and IO. Moreover, the
cerebellum turns out to be divided into longitudinal stripes
that intersect the transverse lamella of the folia and can be
subdivided into various anatomo-functional regions connected
to specific brain structures forming nested and multiple feed-
forward and feed-back loops with the spinal cord, brain
stem and cerebral cortex. Thus, the cerebellar connectivity,
both on the micro-scale, meso-scale and macro-scale, is far
from being as simple as originally assumed but it rather
appears to generate a complex multidimensional hyperspace.
A main challenge for future modeling efforts is thus to
consider these different scales of complexity and recurrent
connectivity.

Microscale Organization
The cerebellar inputs are elaborated in the GCL before
being further processed in the ML and distributed to PCs,

from which signals are sent to DCN. While signals flow
along the GrC → PC → DCN neuronal chain, they are
thought to undergo an initial ‘‘expansion recoding’’ in the
GCL followed by a ‘‘perceptron-like’’ sampling in PCs before
converging onto the DCN (the validity of these assumptions is
further considered below). Local computations in the cerebellar
cortex are regulated by two extended inhibitory interneuron
networks, one in the GCL and one in the ML. Since the
DCN is also activated by mf collaterals, the cerebellar cortex
de facto operates as a modulator of DCN activity. Finally,
the IO → PC → DCN neuronal chain forms another
pathway probably implied in controlling network learning
and timing capabilities. Recently, relevance has been given
to recurrent DCN → GrC and DCN → IO connections,
which can directly send output information back to the
input. Of great importance for network conceptualization
and modeling are not just the convergence/divergence ratios
and cell densities reported in Table 1 but also the specific
geometries of connectivity reported in Figures 1, 2 (neuron
and microcircuit dynamics are considered in the next chapter).
It turns out that, differently from the neocortex that has
neurons almost isotropically organized inside microcolumns, the
cerebellar cortex shows precisely oriented neuronal structures
and connections.

The Double mf and cf Input
The main input to the cerebellum comes through the mfs. The
mfs originate from neurons located in the brain-stem nuclei
(including the cuneate nucleus, vestibular nucleus, reticular
nucleus, red nucleus and APN) and spinal cord (dorsal
columns). Moreover, relevant to external connectivity, GrCs
have recently been shown to receive a blend of modalities
from brain-stem and cortical afferences (Huang et al., 2013;
Ishikawa et al., 2015). In the GCL, mfs, GrC dendrites, GoC
dendrites and axons interact into specialized structures called
glomeruli. The mfs emit collaterals forming synapses in the
DCN. The other important input originates from a brain-stem
nucleus, the IO, giving rise to the cfs contacting PCs and
DCNs.

The Geometry of Microcircuit Connectivity
The mfs, after entering the GCL, branch longitudinally (i.e.,
orthogonally to the main axis of the folia) generating numerous
‘‘rosettes’’ (i.e., clusters of glomeruli). The basal GoC dendrites
spread around the soma, while the apical dendrites ascend
into the ML and the GoC axons remains confined into the
GCL also spreading longitudinally (Wu et al., 1999; Sultan,
2001; Sultan and Heck, 2003). There are just 3–5 short GrC
dendrites that are connected to as many different glomeruli,
whereas the GrC axons pass vertically the PCL and the ML
until they divide into pfs running transversally (i.e., along the
main axis of the folia). The flattened dendritic trees of PCs
form an ordered palisade perpendicular to the folia (Person
and Raman, 2012a) and are crossed by pfs connecting arrays
of PCs aligned along the pf bundle. The SCs are located
in the upper part of the ML and the BCs in the lower of
the ML (Briatore et al., 2010; Alcami and Marty, 2013) with

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 July 2016 | Volume 10 | Article 176

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


D’Angelo et al. Cerebellum Modeling

TABLE 1 | Statistics of connectivity.

Source cell Density Target cell Divergence Convergence Reference Species

Glomeruli 3 ∗105/mm3 GrC 1:53 4:1 Solinas et al. (2010) Rat

GoC 1:3.6 50:1 Solinas et al. (2010)

Mf not known Glomeruli not known not known Rat

GrC 4 ∗106/mm3 GoC see aa and pf see aa and pf Korbo et al. (1993) Rat

PC see aa and pf see aa and pf

GoC 9.000/mm3 GrC 1:600 4:1 Korbo et al. (1993) Rat

Aa not known GoC 400:1 Cesana et al. (2013) Rat

PC 1:1 n (not known):1

Pf not known GoC 1:1.9 1000:1 Walter et al. (2009) Rat

PC 1:1 1000:1 Ito (1984)

BC/SC not known not known

Cf PC 1:37 ± 11 1:1 Brown et al. (2012) Rat

PC 10.100/mm3 DCN 1:1 40:1 Korbo and Andersen (1995)

and Person and Raman (2012a,b)

Rat

SC 1 ∗105/mm3 PC 1:10∼17 7:1 Briatore et al. (2010),

Wadleigh and Valenzuela (2012)

and Kim et al. (2014)

Mouse

BC 1 ∗105/mm3 PC 1:30 7:1 Briatore et al. (2010),

Wadleigh and Valenzuela (2012)

and Kim et al. (2014)

Mouse

DCN 50.000–100.000/mm3 IO not known not known Baumel et al. (2009) Mouse

GoC not known not known Najac and Raman (2015)

GrC 1:6 4:1 Ankri et al. (2015)

Houck and Person (2015)

IO 43.900/mm3 DCN 1:4 1:1 Schild (1970) Mouse

Uusisaari and Knöpfel (2011)

The table reports the connectivity between the source and the target cell in the cerebellar circuit, the density of the cerebellar neurons and the divergence/convergence

ratios. (Data extracted from Solinas et al., 2010).

the dendritic trees perpendicular to the folium and axons
spreading to some distance both along and across the pf
bundle. In turn, the cfs branch longitudinally and contact
the dendrites of clusters of PCs. Therefore, perhaps the most
striking aspect in the cerebellar microcircuit is that, while mfs,
cfs, GoC axons and PC dendrites are oriented longitudinally,
they are orthogonal to the pfs that cross the PC dendritic
trees.

The Inhibitory Interneuron Networks
The cerebellum is characterized by two extended inhibitory
interneuron networks. The GCL layer inhibitory network is made
of feedforward and feedback loops driven by mfs: (i) the mfs
excite GrC and GoC dendrites and these latter inhibit GrCs in
a feedforward loop, and (ii) the mfs excite GrCs and then pfs
excite GoCs and these latter inhibit GrCs in a feedback loop
(Simões de Souza andDe Schutter, 2011;Mapelli et al., 2014). The
GoCs are interconnected through gap-junctions and reciprocal
inhibitory synapses. The ML inhibitory network is formed by a
series of MLIs (SCs and BCs) activated by pfs and inhibiting PCs
in feed-forward (Santamaria et al., 2002, 2007). The MLIs are
interconnected through gap-junctions and reciprocal inhibitory
synapses (Astori et al., 2009; Alcami and Marty, 2013).

Mesoscale Organization
Beyond the combinatorial and geometrical architecture
described above, which is valid for the whole cerebellar
cortex, there are higher orders of organization.

Cortical Microzones and Cerebellar Modules
Tracing studies have revealed longitudinal zones that elongate
in the rostro-caudal direction and run perpendicular to the
long axis of the lobules. The longitudinal zones include the
olivocerebellar afferents (cfs) and the corticonuclear (PC)
efferents. The somatotopic distribution of cfs are directed to
one or two longitudinal zones, while mfs have a more extended
transverse branching and terminate in multiple longitudinal
zones. Some longitudinal zones can be split into smaller units
called microzones. The microzones receiving the same cf inputs
from the multizonal microcomplexes and are important for
the parallel processing and integration of information coming
from mf inputs. Thus, while the neocortex is characterized
by microcolums and columns, the cerebellum can be divided
into anatomo-functional modules deriving from the assembly of
microzones (Cerminara, 2010). Recently, by combining in vitro

recordings with optogenetics, it has been possible to identify
stereotyped patterns of functional synaptic organization between
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FIGURE 1 | The multi-level organization of the cerebellum. This schematic representation shows how the core cerebellar microcircuit is wired inside the whole

brain and how it can be further dissected into levels of increasing cellular and molecular complexity. The drawing at the center shows the cerebellar cortex subdivided

into three layers (GCL, granular cell layer; PCL, Purkinje cell layer; ML, Molecular layer), which contain different types of excitatory and inhibitory neurons (cf, climbing

fiber; DCN, deep cerebellar nuclei; GoC, Golgi cell; GrC, granule cell; IO, inferior olive; APN, anterior pontine nucleus; RN, reticular nucleus; MLI, molecular layer

interneuron; mf, mossy fiber; pf, parallel fiber; PC, Purkinje cell; the signs indicate the excitatory or inhibitory nature of the cell or fiber). A cortical microzone is

connected to IO and DCN to form a cerebellar microcomplex. The expansion to the top, which shows a flattened representation of the cerebellar cortex, indicates

how a cerebellar microcomplex can extend to include several microzones located in separated cerebellar regions. A further expansion to the top shows the main

circuit loops formed by the cerebellum with the cerebral cortex (PFC, prefrontal cortex; MC, motor cortex; PC, parietal cortex; TC, temporal cortex) through the DCN

and the anterior thalamic nuclei (ATN) on the efferent pathway and through the anterior pontine nuclei (APN) on the afferent pathway. The connection with basal

(Continued)
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FIGURE 1 | Continued

ganglia (BG) and subthalamic nucleus (STN) is also indicated. The insets to

the bottom show, expand in cascade the wiring in the granular layer to show

glomerular connectivity, glomerular neurotransmission and synaptic

transduction mechanisms. The receptors involved (labeled in the inset) and the

intracellular cascades include several identified molecular elements (glu,

glutamate; PKC, protein kinase C; DAG, diacyl-glycerol; IP3,

inositol-triphosphate; PIP, phosphatidyl-inositol-phosphate; NO, nitric oxide

synthase; NOS, nitric oxide synthase; NO, nitric oxide; Ca2+, calcium ions;

GC, guanyl cyclase; cGMP, cyclic GMP; Modified from D’Angelo and Peres,

2011; Mapelli et al., 2014).

GrCs and PCs, GoCs and MLIs. All these connections displayed
position-specific patterns of GrC synaptic inputs that did not
strictly match with anatomical boundaries and could connect
distant cortical modules, indicating that specific microcircuit
connectivity rules have also to be taken into account (Valera et al.,
2016).

Longitudinal Organization: The Zebrin Stripes
The so-called zones are long cerebellar stripes ranging from the
anterior to posterior poles of the cerebellum and can be identified
histochemically and functionally (Andersson and Oscarsson,
1978; Apps and Garwicz, 2005; Apps and Hawkes, 2009; Voogd,

2011). Each stripe is defined by the PC type depending on the
expression of Aldolase-C (Zebrin II) as well as of other enzymes
(e.g., NOS and PKC isoforms) and ionic channels (e.g., TRIP).
PCs expressing Zebrin II (Z+) show a slower spontaneous firing
(40 Hz) compared to PCs not expressing Zebrin II (Z−; 90–100
Hz; Zhou et al., 2014). Moreover, Z+ and Z− PCs differ as for
their ability to generate plasticity at the pf-PC synapse (Wadiche
and Jahr, 2005; Wang et al., 2011). It has recently been shown
that GoC somata and dendrites are restricted to the same PC
Zebrin II stripe (Sillitoe et al., 2008). The restriction of GoCs
in specific stripes may influence network activity, since GoCs
are connected through gap junctions (Vervaeke et al., 2010) and
could have a role in controlling GCL oscillations (Simões de
Souza and De Schutter, 2011). The PCs output on specific DCNs
is then retransmitted to the IO trough the nucleo-olivary pathway
and this pathway has been seen to influence the responses of the
IO to their target PCs (Voogd, 2011).

Macroscale Organization

Major Anatomical Subdivisions
The cerebellum, on each side of the midline, is divided into three
regions running along the rostral to caudal axis: the vermis, the

FIGURE 2 | Special properties of GCL connectivity. The figure shows schematically the most important properties of GCL connectivity that have emerged from a

complex set of physiological and structural experiments. (1) Divergence of mossy fibers onto different cell types. Formation of multiple glomeruli per mossy fiber.

Multiple inputs onto the same GrC but different inputs on each granule cell dendrite. (2) Glomerular integration: a cerebellar glomerulus contains a mossy fiber

terminal as well as GoC axonal terminals and dendrites. (3) Feed-forward inhibitory loops pass through the MF→GoC→GrC circuit. (4) Feed-back inhibitory loops

pass through the MF→GC→GoC→GrC circuit. (5) GrCs activate GoCs both on basal dendrites and apical dendrites (4). (6) GoC→GoC reciprocal inhibition through

reciprocal synapses. (7) GoC→GoC communication through gap-junctions. (8) UBC pathway: MF→UBC→ GrC. (9) Lugaro Cell pathway: MF→LC→ GoC. (aa,

Ascending axon; other labels and symbols as in Figure 1). Modified from Mapelli et al. (2014).
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paravermis and the hemisphere. Each of these regions is folded
into lobules and each lobule is subdivided into folia. Remarkably,
the afferent and efferent connections of the cerebellar cortex,
as well as the corresponding DCNs, are strictly related to this
anatomical arrangement, as recently confirmed by viral tracing
in experimental animals (Huang et al., 2013; Watson et al., 2014)
and MRI data in humans (Balsters et al., 2010; Diedrichsen
et al., 2011; Sokolov et al., 2012; Palesi et al., 2015). Projections
from the cerebral cortex are conveyed to the anterior pontine
nuclei and then relayed mostly to the posterior-lateral parts
of the cerebellum through the medium cerebellar peduncle.
Projections from the pons and spinal cord are relayed mostly
to the vermis and anterior cerebellum through the inferior
and superior cerebellar peduncle. These same cerebellar regions
project to the spinal cord, brainstem and cerebral cortex through
different subdivisions of the DCNs (e.g., see Eccles, 1967; Ito,
1984).

Extracerebellar Connectivity and Recurrent Loops
Beyond anatomical details, what is relevant here is that the
cerebellum is involved in major connections with brainstem,
spinal cord and cerebral cortex as well as with basal ganglia (BG)
and hippocampus. These connections generate multiple loops, in
which the cerebellum is wired as a pivotal node (Caligiore et al.,
2013, 2016; D’Angelo and Casali, 2013).

– The most renowned recurrent loop passes through the IO. The
small DCN GABAergic neurons inhibit the IO cells regulating
their coupling and oscillations (Najac and Raman, 2015).

– The DCNs are involved in the cerebellar circuitry with a one
way connection between the glycinergic DCN, projecting to
the GCL, inhibiting GABAergic GoCs and the glutamatergic
DCN that excite the GRCs and GOCs (Ankri et al., 2015;
Houck and Person, 2015; Gao et al., 2016). A similar
connectivity characterizes the medial vestibular nucleus in the
vestibulo-cerebellum.

– There are several loops formed with the cerebellum by the
brainstem, passing through different cerebellar nuclei (except
the dentate) and involving the red nucleus and the reticular
nucleus.

– The major loops connecting the cerebellum to the forebrain,
start from the dentate nucleus and pass through the anterior
ventrolateral thalamus mostly to reach the cerebral cortex,
then return through the anterior pontine nuclei and themedial
cerebellum peduncle.

– Afferent sensory fibers are relayed to the cerebellum through
nuclei located in the spinal cord (e.g., in the Deiter’s columns),
brain stem (e.g., the cuneate nucleus), and superior and
inferior colliculi.

Functionally, it is important to note that all these loops
are normally closed, in that fibers leave and then return
to the cerebellum through a different pathway. The most
remarkable loops are formed with the cerebral cortex and
with the peripheral motor system, so that the cerebellum is
actually embedded in loops controlling movement planning
and the sensory consequences of movement execution. These
loops are the substrates of what are usually referred to as

the cerebellar ‘‘feed-forward’’ and ‘‘feed-back’’ controllers (see
below).

CRITICAL DYNAMIC PROPERTIES OF THE
CEREBELLAR MICROCIRCUIT

The neurons and synapses of cerebellum are amongst the
most intensely studied in the whole brain and biophysically
detailed models of several cerebellar neurons and synapses
are available (Figures 3, 4; Table 2). These models are
based on realistic multicompartmental morphologies and
incorporate a detailed description of membrane mechanisms
including various ionic channels, synaptic receptors, ionic
pumps, intracellular calcium dynamics and some cytoplasmic
processes. These models, together with detailed connectivity
rules, are fundamental to reconstruct realistic microcircuit
dynamics.

Neuronal Intrinsic Excitability
Neurons of the cerebellum show complex nonlinear properties
that are likely to play a key role in controlling network
functions. Firstly, several neurons are autorhythmic, with
frequencies varying between a few up to around 100 Hz.
The spikes have different shapes and properties and can
configure various patterns in response to current injection
or synaptic activation. Secondly, for some neurons, evidence
for resonance in the theta-frequency band has emerged.
Thirdly, neurons express non-linear firing properties suitable
for processing burst generation and burst-pause responses.
Finally, several neurons have inward rectification controlling
resting membrane potential and rebound excitation. These
properties emerge from the specific ionic channel complement
and involve differentially the soma, dendrites and axons.
For most of these neurons, there are advanced Hodgkin-
Huxley style models, which have helped understanding how
the specific electroresponsive properties are generated and
as noted above, have set landmarks for realistic modeling
strategy (for an extended review see D’Angelo et al.,
2016).

The Purkinje cell is probably the most apparent example
of this (for a recent review, see Bower, 2015). Early in
the 60’s, Rodolfo Llinas claimed that Purkinje cell dendrites
were electrically active (Llinás et al., 1968). Following a lively
scientific debate, the demonstration came from a double proof
provided by the advent of intracellular PC recordings (Llinás and
Sugimori, 1980) followed by the first model of active dendrites
(Pellionisz and Szentágothai, 1973,1974
morpho-electrical reconstruction of a guinea-pig PC (Rapp
et al., 1994), the first PC model based on realistic construction
principles was presented (De Schutter and Bower, 1994a,b)
and then widely used for network simulations for over 20
years (Santamaria et al., 2002; Steuber et al., 2007; Bower,
2010; Maex and Steuber, 2013). Recently, based on the same
morphology, a new PC model has been developed using an
updated set of ionic channels and accounting for the axonal
generation mechanism of simple spikes (Masoli et al., 2015).

Frontiers in Cellular Neuroscience | www.frontiersin.org 8 July 2016 | Volume 10 | Article 176

). Then, following precise

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


D’Angelo et al. Cerebellum Modeling

FIGURE 3 | Ionic channel types, distribution and gating properties in a PC model. The investigation of cerebellar neurons physiology and biophysics has

classically followed the same procedures used for other central neurons. Most experiments have been carried out in mice and rats in acute brain slice preparations

with the aim of determining their intrinsic electroresponsiveness. Voltage-clamp analysis of membrane currents has mostly been dedicated to synaptic events, since

space-clamp problems have in most cases hindered an accurate determination of current kinetics (except for GrCs, which are electrotonically compact). In some

neurons, relevant information has been gained through single-unit and even patch-clamp recordings in vivo. Modeling reconstruction has, in most cases, exploited

the knowledge of ionic currents identified kinetically and pharmacologically and the corresponding gating models have been derived from ion-channel libraries. The

maximum ionic channel conductances have been iteratively adjusted by fitting complex sets of experimental data derived from current-clamp recordings. (Top) The

diagram shows a 3D representation of PC morphology. This has been divided into eight distinct sections illustrated in the table on the right and endowed with ionic

mechanisms according to immunohistochemical data. The ionic mechanisms include the sodium channel (Nav1.6), LVA and HVA calcium channels (Cav2.1, Cav3.1,

(Continued)
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FIGURE 3 | Continued

Cav3.2, Cav3.3), potassium channels (Kv3.4, Kv1.1, Kv4.3, Kv1.5, Kv3.3),

potassium calcium dependent channels (KCa1.1, KCa3.1, KCa2.2), inward

rectified potassium channel (Kir2.x), cationic channel (HCN1) and a Ca

buffering system composed by Calbindin and Parvalbumin (CDP5). The graph

represents the state variables of the Nav1.6 channel during an action

potential. C, I, O, B, indicate closed, inactivated, open and blocked states.

Vertical dashed lines indicate the approximate action potential threshold (−50

mV). (Bottom) The drawings show PC membrane potential at different times

(arrows) during complex bursting (membrane potential is color-coded) in distal

dendrites, soma and third node of Ranvier (3NR). At the end of the spike

burst, the PC model depolarizes starting from distal dendrites before the

depolarization invades the whole dendritic tree. A large Ca spike is the most

relevant depolarizing event in terminal dendrites, while fast Na spikes are most

evident in AIS. In the 3RN, there is no firing pause during the dendritic Ca

spike. (Modified from Masoli et al., 2015).

A compressed version has also been presented (Marasco et al.,
2013).

The granule cell has been first approximated to a McCulloc-
Pitt neuron by a realistic model based on a limited set of ionic
currents (Gabbiani et al., 1994). Then GrCs were shown to
generate non-linear input-output relationships and were fully
modeled based on a more complex set of ionic currents and
validated against a rich repertoire of electroresponsive properties
including near-threshold oscillations and resonance (D’Angelo
et al., 2001). Interestingly, this last model still represents a
unique example of full Hodgkin-Huxley style reconstruction
based on ionic currents recorded directly from the same neuron,
therefore implying minimal assumptions even for the calibration
of maximum ionic conductances. The model has subsequently
been updated to incorporate detailed synaptic inputs (Nieus
et al., 2006, 2014) and to include the dendrites and axon
demonstrating the mechanisms of action potential initiation
and spike back-propagation (Diwakar et al., 2009). The model
has then been used for network simulations (Solinas et al.,
2010).

The DCN cells have been modeled, although not for all
the neuronal subtypes. A model of the glutamatergic DCN
neurons, based on realistic morphological reconstruction with
active channels (Steuber et al., 2011), was used to analyze synaptic
integration and DCN rebound firing after inhibition. More
advanced versions have been used to study the dependence of
neuronal encoding on short-term synaptic plasticity (Luthman
et al., 2011) and the impact of Kv1 channels in spontaneous spike
generation (Ovsepian et al., 2013). These models have been used
to predict the impact of the cerebellar output on extracerebellar
circuits (Kros et al., 2015).

The IO neurons were modeled to investigate the interaction of
different ionic currents in mono compartmental models (Manor
et al., 1997; Torben-Nielsen et al., 2012) showing modifications
to sub threshold oscillations (STO) when two neurons where
connected through gap junctions. A bi-compartment model
(Schweighofer et al., 1999) was able to reproduce the typical STO
and the particular spikes generated by the interaction of sodium
and calcium currents in the soma/dendritic compartments.
A three compartment model was then built to account for
the interaction between the dendrites, soma and the AIS in

generating the STO and spike output of the IO neurons
(De Gruijl et al., 2012). Different versions of IO neuron models
have been used to simulate the properties of the IO network
(Manor et al., 1997; Torben-Nielsen et al., 2012).

Interneurons
The Golgi cells were modeled reproducing the basis of their
intrinsic electroreponsiveness, showing complex non linear
behaviors such as pacemaking, resonance and phase reset
and uncovering the role of gap junctions in oscillatory
synchronization (Solinas et al., 2007a,b; Dugué et al., 2009;
Vervaeke et al., 2010). The model of UBCs reproduced
the nonlinear behaviors of this neuron including bursts,
rebounds and the late-onset burst response. This latter property
contributes to generate transmission delays in the circuit
(Subramaniyam et al., 2014). Concerning MLIs (Llano and
Gerschenfeld, 1993; Alcami and Marty, 2013) no detailed
conductance-based models are available yet and simplified IF
models of these neurons were connected with the PCs to
investigate the ML subcircuit (Santamaria et al., 2007; Lennon
et al., 2014).

Synaptic Transmission and Plasticity
A wealth of experimental investigations has addressed the
functional properties of cerebellar synapses and will not be
considered in detail here (for review see e.g., Mapelli et al.,
2014; for the granular layer, Barmack and Yakhnitsa, 2008;
for ML). Almost all cerebellar synapses present different forms
of short-term plasticity (short-term facilitation: STF; short-
term depression: STD) and long-term plasticity (LTP, LTD;
De Zeeuw et al., 2011; Gao et al., 2012). In general, short-
term plasticity is suitable to regulate transmission during bursts.
STD prevails at the mf-GrC synapse, STF prevails at the pf-PC
synapse, and STD occurs at the PC-DCN synapses (Häusser and
Clark, 1997; Mitchell and Silver, 2000a,b; Nielsen et al., 2004;
Sargent et al., 2005; Nieus et al., 2006; DiGregorio et al., 2007;
Szapiro and Barbour, 2007; Kanichay and Silver, 2008; Duguid
et al., 2012; Powell et al., 2015; Wilms and Häusser, 2015; van
Welie et al., 2016). While neurotransmitter dynamics involving
vesicular release as well as postsynaptic receptor desensitization
proved critical for controlling neurotransmission dynamics, an
intriguing observation has been that spillover in the cerebellar
glomerulus and in the ML might have a more important role
than expected (e.g., see Mitchell and Silver, 2000a,b; Szapiro and
Barbour, 2007).

Likewise, there are more than 15 forms of long-term synaptic
plasticity in the cerebellar network, appearing both as LTP or
LTD with multiple and different mechanisms of induction and
expression (for review, see Ito, 2002; Gao et al., 2012; D’Angelo,
2014). Plasticity has been reported not just in acute brain slices
but also in vivo (Jörntell and Ekerot, 2002; Roggeri et al., 2008;
Diwakar et al., 2011; Johansson et al., 2014; Ramakrishnan
et al., 2016), revealing that patterned sensory inputs can
determine a complex set of changes encompassing multiple
synaptic relays. Importantly several of the cerebellar synapses
may show forms of spike-timing-dependent plasticity (STDP),
linking intracerebellar oscillations to the ability of generating
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FIGURE 4 | Different electrophysiological properties of cerebellar neurons and their biophysical modeling. At present, accurate realistic models have been

constructed for most cerebellar neurons, except for MLIs and Lugaro cells. In the different panels, the figure shows schematically the most important properties of

cerebellar neurons (left) and their biophysical reconstruction (right). For GCL and IO neurons, example tracings are taken from intracellular current-clamp recordings.

For PC, MLI and DCN neurons, example tracings are reported along with raster plots and PSTH of activity. The traces are modified from: (GrC) Experiments: Nieus

et al. (2014). Model: Solinas et al. (2010). (UBC) Experiments: Locatelli et al. (2013). Model: Subramaniyam et al. (2014). (GoC) Experiments: Bureau et al. (2000);

Forti et al. (2006); D’Angelo et al. (2013b). Model: Solinas et al. (2010). (PC) Experiments: Ramakrishnan et al. (2016). Model: Masoli et al. (2015). (MLI) Experiments:

Ramakrishnan et al. (2016). (DCN) Experiments: Rowland and Jaeger (2005); Uusisaari et al. (2007). Model: Luthman et al. (2011). (IO) Experiments: Lampl and

Yarom (1997); Lefler et al. (2014). Model: De Gruijl et al. (2012).

plasticity (D’Angelo et al., 2015; Garrido et al., 2016; Luque
et al., 2016). Understanding the importance of these forms of
plasticity may greatly benefit from integrated network modeling.
At present, models incorporating dynamics presynaptic vesicle
cycling (Tsodyks et al., 1998) have been developed for the mf-
GrC, mf-GoC, GoC-GrC and GrC-GoC synapses (Nieus et al.,
2006, 2014).

Microcircuit Dynamics: Timing and
Learning
The cerebellar microcircuit has been shown to develop dynamic
behaviors, although their investigation is still limited. The EEG

cannot normally be recorded from the cerebellum, although
some MEG data have been reported showing increased power
in the theta-band during motor processing (Gross et al., 2001,
2002). Recordings in the experimental animal in vivo have
focused on PC discharge patterns. PCs have been shown to
activate in spots forming transient clusters (Velarde et al.,
2004), to exploit burst-pause coding (Herzfeld et al., 2015)
and to encode the prediction of ongoing motor states (Balsters
et al., 2010). A recent report has shown that locomotion
was associated with widespread increased activity in GrCs
and interneurons, consistent with an increase in mossy fiber
drive, and that dendrites of different PC showed increased
co-activation, reflecting increased synchrony of climbing fiber
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TABLE 2 | Neuronal electroresponsive properties.

Realistic Compartments Spontaneous Firing Inward Resonance

model number frequency properties rectification frequency

GrC D’Angelo et al. (2001), Nieus

et al. (2006) and Diwakar et al.

(2009)

Single Multi No Fast spiking, variable presence of

adaptation

Fast ∼6 Hz

GoC Solinas et al. (2007a,b) and

Vervaeke et al. (2010)

Multi 6 Hz Fast spiking, adaptation, slow AHP,

post-inhibitory rebound

Slow ∼6 Hz

UBC Subramaniyam et al. (2014) Multi No Fast spiking, adaptation, delayed

bursting, slow AHP

Slow –

PC Masoli et al. (2015) Multi 40–80 Hz Fast spiking, adaptation, complex

bursting, slow AHP

Slow –

SC/BC Multi 20 Hz Fast spiking, post-inhibitory rebound Slow –

DCN Luthman et al. (2011) Multi 10–30 Hz Fast spiking, post-inhibitory rebound Slow –

IO De Gruijl et al. (2012) Multi No Slow spiking, calcium spikes,

subthreshold oscillations

Slow 3–10 Hz

The table reports details about the models available for each type of cerebellar neuron along with a short summary of their characterizing electroresponsive properties.

activity. At the same time, responses to external stimuli in
all three cell types were strongly suppressed showing that
climbing and mossy fiber representations can shift together
within a fraction of a second between responses to movement-
associated or external stimuli (Ozden et al., 2012). However,
the spatio-temporal reconfiguration of signals expected to occur
in the GCL remains to be fully addressed in vivo and it is
not fully clear how signals coming from different sources are
redistributed through the different internal channels of the
cerebellum.

Relevant to cerebellar circuit dynamics are its oscillating and
resonant properties. On one hand, the GCL can be entrained
into coherent oscillations by external inputs, possibly exploiting
the resonance properties of its neurons (Pellerin and Lamarre,
1997; Hartmann and Bower, 1998; D’Angelo et al., 2001;
Courtemanche et al., 2002, 2013; Solinas et al., 2007a; D’Angelo
and De Zeeuw, 2009; Gandolfi et al., 2013; Garrido et al.,
2016). On the other hand, spontaneous oscillations occur in
the IO, that might have the role of coordinating cerebellar
activity generating patterns that could be used for timing motor,
sensory and cognitive tasks (Lampl and Yarom, 1997; Jacobson
et al., 2008; Llinás, 2014). In 2011, these two observations
have been merged with a large set of experimental data to
propose a 3-level hypothesis, in which: (1) the spatio-temporal
reconfiguration of incoming signals in the GCL is followed by;
(2) their synthesis in theML andDCN; while (3) the DCN/PC/IO
loop controls a modular synchronization of cerebellar sub-fields
based on circuit recurrent dynamics and selective frequency-
dependent signal transmission (D’Angelo, 2011). The issue of
oscillations is particularly relevant not just for microcircuit
computation but also for microcircuit learning through STDP
rules (see also ‘‘Model Simplification and Implementation in
Closed-loop Robotic Testing’’ Section below). Once again, timing

to learning appear as complementary aspects of the same
mechanisms rather than alternative mechanisms of function, as
it was suggested by the original models (Marr, 1969; Eccles,
1973).

Signal Transmission in Local Microcircuits
Despite its extensive investigation, several fundamental issues
about signal transmission in local microcircuits are still
incompletely understood.

There has been a long debate, which is not fully resolved
yet, on the modality of PC activation by GCL inputs. While
punctuate peripheral stimulation in vivo generates activity spots
on the cerebellar surface (Bower and Woolston, 1983; Rokni
et al., 2007), local pf stimulation elicits stripes of activity along
the pf bundles (Ebner and Pasalar, 2008; Ebner, 2013). A recent
work using localized Glu uncaging in acute cerebellar slices
suggests that the organization of connections between the GCL
and PCs may actually be even more complex than originally
thought (Valera et al., 2016). From a functional viewpoint,
following GCL stimulation, high-frequency modulated bursts
are reliably transmitted vertically from the GCl to PCs, while
only low-frequencies are transmitted transversally along the
pfs (Mapelli et al., 2010). This observation suggested that a
frequency-dependent selection of transmission lines, together
with a specific micro-connectivity, may allow the formation of
functional modules of active spots emerging vertically at the
intersection of multiple pf bundles running along the folia with
cfs fibers branching orthogonally to them (D’Angelo, 2011).
At these intersection points, PCs may be able to decode the
phase of IO oscillations and regulate pf gain (Ohtsuki et al.,
2009).

A correlated issue concerns signal spread in the ML and
PC inhibition. The pure feed-forward inhibition of PCs has
inspired initial functional models taking the move from the
observation that SCs and BCs inhibit PC activity with specific
spatial organization and timing along and across the pf bundle
(Eccles, 1967; Ito, 1984). This structural-functional relationship
has recently been revisited highlighting the differential effect
of inhibition on PC excitation mediated by aa and parallel
fiber synapse (Mann-Metzer and Yarom, 1999, 2000, 2002;
Santamaria et al., 2002, 2007; Mittmann et al., 2005; Santamaria
and Bower, 2005; Mittmann and Häusser, 2007; Rieubland
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et al., 2014). Several dynamic phenomena have been reported
to intervene in determining how the ML actually operates.
SCs are pacemaking and are electrically coupled thus forming
an oscillating interneuron network (Mann-Metzer and Yarom,
1999, 2000, 2002; Alcami and Marty, 2013). The analysis of
these electrical and chemical SC microcircuits has recently
revealed that transitivity of chemical connectivity is directed
vertically in the sagittal plane, and electrical synapses appear
strictly confined to the sagittal plane (Rieubland et al.,
2014). The effect of ML inhibition is not confined to
regulate PC activity, but it can also regulate generation of
LTD and LTP at pf-PC synapses (Mittmann et al., 2005;
Mittmann and Häusser, 2007). On the side of ML coding,
SC inhibition deeply affects the burst-pause pattern of PC
output (Steuber et al., 2007; Herzfeld et al., 2015). Moreover,
a form of interconnectivity between PCs has been proposed
to generate traveling waves of activity in the ML (Watt et al.,
2009).

Finally, the dynamics of the IO-PC-DCN subcircuit remain
still incompletely understood. The well-known contention about
the role of cfs, that has been proposed either to control cerebellar
learning or timing (Ito, 2000; Jacobson et al., 2008; Llinás,
2009, 2011, 2014), is not yet over. What is becoming clear
is that this subcircuit has all the ingredients to subserve both
functions. The IO operates as a pattern generator exploiting
gap-junctions and local synaptic inhibition coming from the
DCN in order to organize internal activity patterns that are
then conveyed to PCs (Jacobson et al., 2008; Chen et al.,
2010; Libster et al., 2010; Lefler et al., 2013; Libster and
Yarom, 2013). This cf pattern, in turn, could be used to
select mossy fiber patterns in specific groups of PCs. It can
be argued that the coincidence of these cf and mf patterns
could be instrumental to generate various forms of plasticity
at PC and DCN synapses (see D’Angelo, 2014) raising again
the duality of the timing-plasticity issue in the cerebellar
circuit.

REALISTIC MODELS OF THE
CEREBELLAR MICROCIRCUIT

Realistic models of the cerebellar network have to take into
account a series of experimental observations, some used for
construction, others for validation. In general, morphological
measurements are themost relevant for constructing the network
structure, electrophysiological data are needed to implement
neurons and synaptic models, microcircuit-scale functional
measurements (imaging and electrophysiology) are fundamental
for validation.

The Most Compelling Example: The Model
of the GCL Subcircuit

Construction
The wealth of anatomical data reported above (Figures 1, 2)
and of cellular data (Figures 3, 4) provides the basis for
reconstructing the cerebellar microcircuit (Figure 5). The state
of the art for the cerebellar GCL is currently set by the

2010 model (Solinas et al., 2010), which was intended to
generate a core computational element of the GCL microcircuit
(about 10,000 neurons). This model was built by carefully
reproducing the cerebellar GCL network anatomical properties
and then validating the response against a large set of available
physiological data. A peculiarity of the cerebellar network is
that of being highly defined in terms of number of elements,
convergence/divergence ratios and even in the number of
synapses impinging on individual neurons. Moreover, the
geometric orientation of processes is not isotropic but rather
geometrically oriented, so that this network is quasi-crystalline in
nature. This has allowed the application of a ‘‘direct approach’’,
in which:

– The appropriate number of neuronal elements has been
randomly dislocated in a 3D space (density).

– The connectivity rules have been implemented to respect the
convergence/divergence ratios.

– The connections have been limited to specific network sub-
spaces with well defined innervation territories. This, together
with the estimates of cell densities and of the number of
synapses, allowed to implement an equivalent 3D connectivity
even if the axonal plexus was not represented explicitly.

– The neurons, though very accurate, had an equivalent rather
than a realistic morphology, either monocompartmental
(GrCs) or multicompartmental (GoCs).

Given that the data were sufficient to determine microcircuit
connectivity, it was not necessary to implement DMP
rules (see below). Moreover, since the neurons were very
accurate in reproducing the neuronal electrophysiological
properties (Table 2), there was no need to implement realistic
morphologies. Therefore, this network represents a ‘‘special
case’’ of a more general network reconstruction procedure, as
explained below.

Validation
Network validation has been performed against a relevant
experimental dataset:

– First of all, it was considered whether the model neurons,
which were calibrated beforehand on acute slice data
(D’Angelo et al., 2001; Nieus et al., 2006; Solinas et al.,
2007a,b), showed properties observed using patch-clamp
recordings in vivo (Rancz et al., 2007; Arenz et al., 2008;
Duguid et al., 2012, 2015; Chadderton et al., 2014). This
actually happened, suggesting that a simulation of the role
played by specific ionic channels during network processing
is actually possible.

– Secondly, it was assessed how the model network reacted to
random inputs distributed across the mfs. The model correctly
generated coherent GrC oscillations in the theta band (Pellerin
and Lamarre, 1997; Hartmann and Bower, 1998) provided that
an appropriate balance between the MF and PF input to GoC
was maintained.

– Thirdly, it was considered whether the high-pass filtering
properties of the GCL emerged. Again this happened, with
a correct cut-off around 50 Hz. Importantly, this property
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FIGURE 5 | GCL modeling. The reconstruction of the microcircuit model of the GCL involves a precise representation of neurons, synapses and network

connectivity. Interestingly, the model accounted for all the spatio-temporal dynamics of the GCL known at the moment. The model can therefore provide relevant

information about the inner structure of neuronal activity during specific patterns of activity and reveal the relationship between individual synaptic and neuronal

elements and the ensemble network response. (Top) synaptic currents in the dendrites of two different GrCs and receptor-specific components (AMPA, A; NMDA, N;

GABA, G). (Bottom) Spatio-temporal dynamics of the network under noisy inputs reveal coherent low-frequency oscillations in the GC populations (left). Spatial

response of GCs to a collimated mf bursts reveal a center-surround structure (right). (Modified from Solinas et al., 2010).

depended on NMDA receptors but much less so on GABA-A
receptors, as observed experimentally (Mapelli et al., 2010).

– Finally, the network response to collimated mf bursts was
tested. According to previous observations using MEA

recordings, the typical center-surround organization of GCL
responses emerged (Mapelli and D’Angelo, 2007).

Therefore, the GCL network model successfully reproduced
the whole set of functional properties known at that time,
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suggesting that it could be used for predicting emerging network
behaviors. Nonetheless, several issues remained unresolved,
mostly concerning the GoC inhibitory network, and the range of
network properties has in the meantime been extended by new
findings.

– The relative weight of the feed-forward and feed-back
inhibitory loop generated by GoCs was a free parameter,
whose impact was explored explicitly. A strong feed-back loop
favored coherent GCL network oscillations, as predicted by
a previous modeling layout (Maex and De Schutter, 1998),
while a strong fed-forward loop was needed to implement the
time-windowing effect (D’Angelo and De Zeeuw, 2009). It still
remains unclear how the two loops balanced. It is possible that
the oscillating mode dominates over large network areas and
that selective mf inputs to GoCs project restricted regions into
the time-window mode, a hypothesis that needs to be tested
(Duguid et al., 2015).

– The inhibitory input to GoCs was supposed to derive from
MLIs, but now this hypothesis is less creditable, since recent
data support the existence of inhibitory GoC-GoC connections
(Hull and Regehr, 2012).

– The excitatory input to GoCs is more complex than previously
thought, GrCs form contacts onto GoC dendrites (Cesana
et al., 2013), and GoCs are connected through gap-junctions
(Dugué et al., 2009; Vervaeke et al., 2010).

– The modality of GoC-GrC connectivity in the glomerulus is
not clear yet. While each GrC receives a single inhibitory
contact from GoCs, it is not clear if all the GrCs in
each individual glomerulus receive inhibition from the same
GoC axon or rather if they receive connections from
different GoCs.

– Finally, the small-scale of the 2010 network precluded the
analysis of extended spatio-temporal effects, for example of
those concerning interaction of different active clusters and
the spatial distribution of responses along the pf axis.

– The microscopic structure of GCL network activation can now
be compared with the multispot two-photon microscopy data,
which provide a new level of microcircuit validation (Gandolfi
et al., 2014).

Eventually, improvements of specific structural properties
and of membrane and intracellular mechanisms could also
be considered. For example, the dendrites of GoCs are
likely to be active and this has to be accounted for in
future models (Rudolph et al., 2015). Multicompartment
GrC models perform better than monocompartment ones
in controlling spike properties and delays (Diwakar et al.,
2009) and so they should be developed and adopted for
all neurons in the network model. Specific issues concern
the cerebellar glomerulus: at present, this structure has a
fictive morphology but it could be designed to incorporate a
closed diffusion space allowing the generation of glomerular
homeostatic mechanisms balancing excitatory and inhibitory
neurotransmitter release during repetitive synaptic activity
(Mapelli et al., 2014; Nieus et al., 2014). Another specific
issue concerns the mechanisms of postsynaptic calcium
regulation, signal transduction and plasticity in GrCs

and GoCs dendrites, for reason that will become evident
below.

The model of the GCL is fundamental since it generates
the input to the subsequent stages of the cerebellar cortex.
Although, in a local perspective, a microcircuit made of GrCs
and GoCs is enough to generate meaningful outputs for
ML and PCs, the incorporation of the GCL in an extended
macrocircuit requires a set of extensions. These concern
additional control subcircuits that include the UBC subcircuit,
that predicted to play an important role in generating delay
lines inside the GCL (Kennedy et al., 2014), and the LC
subcircuit, that provides a control loop regulating GoC activity
(Dieudonné and Dumoulin, 2000; Barmack and Yakhnitsa,
2008).

Perspectives for Modeling Other
Cerebellar Network Subcircuits and
The Whole Cerebellar Network
The GCL network provides the most advanced computational
model of the cerebellum at the moment. The impact of GCL
modeling becomes even more relevant once the GCL output
is used to activate the ML. At this level, mapping of GCL
activity onto PCs and MLIs occurs serially, as there is no
evidence of direct feed-back from the ML to the GCL (though
it occurs through DCN and extracerebellar loops, see also
below). A reference model for the ML has been proposed
over 10 years ago to explain PC activation (Santamaria et al.,
2007), but the main connectivity aspects of BCs and SCs
with PCs need now to updated with recent data that revealed
potentially important physiological and molecular details. For
example, ephaptic synapses need to be added on the PC
axonal initial segment (Blot and Barbour, 2014) and short-
term plasticity needs to be implemented at all the ML synapses
(Liu et al., 2008; Lennon et al., 2015). Likewise, while models
for the fundamental properties of IO and DCN neurons
are available, they also need to be updated. For example,
IO neuron axonal burst generation (Mathy et al., 2009) still
needs to be resolved. All these properties are likely to have
a relevant impact on cerebellar computation dynamics. The
same connectivity inside the IO-DCN-PC subcircuit has never
been modeled in full although relevant progress has been done
(De Schutter and Steuber, 2009; Steuber and Jaeger, 2013).
In principle, the IO-DCN-PC subcircuit should be modeled
independently and tested and then wired with the cerebellar
cortical model.

A first series of effects is expected from the integration of the
different subcircuits (granular, molecular and IO-DCN-PC) into
a whole-cerebellum network model. This assembly, by including
a set of recurrent loops, breaks down the serial processing scheme
adopted when modeling the cerebellar subcircuits separately. In
this way, the intrinsic dynamics of the IO-DCN-PC subsystem
will be integrated with the activity patterns carried by themfs and
processed in the GCL andML. Eventually, this whole-cerebellum
network model will help facing the basic question of how PC
and DCN firing is regulated by the cerebellar cortical circuit
activity.
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A second series of effects is expected from the integration
of the whole-cerebellum network model into extracerebellar
loops. This step is essential to analyze how the cerebellar
network operates. For example, properties like resonance
or STDP are relevant only in the context of rhythmic
patterns of activity in closed-loop circuits formed by the
cerebellum with the DCN (Kistler and De Zeeuw, 2003),
the cerebral cortex, brain stem and spinal-cord. The needing
of connecting the cerebellum model with external brain
structures brings about a series of additional modeling
questions.

Relevant Properties of the mf Input
Several anatomical and functional observations become relevant
when considering the internal and external connectivity of
the cerebellum. The mfs connecting to a certain GrC are
probably not all of the same nature but rather they come
from different sources. For example, there are GrCs receiving
combinations of cortical and spinal afferences and some
show a multimodal response to sensory stimulation (Huang
et al., 2013; Ishikawa et al., 2015). Thus, each GrC may
work as a coincidence detector of different signal sources.
However, in some areas GrCs may operate as threshold
detectors for the intensity of signal sources deriving from
a specific modality or somatic subregions (Bengtsson and
Jörntell, 2009). Implementing these connections requires to
know how mfs from different sources combine in individual
GrC and requires therefore a specific redistribution of
glomeruli inside the GCL (Billings et al., 2014). Ideally,
the combination of different fibers in GrCs allows direct
coincidence detection of signals from different areas carrying
‘‘congruent’’ information that needs to be associated before
further processing in the cerebellum. Some mfs also come
from the DCN imposing further constraints on the internal
distribution of connections. The GrCs receiving the internal
feed-back from DCN may be able to associate the coincidence
between DCN and extracerebellar inputs. These observations
suggest that understanding the cerebellar GCL should consider
the distribution of glomeruli deriving from mfs originating from
various sources.

Relevant Properties of Zonal and Regional

Organization
Perhaps the aspect most relevant to cerebellar modeling on the
mesoscale is the organization of subcircuits, in which the cfs and
the mfs contacting a certain group of PCs and DCN neurons
are connected to the same area of origin to form fully connected
cerebellar modules. Furthermore, the cerebellar modules can be
organized according to the longitudinal stripes, in which some
neuronal and synaptic mechanisms are differentiated depending
on the type (Z+ or Z−) of the stripe (Wadiche and Jahr, 2005;
Wang et al., 2011; Zhou et al., 2014). In turn, a model on the
macroscale has to be composed of multiple modules, each one
connected to specific extracerebellar regions. These aspects will
have to be considered once the cerebellum model will be wired
with extracerebellar areas (see below).

NEW MODELING STRATEGIES FOR NEW
CHALLENGING QUESTIONS

Realistic cerebellar modeling has to face two main
challenges. First, it has to able to incorporate realistic
morphologies and to improve details on the molecular
and cellular microscale. Secondly, it has to be expanded
toward the mesoscale and macroscale. In order to do so,
a general and flexible implementation strategy is needed,
and in this process cerebellar modeling has once again
been acting to promoting the development of general
model strategies (Bhalla et al., 1992; Bower and Beeman,
2007).

The cerebellar network is probably the most ordered
structure of the brain, and this has allowed a precise modeling
reconstruction of its internal connectivity based on extended
datasets derived from mice and rats (Maex and De Schutter,
1998; Medina and Mauk, 2000; Medina et al., 2000; Solinas et al.,
2010). A further advancement would benefit of an approach
based on structured multiscale simulators (Hines and Carnevale,
2001; Bower and Beeman, 2003; Gleeson et al., 2007; Ramaswamy
et al., 2015). This would allow to extend cerebellum modeling
performed in mice and rats to other species (e.g., humans) and to
paracerebellar structures, including the dorsal cochlear nucleus
in all vertebrates and the paracerebellar organs in electric fishes
(Oertel and Young, 2004; Requarth and Sawtell, 2011; Kennedy
et al., 2014). This approach would facilitate the incorporation
of new cell types (like the UBCs or the LCs), provided that
their detailed single neuron models are available. This approach
can host morphological and functional variants of the different
neurons, thusmoving from canonical neuronalmodels to neuron
model families expressing all the richness of electrophysiological
properties that characterize biological networks.

The cerebellum is fundamentally a plastic structure and its
function is hard to understand if plasticity is not considered.
The cerebellum drives adaptation through plasticity. Moreover,
the cerebellum attains the adult network organization through
a blend of plastic processes guided by the interaction of genetic
programs with epigenetic cues. Thus the interaction of the
cerebellar network with the rest of the brain and with ongoing
behavior is key not just to determine how the cerebellum operates
but also how the cerebellum forms its internal structure and
connections. Plasticity during development and in adulthood are
probably the most fascinating aspects of the cerebellum and pose
challenging questions for modeling.

In adulthood, the cerebellar synapses express various forms
of plasticity with learning rules showing different pattern
sensitivity, induction and expression mechanisms (D’Angelo,
2014). The corresponding learning rules are embedded into
these mechanisms and although it would be desirable that
these are eventually represented using dynamics synaptic models
(Migliore et al., 1995, 1997, 2015; Tsodyks et al., 1998; Migliore
and Lansky, 1999; Rothman and Silver, 2014) at present no such
models are available. Nonetheless, theoretical rules based on
Hebbian coincidence detectors and STDP have been developed in
some cases (Garrido et al., 2016; see below). Eventually a realistic
model incorporating learning rules resolved at the molecular
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level should be able to give insight on the adaptable properties
of the network.

As far as ontogenetic network self-organization is
concerned, a reference model has been developed for the
cerebral cortex accounting for synapse formation through
an interaction/pruning process guided by Hebbian rules
(Zubler et al., 2013). The dendrite extension/pruning
process would by itself solve problems like the crystalline
convergence/divergence ratio of the mf-GrC relay and of
the cf-PC connectivity. In a way, it can be envisaged that
the selection rules of DMP algorithm will eventually be
implemented using growing plastic rules. Moreover, once
connection pathways are prescribed, the self-organizing
system should be able to generate the appropriate distribution
of the mf-glomeruli into the cerebellar GCL and to prime
the ontogenetic development of the whole network,
aligning transmission channels and optimizing circuit
performance by setting the appropriate associations of fiber
types.

Thus the problem is not just to determine and model the
plasticity rules, but also to apply them to the network, as this
would require the cerebellum model to be inserted in a whole-
brain system interacting with the environment.

MODEL SIMPLIFICATION AND
IMPLEMENTATION IN CLOSED-LOOP
ROBOTIC TESTING

The ultimate challenge appears then to run the whole-cerebellum
network model in a simulated brain operating in closed-loop.
While a radical approach is out of reach at the moment (it would
require, in addition to fully developed cerebellum models, also
realistic models of large brain sections outside the cerebellum),
a first attempt has been done by reducing the complexity of
cerebellar models and using simplified versions to run closed-
loop robotic simulations (Casellato et al., 2012, 2014, 2015;
Garrido et al., 2013; Luque et al., 2014, 2016).

Complexity Reduction
The way complexity reduction is achieved is critical, since it
has to be performed in a way that preserves the fundamental
biological properties relevant to the process under investigation.
Two recent approaches have been proposed. Realistic PC
models currently involve about 1500 electrical compartments
and up to 15 active ionic conductances (De Schutter and
Bower, 1994a,b). This complexity has been remarkably reduced
by applying Strahler’s analysis to reduce up to 200-fold the
run time but yet maintaining an appropriate response to
synaptic inputs (Marasco et al., 2012, 2013). Likewise, the
granular layer network has been simplified using analytical
tools by increasing the simulation speed at least 270 times but
yet reproducing salient features of neural network dynamics
such as local microcircuit synchronization, traveling waves,
center-surround, and time-windowing (Cattani et al., 2016).
In all these cases, a well defined relationship is maintained
between the simplified models and their more complex realistic

counterparts. These attempts open the way to a guided
simplification procedure, at least for some cerebellar neurons
and subnetworks. When the whole cerebellar network has to
be represented in a macro-scale model, simplifications that
are computationally efficient may be preferable in a first
instance. Clearly, in this case a top-down approach is adopted
and the relationship of the simplified model with the real
system is a matter of speculation. This approach has been
used to generate cerebellar spiking networks (SNN) allowing
to reproduce a single basic cerebellar module running with
high efficiency in a robotic controller yet maintaining some
fundamental features of neurons and connections (Casellato
et al., 2012, 2014, 2015; Garrido et al., 2013; Luque et al., 2014,
2016). For example, in these models, neurons were represented
by integrate-and-fire single-compartment elements, the local
inhibitory interneuron networks were not included and the
GCL was not fully implemented resorting to the concept of a
non-recurrent states in a liquid-state machine (Yamazaki and
Tanaka, 2007). Nonetheless, the model incorporated multiple
forms of bidirectional plasticity at the PC and DCN synapses.
This compromise had to be accepted in order to generate a
spiking cerebellum model running in real-time inside a closed-
loop robotic control system and to perform system level analysis
of complex tasks like active manipulation.

Spiking Neural Networks of the Cerebellum
Despite the simplicity of the cerebellar SNN (Figure 6),
the robots that incorporated it revealed remarkable emerging
properties (Casellato et al., 2012, 2014, 2015). The SNN
robots correctly performed multiple associative learning and
correction tasks, which ranged from eye-blink conditioning
to vestibulo-ocular reflex (VOR) and force-field correction.
Importantly, the robots were not designed for any specific
one of these tasks but could cope equally well with all of
them demonstrating generalized learning and computational
capabilities. The robots could also generalize their previous
stored patterns to analogous cases with a learning rate
approaching that observed in real life. This system could easily
fit human EBCC data predicting dual-rate learning in the
network. Again, the outcome of the closed-loop simulation have
been validated against real experiments carried out in humans
(Monaco et al., 2014; D’Angelo et al., 2015) and the challenge
is now to see whether it is predictive with respect to human
pathologies.

An important aspect of thesemodels is to incorporate learning
rules that allow to test the impact of learning on cerebellar
computation. While a precise correspondence with long-term
synaptic plasticity is not at the level of molecular mechanisms
(we are dealing with simplifiedmodels by the way), these learning
rules can effectively capture the learning dynamics of the system.
Importantly, faster learning rates at PC than DCN synapses
allow fast acquisition and subsequent transfer of memory in a
consolidated state (Luque et al., 2014) and STDP rules allow
learning to accurately match the network temporal dynamics
(Luque et al., 2016). These models allowed to evaluate the
impact of known forms of bidirectional LTP/LTD at pf-PC,
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FIGURE 6 | Simulating an associative learning task using a cerebellar spiking neural network (SNN). The cerebellum circuit was simplified and embedded

into a robotic control system, in which it provided the substrate to integrate spatio-temporal information in different associative learning tasks. Real robot paradigms

(top left panel): eye blink classical conditioning (EBCC)-like, vestibulo-ocular reflex (VOR) and upper limb reaching perturbed by force fields. The EBCC-like Pavlovian

task is reproduced into the robotic platform as a collision-avoidance task. The conditioned stimulus (CS) onset is based on the distance between the moving robot

end-effector and the fixed obstacle placed along the trajectory, detected by the optical tracker. The unconditioned stimulus (US) is the collision event. The DCNs

trigger the conditioned response (anticipated stop). The VOR is reproduced into the robotic platform by using the second joint of the robotic arm as the head

(imposed rotation) and the third joint (determining the orientation of the second link) as the eye. The misalignment between the gaze direction and the environmental

target to be looked at is computed through geometric equations from the optical tracker recording. The DCNs modulate the eye compensatory motion. The

perturbed reaching is reproduced into the robotic platform by applying a viscous force field on the moving robotic arm by means of the other robotic device attached

at its end-effector. The DCNs modulate the anticipatory corrective torque. (Modified from Casellato et al., 2014). EBCC-like control system embedding spiking

cerebellar network (top right panel). US is fed into the cf pathway; CS into the mf pathway. CS and US co-terminate (as in the “delay” EBCC). The SNN learns to

produce conditioned responses (CRs), i.e., a stop of the robotic arm (collision avoidance) anticipating the US onset. The figure highlights the major forms of plasticity

embedded in the cerebellar network and driving the learning, namely synaptic long-term potentiation (LTP) and synaptic long-term depression (LTD), both at cortical

(Continued)
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FIGURE 6 | Continued

and nuclear levels (distributed plasticity). The protocol is made up of

acquisition and extinction phases; in the acquisition trials CS-US pairs are

presented at a constant Inter-Stimuli Interval (ISI); in the extinction trials CS

alone is presented. Each trial lasts 600 ms. The number of cell in the circuit is

indicated. All labels as in previous figures. (Modified from D’Angelo et al.,

2015). Network activity and output behavior during EBCC training (bottom

panel). After learning, the response of PCs to inputs decreases, and this

increases the discharge in DCN neurons (raster plot and integral of neuronal

activity, left). Since the DCN spike pattern changes occur before the US arrival,

the DCN discharge accurately predicts the US and therefore facilitates the

release of an anticipatory behavioral response. Number of CRs (%) along trials

(80 acquisition trials and 20 extinction trials for two sessions in a row; CR% is

computed as percentage number of CR occurrence within blocks of 10 trials

each). The black curve (right plot) represents the behavior generated by the

cerebellar SNN equipped with only one plasticity site at the cortical layer

(median on 15 tests with interquartile intervals). Despite uncertainty and

variability introduced by the direct interaction with a real environment, the SNN

progressively learns to generate CRs anticipating the US, to rapidly extinguish

them and to consolidate the learnt association to be exploited in the re-test

session. (Modified from Casellato et al., 2015; D’Angelo et al., 2015; Antonietti

et al., 2016).

PC-DCN and mf-DCN synapses and to predict a critical role
for plasticity at IO-DCN synapses. The implementation of GCL
plasticity poses a formidable problem as it is hard to determine
its supervision process. A recent proposal suggests that the issue
could be solved by exploiting multi-step learning with an initial
pattern storage in the inhibitory interneuron network formed by
Golgi cells (Garrido et al., 2016).

Advanced Robotic Simulations of
Manipulation Tasks
When manipulating a tool, the cerebellar network acquires a
dynamic and kinematic model of the tool. In this way, the
manipulated tool becomes de facto as an extension of the arm
allowing to perform accurate movements of the arm-object
system as a whole. This unique capability is to a large extent
based on the cerebellum sensory-motor integration properties. In
order to establish a functional link between specific properties of
neurons, network organization, plasticity rules and behavior, the
cerebellar model needs to be integrated with a body (a simulated
or real robotic sensory-motor system). Sensory signals need to
be translated into biologically plausible codes to be delivered
to the cerebellar network, and also cerebellar outputs need to
be translated into representations suitable to be transferred to
actuators (Luque et al., 2012). The experimental set-up is defined
so as to monitor how accurately the system performs pre-defined
movements when manipulating objects that significantly affect
the arm/object kinematics and dynamics (Figure 7).

At this level, the cerebellar network is assumed to integrate
sensory-motor signals by delivering corrective terms during
movement execution (here a top-down approach is applied). In
the framework of a biologically relevant task such as accurate
object manipulation, different issues need to be addressed
and defined by adopting specific working hypothesis and
simplifications. For example: (i) PCs and DCN can be arranged
in microcomplexes dealing with different degrees of freedom;
(ii) error-related signal coming from the IO are delivered to

PCs and drive learning at pf-PC synapses; (iii) neurons and
connection can be simplified still maintaining the fundamental
cerebellar network structure and functionality. There are
different modeling approaches that have been simulated and
tested (Luque et al., 2011a,b):

(1) Integrating the cerebellum in a feed-forward scheme
delivering corrective terms to the spinal cord. In this
case the cerebellum receives sensory inputs and produces
motor corrective terms (the cerebellum implements an
‘‘inverse model’’). Thus in this case the input and output
representation spaces are different and the sensori-motor
transformation needs to be performed also in the cerebellar
network.

(2) Integrating the cerebellum in a feed-back (recurrent) scheme
delivering corrective terms to the cerebellar cortex. In this case
the cerebellum receives sensory-motor inputs and produces
sensory corrective terms (the cerebellum implements a
‘‘forward model’’; Kawato et al., 1988; Miyamoto et al., 1988;
Gomi and Kawato, 1993; Yamazaki et al., 2015; Hausknecht
et al., 2016).

Eventually, closed-loop robotic simulations allow to
investigate the original issue of how the cerebellar microcircuit
controls behavior in a novel manner. Here neurons and SNN are
running in the robot. The challenge is clearly now to substitute
the current simplified models of neurons and microcircuits
with more realistic ones, so that from their activity during a
specific behavioral task, the scientists should be able to infer the
underlying coding strategies at the microscopic level.

CURRENT PERSPECTIVES FOR
REALISTIC CEREBELLAR MODELING

On one hand, realistic cerebellar modeling is now advanced
enough to generate predictions that may guide the subsequent
search for critical physiological phenomena amongst the many
that could be otherwise investigated. On the other hand, several
new challenges await to be faced in terms of model construction
and validation in order to explore physiological phenomena that
have emerged from experiments. Realistic modeling is therefore
becoming more and more an interactive tool for cerebellar
research.

Predictions of Realistic Cerebellar
Modeling and their Experimental Testing
Cerebellar modeling is providing new opportunities for
predicting biological phenomena that can be subsequently
searched for experimentally. This procedure is relevant for
several reasons. First, as discussed above, the computational
models implicitly generate hypotheses providing the way
for their subsequent validation or rejection. Secondly, the
computational models can help focusing researcher’s interest
toward specific questions. There are several examples that apply
to different levels of cerebellar physiology.

In 2001, an advanced GrC model, based on the ionic
conductance complement of the same neuron, predicted that
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FIGURE 7 | Biologically plausible cerebellar control loops. (Top left) The target trajectory followed by the robotic arm model is defined along three degrees of

freedom in joint coordinates and Cartesian coordinates. (Top right) In the feedback cerebellar (recurrent) control loop, the adaptive cerebellar controller infers a model

from the error signal related to a sensorimotor input to produce effective corrective position and velocity terms. In this way, instead of propagating data from input to

output as the forward architecture does, the recurrent architecture also propagates data from later processing stages to earlier ones. In the feedforward cerebellar

control loop, the adaptive cerebellar module is embedded in the forward control loop and delivers add-on corrective torque values to compensate deviations in the

base dynamics of the robotic arm model. The idealized correspondence with anatomical parts and processing functions is also indicated. (Bottom) Weight evolution

in the cerebellar model manipulating different payloads operating with multiple plasticity mechanisms. Simulations were performed using plasticity at PF-PC,

(Continued)
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FIGURE 7 | Continued

MF-DCN, and PC-DCN synapses and a custom-configured IO-DCN

connection for manipulating 2 kg external payloads during 500 trials. The initial

cerebellar system gain was properly set to operate with no payload. Evolution

of the average error (MAE, black curve on the left) of the three robot joints

during the learning process for 2 kg payload. The red curves on the left

indicate the evolution of synaptic weight at the different synapses. Note that

weights change rapidly at the beginning but then the cerebellar system works

almost in open loop and no remarkable corrective action are applied by the

cerebellar adapting system. PC and DCN neuron activity during a single trial

show oscillations dictating the precise timing of force delivery to the joints in

different trials. (Modified from Luque et al., 2011a, 2014).

a slow K current was needed to explain certain aspects
of GrC firing and intrinsic GrC theta-band resonance. This
current has been then looked for experimentally and its
subsequent identification allowed to successfully complete the
model and explain bursting and resonance in mechanistic terms
(D’Angelo et al., 2001). In 2006, a mossy fiber-granule cell
neurotransmission model, based on specific quantal release and
receptor properties (Nieus et al., 2006), predicted that plasticity
of intrinsic excitability could control rate coding while plasticity
of release probability could control spike timing, as indeed
verified experimentally. In 2007, a Golgi cell model actually
predicted that Golgi cells were resonant in the theta-band a
property that was then demonstrated experimentally (Solinas
et al., 2007a,b). In 2007, a PC model predicted the coding
properties of PCs in relation to LTD (Steuber et al., 2007). In
2009–2010 two models of the Golgi cell network predicted the
impact of gap-junctions in regulating local GrC discharge and
Golgi cell synchronization (Dugué et al., 2009; Vervaeke et al.,
2010). In 2013, a theoretical article predicted that bidirectional
plasticity had to exist at the mossy fiber—Golgi cell synapse
(Garrido et al., 2013). This plasticity has subsequently been
demonstrated (Locatelli et al., 2015). In 2014, a model including
both excitatory and inhibitory neurotransmission predicted that
phasic inhibitory mechanisms can dynamically regulate output
spike patterns, as well as calcium influx and NMDA currents,
at the mossy fiber-granule cell relay of cerebellum (Nieus et al.,
2014). Again this prediction was accurately matched by the
experiments. In 2015, a computational model predicted that the
number of GrC dendrites that maximizes information transfer
is actually coincident with that measured anatomically (Billings
et al., 2014).

Yet other predictions are awaiting for experimental
verification. In 2014, a closed-loop simulation predicted
that cerebellar learning would accelerate toward biological
levels if a form of mid-term plasticity would exist between the
IO and DCN neurons (Luque et al., 2014). In 2016, another
work predicted that STDP has the intrinsic capacity of binding
learning to temporal network dynamics (Luque et al., 2016).
Finally, very recently a mechanism of STDP learning involving
the inhibitory interneuron network has been proposed (Garrido
et al., 2016), that could be applicable to the GCL and explain
how learning takes place in this cerebellar subnetwork. Thus, a
new perspective for the near future is to extend the feed-back
between computational models and experiments generating de

facto a new powerful tool for cerebellar network investigation.

New Challenges for Cerebellar Physiology
and their Realistic Modeling
Amongst the new challenges that may benefit from enhanced
and extended realistic models of the cerebellum, some have been
highlighted in the present review and are summarized here.

There is a wealth of molecular and cellular phenomena, whose
biological significance has been inferred experimentally, that
could be incorporated into a realistic cerebellar model in order
to investigate their implications for function. These include: the
role of specific ionic channel properties in regulating neuronal
excitation (amongst known examples see Jaeger et al., 1997;
Bower and Beeman, 1998; Kubota and Bower, 2001; Ovsepian
et al., 2013); the role of synaptic receptor properties in neuronal
excitation and plasticity, like the voltage-dependence of NMDA
receptor subtypes (Schwartz et al., 2012); the role of diffusible
messengers like nitric oxide in coordinating long-term synaptic
plasticity (Garthwaite, 2016); the role of intracellular biochemical
cascades in the induction and expression of long-term synaptic
plasticity (Tsukada et al., 1995; Schweighofer and Ferriol, 2000;
Billings et al., 2014).

There are several properties of local microcircuits that
are being discovered and that could be further understood
by realistic cerebellar modeling. We have already mentioned
the critical issue on how the cerebellum processes incoming
information involving numerous molecular and cellular
mechanisms that are only partially known. An issue that needs
to be revisited, as it appears critical to understand the whole
cerebellar functioning, is how the PC are activated by GrC
through their aa (Gundappa-Sulur et al., 1999; Huang et al.,
2006). Moreover, recent discoveries have opened new issues:
ephaptic synapses have recently been revealed between basket
cells (BCs) and PCs (Blot and Barbour, 2014), the connectivity
of MLI involves complex spatial rules (Bower, 2010; Rieubland
et al., 2014), the inhibitory network in the cerebellar granular
layer involves gap junctions and reciprocal inhibitory synapses
(Dugué et al., 2009; Szoboszlay et al., 2016; van Welie et al.,
2016), the inferior olivary neurons are connected through gap
junctions (Rothman et al., 2009; Rancz and Häusser, 2010; Lefler
et al., 2014).

There are aspects of intracerebellar organization and
connectivity that remain to be incorporated into large-scale
realistic models, including the granular layer-molecular layer
projections (Valera et al., 2016), the PC-DCN convergence
(Person and Raman, 2012b), the DCN-granular layer projections
(Houck and Person, 2015), the PC-DCN-IO loops (Libster and
Yarom, 2013). Beyond this, these are needed for guided cerebellar
model simplification and incorporation into large-scale networks
running into robotic controllers and simulated environments
(Garrido et al., 2013; Casellato et al., 2015; Yamazaki et al.,
2015).

On the pathophysiological side (Chen et al., 2010; Libster
et al., 2010; Ovsepian et al., 2013; Kros et al., 2015), there
is a wealth of hypothesis that have or would benefit of
realistic modeling. Ataxia has long been attributed to cerebellar
dysfunction. Recently, several ionic channel and neuronal
alterations have been linked to ataxia (Libster et al., 2010) and
to the disruption of dynamics in the olivo-cerebellar circuit
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(Chen et al., 2010). There are specific properties of the cerebellar
output that are critical for controlling extracerebellar networks
and their pathological states, like in cebro-cortical spike-and-
wave discharge (e.g., see Ovsepian et al., 2013; Kros et al., 2015).
This kind of observations may provide critical test-benches for
realistic model validation and prediction.

Finally, in perspective, the connectivity of the cerebellar
network in long-range loops appears to be critical to understand
microcircuit functions. Following the fundamental recognition
of its involvement in sensory-motor coordination and learning,
the cerebellum is now also believed to take part in the
processing of cognition and emotion (Schmahmann, 2004)
by exploiting the connectivity of the cerebellar modules with
specific brain structures through different cerebro-cerebellar
loops. It has been proposed that a similar circuit structure
in all cerebellar areas may carry out various operations
using a common computational scheme (D’Angelo and Casali,
2013). Since there is an intimate interplay between timing
and learning at the cellular level that is reminiscent of the
‘‘timing and learning machine’’ capabilities long attributed
to the cerebellum, it is conceivable that realistic models
developed for sensori-motor control might also apply to
cognitive-emotional control once integrated into the appropriate
loops.

A MANIFESTO FOR COLLABORATIVE
CEREBELLAR Modeling

This review has summarized some relevant aspects characterizing
the cerebellar circuit showing how these have been
conceptualized and modeled. Still, there are several issues
that deserve attention, ranging from molecular to neuronal,
microcircuit, macrocircuit and integrative aspects, and even
more it is clear that all these aspects are tightly bound. There
is no solution through a single experiment or model, so that
understanding the structure-function-dynamics relationship of
the cerebellum requires a continuous bottom-up top-down
dialog (Akemann et al., 2009).

Realistic modeling is now opening new perspectives. The
main challenge is to join precise network wiring with
accurate representations of neuronal and synaptic properties
in order to be able to simulate local network dynamics.
The introduction of synaptic and non-synaptic plasticity
in its various forms and locations could then allow to
understand how input patterns can reconfigure the network
during ontogenetic development and in the mature state.
Finally, full exploitation of cerebellar network capabilities
would require simulations operated in closed-loop in robotic

systems. It is envisaged that such systems will be able in
the future to emulate physiological and pathological states,
providing the basis for protocols of network-guided robotic
neurorehabilitation.

Large-scale simulations running efficiently on
supercomputers are now possible, and software development
systems have been designed and tested (Bhalla et al., 1992; Hines
and Carnevale, 1997; Bower and Beeman, 2007; Gleeson et al.,
2007, 2010; Davison et al., 2009; Hines et al., 2009; Cornelis
et al., 2012a). While this may be sufficient for elaborating
complex codes in an iterative reconstruction/validation process,
simulating network adaptation during learning would require
several repetitions over prolonged time periods. In this scenario,
a large-scale cerebellar network embedding synaptic learning
rules should be running inside a whole sensory-motor control
system generating a massive computational load and leading
to unaffordable simulation times. To this aim, efficient codes
have been developed (Eppler et al., 2008; Bednar, 2009; Zaytsev
and Morrison, 2014). The problem that remains will be that
of providing efficient model simplifications still maintaining
the salient computational properties of the network (e.g., see
the chapter above Casellato et al., 2012, 2014, 2015; Garrido
et al., 2013; Luque et al., 2014). Eventually, neuromorphic
hardware platforms will have to be considered for the cerebellum
as well as for the cerebral cortex (Pfeil et al., 2013; Galluppi
et al., 2015; Lagorce et al., 2015). It can be envisaged that
realistic modeling of the cerebellum, with the reconstruction
of neurons and large-scale networks based on extended
data-sets and running on supercomputing infrastructures,
will require a world-wide collaborative effort as it has been
proposed for other brain structures like the neocortex and
hippocampus (Markram, 2006; Cornelis et al., 2012a; Crook
et al., 2012; Kandel et al., 2013; Bower, 2015; Ramaswamy et al.,
2015).
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