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Abstract: In the present study, bainite fraction results of continuous cooling of
high strength low alloy steels have been modeled by artificial neural networks. The
artificial neural network models were constructed by 16 input parameters including
chemical compositions (C, Mn, Nb, Mo, Ti, N, Cu, P, S, Si, Al, V), Nb in solu-
tion, austenitizing temperature, initial austenite grain size and cooling rate over
the temperature range of the occurrence of phase transformations. The value for
the output layer was the bainite fraction. According to the input parameters in
feed-forward back-propagation algorithm, the constructed networks were trained,
validated and tested. To make a decision on the completion of the training pro-
cesses, two termination states are declared: state 1 (ANN-I model) means that the
training of neural network was ended when the maximum epoch of process reached
(1000) while state 2 (ANN-II model) means the training ended when minimum
error norm of network gained. The entire statistical evaluators of ANN-II model
has higher performance than those of ANN-I. However, both of the models exhibit
valuable results and the entire statistical values show that the proposed ANN-I
and ANN-II models are suitably trained and can predict the bainite fraction values
very close to the experimental ones.
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1. Introduction

High Strength Low Alloy (HSLA) steels were developed by combining the benefits
of precipitation hardening of microalloying elements with the advantages of grain
refinement. Controlled rolling and accelerated controlled cooling are the two com-
mon processing routes of HSLA steels [1]. A complex chemistry plus complicated
thermomechanical processing have led to the introduction of the most advanced
steel in this class, X 100 grade steels with a tensile strength of more than 800MPa
for pipeline applications [2]. Austenite decomposition during cooling on the run-out
table is of critical importance considering its influence on the final microstructure
and mechanical properties of steel. Austenite decomposition in steel has been in-
vestigated extensively in the last 50-60 years and a good summary on experimental
observations of austenite decomposition was provided by Zhao and Notis [3].

Depending on the cooling rate, initial austenite grain size, deformation con-
dition and alloy addition, various transformation products can form through dif-
ferent types of transformation mechanisms (as an example, diffusional and dis-
placive transformation mechanisms) [4]. Polygonal ferrite (PF), acicular ferrite
(AF), pearlite (P), bainite (B) and lath martensite (LM) are the main transformed
products reported for hot rolled low C and microalloyed steels after austenite de-
composition.

Bainite transformation occurs in a temperature range, i.e. ∼250-600oC, be-
low that of pearlite and is characterized classically by a non-lamellar mixture of
ferrite laths and a carbide phase where the later forms from carbon enriched resid-
ual austenite usually as cementite [5]. The mechanism of bainite transformation
has been an area of much debate and controversy for a number of years, contin-
uing into the present time, from which different view points on the mechanism of
transformation have emerged [5-8].

Hot strip rolling of modern micro-alloyed AHSS is expected to produce a fi-
nal microstructure that consists of primarily fine ferrite, bainite and martensite
after austenite decomposition [9-10]. The start temperature for bainite is gener-
ally presented as chemistry dependent, i.e. the bainite formation shifts to lower
temperature with increasing carbon content or carbon equivalent [11-12]. Rees et
al. [13] investigated the effect of alloying elements on the bainite transformation
temperature. Their work on low carbon Nb microalloyed steel with varying Nb
contents (0.001- 0.035wt%), showed that similar to polygonal ferrite, bainite trans-
formation is retarded with increasing Nb content in solution. Their study [13] also
revealed that the initial austenite grain size has negligible effects on the bainite
formation. The growth of bainite is still a subject of immense debate. A number
of theories have been proposed for bainite formation kinetics and they are mainly
classified as, either diffusional or displacive approaches [11, 14, 15]. In addition to
diffusive and displacive approaches, the JMAK approach has also been employed
to describe the bainite formation kinetics [16-18].

Recently, with the arrival of new advanced steel products consisting of a mul-
tiphase microstracture, it is important to develop modelling approaches that can
describe the simultaneous formation of more than one transformation product.
Relatively, few studies have been proposed to capture the overall decomposition
of austenite to various transformed products such as ferrite, pearlite, bainite and
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martensite under industrial cooling conditions. Separate work by Umemoto [19],
Bhadeshia [20], Minote et al. [21], Samoilov [22] and Liu et al. [23], used the
JMAK law to describe austenite decomposition to ferrite and pearlite and the
required modifications were made to capture the simultaneous reactions, i.e. ei-
ther diffusional or displacive approaches were proposed to describe the bainite
formation. Most of these models had originally been developed for the isothermal
transformation condition, but then extended to the continuous cooling condition.

Artificial neural networks (ANNs) are a family of massively parallel architec-
tures that solve difficult problems via the cooperation of highly interconnected but
simple computing elements (or artificial neurons). Basically, the processing ele-
ments of a neural network are analogous to the neurons in the brain, which consist
of many simple computational elements arranged in several layers. ANNs have
been applied for prediction different properties of different type of steels in the
previous works [24-27].

In authors’ previous work [28,29] the effects of chemical composition, austeni-
tizing temperature, Nb in solution, austenitic grain size and cooling rate on Vickers
microhardness and ferrite fraction of microalloy steels modeled with the artificial
neural networks (ANNs). As authors’ literature survey, there is no work investigat-
ing the effects of chemical compositions, austenitizing temperature, Nb in solution,
austenite grain size and cooling rate on bainite fraction of microalloy steels.

The objective of the present work is to describe the austenite to bainite phase
transformation behaviour of the five HSLA steels under continuous cooling condi-
tions in the cooling rates regime of ”0.3-198˚C/s” with various initial austenite
grain structures and different austenitizing temperatures. Totally 104 bainite frac-
tion data were collected from the literature, trained, tested and validated by neural
network. The obtained results were compared by experimental ones to evaluate the
software power for predicting the effects of mentioned parameters on bainite frac-
tion of the studied steels.

2. Artificial neural networks

ANNs were developed to model the human brain. Even an ANN fairly simple
and small in size when compared to the human brain, has some powerful charac-
teristics in knowledge and information processing because of its similarity to the
human brain. Therefore, an ANN can be a powerful tool for engineering applica-
tions [30]. McCulloch and Pitts [31] defined artificial neurons for the first time and
developed a neuron model. McCulloch and Pitts’ network [31] formed the basis for
almost all later neural network models. Afterwards, Rosenblatt devised a machine
called the perceptron that operated much in the same way as the human mind [32].
Rosenblatt’s perceptrons consist of “sensory” units connected to a single layer of
McCulloch and Pitts [32] neurons. Rumelhardt et al. derived a learning algo-
rithm for perceptron networks with constituted hidden units [33]. Their learning
algorithm is called back-propagation and is now the most widely used learning al-
gorithm. As a result of these studies, together with the developments in computer
technology, using ANN has become more efficient after 1980 [33].

An artificial neuron is composed of five main parts: inputs, weights, sum func-
tion, activation function and outputs. Inputs are information that enters the neuron
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from other neurons of from external world. Weights are values that express the
outcome of an input set or another process element in the preceding layer on this
process element. Sum function is a function that calculates the effect of inputs and
weights completely on this process element. This function computes the net input
that approaches to a neuron [34]. The weighted sums of the input components
(net)j are calculated using Eq. (1) as follows:

(net)j =

(

n
∑

i=1

wijxi

)

+ b (1)

where (net)j is the weighted sum of the jth neuron for the input received from the
preceding layer with n neurons, Wij is the weight between the jth neuron in the
previous layer, xi is the output of the ith neuron in the previous layer [33]. b is a fix
value as internal addition and

∑

represents sum function. Activation function is a
function that processes the net input obtained from sum function and determines
the neuron output. In general for multilayer feed-forward models as the activation
function sigmoid activation function is used. The output of the jth neuron (out)j
is computed using Eq. (2) with a sigmoid activation function as follows [33]:

Oj = f(net)j =
1

1 + e−α(net)j
(2)

where α is constant used to control the slope of the semi-linear region. The sigmoid
nonlinearity activates in every layer except in the input layer [33]. The sigmoid
activation function represented by Eq. (2) gives outputs in (0, 1). If it desired, the
outputs of this function can be adjusted to (-1,1) interval. As the sigmoid processor
represents a continuous function it is particularly used in non-linear descriptions.
Because its derivatives can be determined easily with regard to the parameters
within (net)j variable [33].

3. Data collection

In the present investigation, the artificial neural network has been trained, tested
and validated for prediction bainite fraction of HSLA steels. For this purpose,
the experimental data of five HSLA steels with different chemical compositions
have been used [34-38]. The chemical compositions of these steels are summarized
in Tab. I. The input variables of the ANN modeling are the weight percent of
alloying elements, austenitizing temperature, Nb in solution, austenite grain size
and cooling rate. These parameters along with their ranges have been summarized
in Tab. II.

Employing appropriate thermal cycles, continuous cooling transformation (CCT)
tests were conducted to examine the effect of chemical compositions, niobium con-
dition, austenitizing temperature, austenite grain size and cooling rate on austenite
decomposition behavior of the steels. The resulting microstructures, which usually
consist of ferrite, bainite and martensite- austenite (MA) constituents, were ex-
amined using optical microscopy. They were revealed using appropriate etchants
and the corresponding phase volume fractions were subsequently measured in ac-
cordance with ASTM standards. To consider the significant effect of the niobium
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Parameter Minimum Maximum Mean Standard
deviation

Input
C wt% 0.05 0.062 0.058788 0.004128
Mn wt% 1.2 1.65 1.485 0.179919
Nb wt% 0.034 0.071 0.052279 0.014134
Mo wt% 0 0.24 0.105231 0.111022
Ti wt% 0 0.021 0.007846 0.007624
N wt% 0 0.0094 0.005818 0.003118
Cu wt% 0 0.29 0.054808 0.108431
P wt% 0 0.01 0.005625 0.004153
S wt% 0 0.007 0.002529 0.001961
Si wt% 0 0.29 0.077663 0.090021
Al wt% 0 0.04 0.02551 0.016902
V wt% 0 0.053 0.0035 0.011241
Nbs 0 1 - -
AT oC 800 950 908.1731 61.97031
Dγ µm 5 130 40.51923 35.52901
CR oC/s 0.3 198 42.92596 48.42347
Output
Bf %vol 0 100 53.26442 36.64391

Tab. II The range of the input and output parameters in ANN models.

solid solution level on the transformation of austenite, two thermal histories were
developed. For the first case, Nb was dissolved in solid solution prior to austenite
decomposition. In contrast, the second scenario involved the formation of Nb(C,N)
precipitates prior to austenite decomposition, i.e. leaving a low level of Nb in solid
solution.

4. Artificial neural networks parameters

and structure

ANN model in this research has sixteen neurons in the input layer and one neurons
in the output

layer as demonstrated in Fig. 1. The values for input layers were carbon
weight percent (C), manganese weight percent (Mn), niobium weight percent (Nb),
molybdenum weight percent (Mo), titanium weight percent (Ti), nitrogen weight
percent (N), copper weight percent (Cu), phosphorous weight percent (P), sulfur
weight percent (S), silicon weight percent (Si), aluminum weight percent (Al),
vanadium weight percent (V), Nb in solution (Nbs), austenitizing temperature
(AT), the initial austenite grain size (Dγ) and the cooling rate (CR).

The value for output layer was bainite fraction (Bf). The range of the input and
output parameters has been illustrated in Tab. II. Two hidden layer with ten and
eight neurons were used in the architecture of multilayer neural network because
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Fig. 1 The system used in the ANN model.

of its minimum absolute percentage error values for training and testing sets. The
neurons of neighboring layers are completely interconnected by weights. Finally,
the output layer neurons produce the network prediction as a result.

In this study, the back-propagation training algorithm has been utilized in feed-
forward two hidden layers. Back-propagation algorithm, as one of the most well-
known training algorithms for the multilayer perceptron, is a gradient descent
technique to minimize the error for a particular training pattern in which it adjust
the weights by a small amount at a time [33]. The non-linear sigmoid activa-
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tion function was used in the hidden layer and the neuron outputs at the output
layer. Momentum rate and learning rate values were determined and the model
was trained through iterations. The trained model was only tested with the input
values and the predicted results were close to experiment results. The values of
parameters used in neural network model are given in Tab. III.

Parameters ANN
Number of input layer units 16
Number of hidden layer 2
Number of first hidden layer units 10
Number of second hidden layer units 8
Number of output layer units 1
Momentum rate 0.87
Learning rate 0.75
Error after learning 0.000055
Learning cycle 30.000

Tab. III The values of parameters used in neural network model.

Totally 104 data of continuous cooling tests in different conditions were col-
lected, trained, validated and tested by means of ANNs. Among 104 experimental
sets, 74 sets were randomly chosen as a training set for the ANN-I and ANN-II
modeling, 15 data for validating of the results and the remaining 15 sets were used
as testing the generalization capacity of the proposed models. To make a decision
on the completion of the training processes, two termination states are declared:
state 1 (ANN-I model) means that the training of neural network was ended when
the maximum epoch of process reached (1000) while state 2 (ANN-II model) means
the training ended when minimum error norm of network gained.

The performance of an ANN model mainly depends on the network architecture
and parameter settings. One of the most difficult tasks in ANN studies is to find
this optimal network architecture, which is based on the determination of numbers
of optimal layers and neurons in the hidden layers by a trial and error approach.
The assignment of initial weights and other related parameters may also influence
the performance of the ANN to a great extent. However, there is no well defined
rule or procedure to have an optimal network architecture and parameter settings
where the trial and error method still remains valid. This process is very time
consuming [39].

In this study the Matlab ANN toolbox is used for ANN applications. To over-
come optimization difficulty, a program has been developed in Matlab which han-
dles the trial and error process automatically. The program tries various numbers
of layers and neurons in the hidden layers both for the first and second hidden
layers when the lowest RMSE (Root Mean Squared Error) of the testing set, as the
training of the testing set is achieved [40].
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5. Results and discussion

In this study, the error that arose during the training and testing in ANN-I and
ANN-II models can be expressed as absolute fraction of variance (R2), mean abso-
lute error (MAE), root mean square error (RMSE), relative absolute error (RAE)
and root relative squared error (RRSE).

All of the results obtained from experimental studies and predicted by using the
training, validation and testing results of ANN-I and ANN-II models are given in
Figs. 2a, 2b and 2c respectively. The linear least square fit line, its equation and the
R2 values have been shown in these figures for the training, validation and testing
data. Also, inputs values and experimental results with validation and testing
obtained from ANN-I and ANN-II models were given in Tabs. IV-VII, respectively.
As it is visible in Fig. 2, the values obtained from the training, validation and
testing in ANN-I and ANN-II models are very close to the experimental results.
The result of testing phase in Fig. 2 shows that the ANN-I and ANN-II models are
capable of generalizing between input and output variables with reasonably good
predictions.

Traditional regression analysis was made with MINITAB R⃝. The regression
equation is:

Bf = 61.7403 + 5034.31 C – 61.0772 Mn + 1438.76 Nb + 469.287 Mo + 25.8846
Nbs – 0.410399 AT + 0.502291 Dγ + 0.204974 CR

The R2 value is 0.62.
The performance of ANN-I and ANN-II models is shown in Tab. VIII. The best

values of R2, RMSE, RAE, MAE and RRSE are 0.9789, 0.6821, 0.2085, 0.5663 and
0.2214, respectively all for the training set in ANN-II model. The minimum value of
R2 and the maximum values of RMSE, RAE, MAE and RRSE are 0.9241, 1.3370,
0.3376, 1.0495 and 0.4061, respectively all for validation set in ANN-I model. This
shows that ANN-II model is better trained than ANN-I where the entire statistical
evaluators of even testing phase of ANN-II model has higher performance than
those of ANN-I training and testing sets. However, both of the models exhibit
valuable results and the entire statistical values show that the proposed ANN-I
and ANN-II models are suitably trained and can predict the bainite fraction values
very close to the experimental ones.

6. Conclusions

ANNs can be an alternative approach for the evaluation of bainite fraction values of
continuous cooling of HSLA steels specimens. Comparison between ANNs in terms
of R2, RMSE, RAE, MAE and RRSE showed that ANNs models are capable to
predict suitable results for bainite fraction values of HSLA steels specimens in
the studied range. Two termination states are declared: state 1 (ANN-I model)
means that the training of neural network was ended when the maximum epoch
of process reached (1000) while state 2 (ANN-II model) means the training ended
when minimum error norm of network gained. The entire statistical evaluators
of ANN-II model has higher performance than those of ANN-I. However, both
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(a)

(b)

(c)

Fig. 2 The correlation of the measured and predicted bainite fraction values of
HSLA steels in a) training, b) validation and c) testing phase for ANN models.
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ANN-I ANN-I ANN-I ANN-II ANN-II ANN-II
training validation testing training validation testing

set set set set set set
R2 0.9766 0.9241 0.9352 0.9789 0.973 0.9754
RMSE 0.9596 1.3770 0.8774 0.6821 0.7844 0.839
RAE 0.2960 0.3376 0.2251 0.2085 0.2398 0.2565
MAE 0.8042 1.0495 0.6997 0.5663 0.6512 0.6965
RRSE 0.3114 0.4061 0.2587 0.2214 0.2546 0.2723

R2 = 1−

(
∑

i
(ti − oi)

2

∑

i
(oi)2

)

MAPE =
1

n

∑

i
|ti − oi| × 100

RMSE =

√

1

n

∑

i
(ti − oi)2 RAE =

∑

i
|ti − oi|

∑

i

∣

∣ti −
1

n

∑

i
ti
∣

∣

RRSE =

√

√

√

√

∑

i
(ti − oi)

2

∑

i

(

ti −
1

n

∑

i
ti
)2

where t is the target value, o is the output value and n is the number of data sets in each of

training and testing phases.

Tab. VIII Statistical parameters of the proposed ANN models.

of the models exhibit valuable results and the entire statistical values show that
the proposed ANN-I and ANN-II models are suitably trained and can predict the
bainite fraction values very close to the experimental ones.
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