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SUMMARY

We present an approach to model the dispersion of fiber and sheet orientations in the myocardium.
By utilizing structure parameters, an existing orthotropic and invariant-based constitutive model
developed to describe the passive behavior of the myocardium is augmented. Two dispersion
parameters are fitted to experimentally observed angular dispersion data of the myocardial tissue.
Computations are performed on a unit myocardium tissue cube and on a slice of the left ventricle
indicating that the dispersion parameter has an effect on the myocardial deformation and stress
development. The use of fiber dispersions relating to a pathological myocardium had a rather big
effect. The final example represents an ellipsoidal model of the left ventricle indicating the
influence of fiber and sheet dispersions upon contraction over a cardiac cycle. Although only a
minor shift in the pressure–volume (PV) loops between the cases with no dispersions and with
fiber and sheet dispersions for a healthy myocardium was observed, a remarkably different
behavior is obtained with a fiber dispersion relating to a diseased myocardium. In future
simulations, this dispersion model for myocardial tissue may advantageously be used together
with models of, for example, growth and remodeling of various cardiac diseases.
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1. INTRODUCTION

The left ventricle (LV) is the main pumping chamber of the heart supplying blood through
the circulatory system to the entire body. The LV builds up the necessary pressure by active
contraction where the electrical activation of the heart triggers a cascade of events leading to
a shortening of the cardiac myocytes. Myocytes are arranged in a highly organized fashion,
following a right-handed helical pathway from the endocardium toward the mid-wall and a
left-handed helical pathway from the mid-wall toward the epicardium [1-3]. This prevailing
myocyte orientation is usually referred to as ‘fiber orientation’. In addition, fiber bundles are
arranged into laminar sheets of four to six cell layers, where the prevailing sheet orientation
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also varies in the transmural and apico-basal directions [3-6]. At any point in the LV, the
structural arrangement of myocytes is reflected by three orthogonal directions along which
both electrical and mechanical material parameters are different, thus requiring to model the
electrical and mechanical responses of the myocardium as an orthotropic material. These
preferred directions are along the fibers, transverse to the fibers but within a laminar sheet
and perpendicular to the sheets; these directions are thus called the fiber, sheet, and sheet-
normal directions, respectively.

In a healthy heart, the fiber alignment follows very closely this helical structure with only
small angular dispersion (AD) in the range of ~ 12–15°, whereas in a diseased heart such as
hypertrophic cardiomyopathy (HCM) or myocardial infarction, AD may locally increase by
~ 65% (at foci points within the septal wall) [7-9] or ~ 50% (at the site of infarction)
[10-12]. Furthermore, the dispersion of the fibers has been shown to have a circular
distribution, they are not located in plane [13]. Less is known about the structural
arrangement of laminae. Because of the importance of sheet orientation in myocardial wall
thickening, it has been speculated that the dispersion of sheet orientations may play a
significant physiological role [14]. There are a few studies available discussing the quite
large dispersion of the sheet structure, even in healthy hearts [15-17]. Although to our
knowledge there are no experimental reports available that quantify sheet dispersion in the
diseased myocardium, it is likely the case that dispersion is also elevated when compared
with healthy conditions. To the authors’ knowledge, there are no recently published
biomechanical cardiac models available that consider dispersion, the latest are [2, 9]; none
of them include sheet dispersion. Hence, the present study focuses on the development of an
approach to model fiber and sheet dispersions using an invariant-based framework. A
previously published orthotropic and invariant-based model, which characterizes the
nonlinear passive behavior of myocardium [18], is here augmented with structure
parameters allowing the quantification of the degree of dispersion based on measured fiber
and sheet angle data. The structure parameters are based on a distribution function
developed for the collagen structure of arteries [19], and is here used for the fiber and sheet
dispersions.

Cardiac simulations have electrical and mechanical components rendering the modeling to a
multi-physics problem. Electromechanical models need high spatiotemporal resolution,
making the entire problem computationally expensive; advanced numerics and highly
optimized parallel implementations are needed to keep simulations tractable. Therefore, a
natural choice is the use of overlapping grids of different resolution because the constraints
differ significantly between the imposed physics of the electrical and mechanical problems.
The electrical transients are fast, acting on time scales in the microsecond range, which
translates into steep depolarization wavefronts of small spatial extent in the sub-millimeter
range, thus requiring the use of fine spatial resolutions << 250 μm to compute solutions with
reasonable accuracy. On the other hand, mechanical processes tend to occur at larger space
and slower time scales, and, thus, coarser spatial discretizations can be used. The
electromechanical coupling of the spatiotemporal patterns of the electrical activity and the
active stress transients in the myocytes are either modeled as active stresses or strains [20]
acting along the fiber’s orientation in an Eulerian description [21]. The resulting mechanical
deformations in our model is largely determined by the passive hyperelastic properties of the
tissue and the generated active stresses both incorporating the dispersed structure of the
tissue.

Our simulation indicates that the dispersion has a relevant influence on the mechanical
response of the myocardium both during passive deformation and active contraction, by
reducing the stress response and changing the deformation pattern. When including the
dispersion parameter in a ventricular simulation incorporating electrical activation, the
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pressure–volume (PV) loop is considerably altered. Because the degree of dispersion is
significantly elevated under various cardiac pathologies there is a need to consider
dispersion when modeling myocardial tissue in diseased states.

2. MODELING FRAMEWORK

2.1. Kinematics

The structure of the myocardium may be described by three orthogonal direction vectors f0,
s0, and n0 corresponding to the mean fiber, sheet, and sheet-normal directions, respectively,
in the Lagrangian description (Figure 1). In a continuum setting, this fiber and sheet
direction vectors are considered as averaged quantities over several fibers and sheets.

The isochoric Eulerian counterpart of these direction vectors are given by the relations

,  and , where F is the deformation
gradient, and J = detF > 0 is the volume ratio. The displacement field u between the two
points X and x at time t is given by u = x − X(x, t). The circular dispersion of the fiber and
sheet direction vectors around their mean orientations may be modeled using the structure
tensors

(1)

(2)

as similarly described in [19], where Hi are Lagrangian structure tensors and

 are isochoric Eulerian structure tensors, where i ∈ {f, s} correlates to the
fiber and sheet directions. The second-order identity tensor is denoted by I while the

modified isochoric left Cauchy Green tensor is denoted by .

The formulation of the dispersion parameters κi is described in detail in [19]. Briefly, the
range of valid values for κi are ∈ [0, 1/3], where κi = 0 means perfect alignment and κi = 1/3
means isotropy. A formulation of κi may be derived through the probability density function
(PDF) ρi(Θ), using the relation

(3)

where, Θ is the distribution angle centered around, Θ = 0. We assume that the fiber and sheet
dispersions follow a transversely isotropic and standard π-periodic von Mises distribution,
which is modified in order to satisfy the normalization condition [19,22]. The PDF is, thus,
given by

(4)

where bρ is a concentration parameter and erfi(x)=−i erf(x) denotes an imaginary error
function. The function ρ(Θ) is the standard π-periodic von Mises PDF, normalized by

(5)

where ω is the unit sphere.
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The values for κi may thus be fitted to the histograms of the dispersion of fiber and sheet
angles for the myocardial tissue. To fit the PDF (4) to histogram data (fiber angles), the fiber

angle Θ is shifted to  to center around, Θ = 0° (the bar on the Θ variable denotes the shifted
value), and the maximum likelihood method in MATLAB, that is, mle(), is used together
with a custom function describing Equation (4). The parameter bρ is thus retrieved with a
95% confidence interval, and by using (3), the parameters κi are obtained. The one-to-one
relation between the concentration parameter bρ and the dispersion parameter κi is discussed
in detail in [19,22], where it is shown that κ → 1/3 as bρ → 0 and κ → 0 as bρ → ∞.

The fit of the PDF to the fiber dispersion is shown in Figure 2 for both a healthy myocardial
tissue (see Figure 2(a)), and a diseased tissue (see Figure 2(b)), where the dispersion data
were adapted from [7]. The fit of the PDF to the sheet dispersion is only shown for a healthy
sub-epicardium (see Figure 2(c)), where the dispersion data were adapted from [16]. To the
authors’ knowledge, the structure of sheet orientations in a diseased myocardium has never
been investigated. The fitting produced the dispersion parameters κf = 0.00765 and κs =
0.0249 for the healthy myocardial tissue and κf = 0.0886 for the diseased tissue; compare
with Figure 2.

In the proposed framework, the dispersion parameters for the fiber and sheet directions are
uncoupled, and we assume that the mean orientation of these directions are kept orthogonal.
Furthermore, the dispersion of the sheet-normal direction is not considered; it is excluded to
match the strain-energy function developed in [18], as shown in Section 2.2.

2.2. Constitutive relations

The anisotropy, generated by the preferred directions of the material (Figure 1), can be

modeled by using the isochoric invariants ,  and

, where  is the modified right Cauchy–Green tensor, and C =
FTF denotes the right Cauchy–Green tensor [23].

By using the first invariant of , namely, , we may define the two modified

invariants  and  as a linear combination of ,  and . Thus,

(6)

similar to [19, 22, 24]. To characterize the orthotropic behavior of the myocardium, we
modify the strain-energy function suggested by Holzapfel & Ogden [18] by writing

(7)

where  is the modified invariant which couples f0 with s0, U is a volumetric

function, and  is an isochoric strain-energy function describing the passive behavior of
the myocardium. For the volumetric function, we use

(8)

where μK serves as a user-specified penalty parameter. In an analogous manner to [18], the
isochoric strain-energy function for the passive myocardium tissue is given by
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(9)

Note that in the limiting case, where κi = 0, the original model, as described in [18], is
retrieved.

The material parameters needed in (8) and (9) are μK, a, b, a(f, s, fs) and b(f, s, fs) and the two
dispersion parameters κf and κs. The passive Cauchy stress tensor is given by σp = 2J−1

F(∂Ψ/∂C)FT, and by using the notation

(10)

this results into

(11)

where ph = dU(J)/dJ is used, and dev(●) = (●) − (1/3)[(●) : I]I denotes the deviatoric
operator in Eulerian [23].

The evolution of an active second Piola–Kirchhoff stress term Sa, which originates from
[25], is given by

(12)

where ∊(Vm) is a delay function controlling the rate of activation and relaxation of Sa. The
parameter kSa regulates the amplitude of Sa, ΔVm = Vm − Vr is the difference in the
transmembrane potential, where Vm is the current action potential, and Vr is the myocyte
resting potential. A smooth delay function ∊ = ∊(Vm), as proposed in [26], is used, which is
given by

(13)

where ∊0 and ∊∞ are the limiting values of the delay function when the action potential Vm

is larger or lower than a given phase shift Vs. Further, the transition rate of the delay
function is controlled by the parameter ∊r. However, in contradiction to what is written in
[26], the relation between the limiting values must follow ∊0 > ∊∞ in order to achieve the
delay of peak active stress with respect to the upstroke of the action potential. An active
second Piola–Kirchhoff stress tensor Sa is retrieved by introducing a dispersed structure

tensor  a according to

(14)

where

(15)
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with . The active Cauchy stress tensor σa a is now retrieved by the push-
forward operation according to σa = J−1FSaFT, which yields

(16)

where

(17)

where  is the normalized fiber direction vector. The structure tensor (15) is
formulated so that (17) may be seen as a normalization of (2)1 where the length change of
the mean fiber orientation does not affect the magnitude of the applied stress so that the

condition  holds, which together ensures that (16) is a true Cauchy stress tensor.
The Cauchy stress tensor σ is now simply given by the additive decomposition

(18)

The elasticity tensors needed for implementing the passive stress σp in the finite element
(FE) analysis program [27] have previously been shown in [19], and for the active stress σa,
the elasticity tensor in the Lagrangian and the Eulerian descriptions is shown in the
Appendix.

2.3. Modeling electromechanically coupled myocardial tissue

The computation of electrical activation and repolarization and their coupling to passive
tissue mechanics is here briefly described. The spread of electrical activation and
repolarization is described by a reaction–diffusion equation referred to as the mono-domain
equation, given by

(19)

where β is the membrane surface to volume ratio, Cm is the membrane capacitance, Vm is
the transmembrane potential, Iion is the density of the total ionic current which is a function
of Vm and a set of state variables η, Itr is the transmembrane stimulus current, and gm is the
mono-domain conductivity tensor with the eigenaxes ζ = f along the fibers, ζ = s
perpendicular to the fibers, but within a laminar sheet, and ζ = n is perpendicular to the
sheets. No dispersion parameters are here included in the formulation of the electrical
activation. The eigenvalues of gm are chosen as the harmonic mean of the intracellular and
interstitial conductivities, which renders the mono-domain equation axially equivalent to the
more general bi-domain equation [28,29].

We employ the FEM for the spatial discretization of the mono-domain equation (19). A
ventricular geometry is modeled using two overlapping FE meshes, a fully structured
coarser hexahedral mesh for solving the mechanics and a fully unstructured hybrid mesh
with an average resolution of ~200 μm, using an image-based mesh generation technique
[30], as implemented in the commercial mesh generator Tarantula (CAE Software Solution,
Eggenberg, Austria) for solving electrics. Fiber and sheet orientations are interpolated onto
the barycenters of the FEs in both meshes. Both grids were partitioned for parallel execution
using parMETIS [31]. By treating the diffusion terms implicitly and the reaction terms
explicitly, the temporal discretization of the mono-domain equation relies on an implicit–
explicit scheme, using the time step of 20 s. Blocked Jacobi pre-conditioner with an iterative
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conjugate gradient solver is used to solve the linear system in parallel, using an Incomplete
LU (ILU(0)) factorization as a sub-block pre-conditioner [32].

The electrical and mechanical models are weakly coupled, that is, the solution of the
electrical quantities (19) is calculated on a static mesh first, using the Cardiac Arrhythmia
Research Package [33], which is built on top of the message passing interface-based library
PETSc [32]. Numerical aspects of this approach have been described in detail elsewhere
[34]. Relevant parameters, that is, Vm, required for computing the active stress transients are
transferred to the integration points of the mechanical mesh and fed into a separate
subsequent simulation of deformation and stress analysis using an FE analysis program [27].

In this study, however, the electrical quantities are either calculated according to (19), as is
the case in the model of an LV, Section 3.5, or the transmembrane potential Vm is prescribed
directly as an input to the mechanical deformation analysis.

3. REPRESENTATIVE NUMERICAL EXAMPLES

To illustrate the effect of the myocardial model considering dispersion, five representative
numerical examples are carried out. In order to elucidate how the dispersion parameters κf
and κs influence the myocardium model behavior, they are appropriately modified; for
example, isotropic fiber distribution was considered while keeping a small dispersion in the
sheet orientation and vice versa. Such relations between fiber and sheet dispersion are non-
physiological but are used to provide more insight into the proposed model.

The five examples are as follows: (i) in Section 3.1, a unit cube of myocardial tissue is
electrically activated to generate active tension. The influence of the dispersion on the
mechanical deformation (stretch) is studied by varying the dispersion parameters κf and κs;
(ii) a second example, see Section 3.2, aims to predict the influence of the dispersion on
simple shear; (iii) an FE model of a cube of myocardial tissue is used in Section 3.3 to
investigate the relative influence of electrically generated active stress in the presence of
dispersion of the fiber orientation; (iv) in Section 3.4, a passive inflation experiment on a
ventricular section is performed to study the transmural change in stress as a function of the
altered dispersion parameters related to the fiber and sheet directions; and (v) an
electromechanically coupled LV model is used in Section 3.5 to study the influence of fiber
and sheet dispersions upon contraction on PV loops over a cardiac cycle where dispersion
parameters are chosen to account for both healthy and pathological conditions.

The related numerical results were obtained by using mixed Q1/P0 displacement/pressure
FEs.

3.1. Electrically activated cube with dispersion

A unit myocardium tissue cube with mean material directions is considered. By introducing
a global coordinate system (X1, X2, X3), the material directions are according to [f0] = [1, 0,
0]T, [s0] = [0, 1, 0]T, and [n0] = [0, 0, 1]T. The cube is fixed against rigid body movement
but can otherwise freely deform. The reference configuration of the cube is shown by the
dashed lines in Figure 3(a). The cube is activated by increasing the transmembrane potential
Vm generating a contraction in the fiber direction. The corresponding deformation gradient is
given by F = diag(λf, λs, λn), where λf, λs and λn are the stretches in the fiber, sheet, and
sheet-normal directions, respectively. Because the activation in the fiber direction leads to a
contraction of the fiber, the stretches follow the relations λf < 1, λs > 1, and λn > 1. A
deformed configuration (at Vm = 50 mV, with κf = κs = 0) is shown by the solid lines in
Figure 3(a). The components of the Cauchy stress tensor σ = σp + σa can now be calculated
from (11) and (16) by using J = 1. Thus,
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(20)

(21)

(22)

(23)

Because the cube can freely deform, the stress components σ11, σ22, and σ33 are zero, and ph

may be determined by, for example, σ33 = 0. The unknowns are the stretches λf, λs, and λn.
By the use of the incompressibility condition λfλsλn = 1, the nonlinear system (20)–(22) can
be solved with respect to λf, λs and λn by using the function fsolve() in MATLAB. The given
values are the dispersion parameters κf and κs and the active stress Sa which is computed
from the given transmembrane potential Vm.

With the material parameters from Table I and a linear increase in the transmembrane
potential from Vm = Vr to Vm = +50 mV, the resulting stretches can be plotted as a function
of the transmembrane potential Vm, see Figure 3(b,c) for different sets of the dispersion
parameters κf and κs. The fiber, sheet, and sheet-normal responses are shown by solid,
dashed, and dotted curves, respectively (the stretches in Figure 3 are abbreviated by λ). In
addition, a comparison is shown with FE results obtained for the same model setup where κf

= 1/6 in Figure 3(b) and κs = 1/6 in Figure 3(c) (the FE results are shown as circles). For the
limiting case κf = 1/3, the active stress acts in all direction, and due to the incompressibility,
the cube cannot deform, resulting in a straight line at λ = 1 for all directions, as shown by
the dash-dotted line in Figure 3(b). For the limiting case κs = 1/3 (the sheet direction is
isotropic), the stretch responses in the sheet and sheet-normal directions are shown by the
dash-dotted curves in Figure 3(c). Note that the sheet and sheet-normal responses are
indistinguishable. For κs = 1/3, the material model can be viewed as transversely isotropic.

3.2. Influence of dispersion on simple shear

Consider the same unit myocardium tissue cube with the same material directions as
formulated in the previous example but subjected to a simple shear deformation in the 21-
plane caused by the deformation gradient F = I + γf0 ⊗ s0 (see Figure 4(a)). Thereby, γ
denotes the amount of shear. In addition, let us consider a plane stress state throughout the
myocardium tissue in the sense that the face of the cube normal to the direction n0 is free of
surface traction (σ13 = σ23 = σ33 = 0). For that particular setup, the nonzero Cauchy stress
components can be derived from (11) and (16). After some lengthy but straightforward
computation, we obtain

(24)

(25)
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(26)

Note that although the applied active stress is dispersed along the fiber direction, there are
no components of the active stress in the two other orthogonal directions (s0 and n0). The
Cauchy stress σ11 is shown in Figure 4(b) as a function of the amount of shear γ for values
κf between 1/8 and 1/3 (isotropy). As can clearly be seen from the plots, an increased fiber
dispersion decreases the Cauchy stress σ11. In this example, the active stress is zero in the
reference configuration and increases with the increase of shear. Also here, a comparison is
shown with FE results (the circles in Figure 4(b)) where κf = 1/8.

3.3. Influence of myocyte dispersion on the mechanical tissue response

The influence of the myocyte dispersion on the mechanical tissue response is shown in a
purely numerical example by using the same unit myocardium tissue cube (with 10 mm
size) as in the previous examples. The cube is discretized by 10 × 10 × 10 FEs with fixed
displacement boundary conditions in all DOF on the faces of the cube at X2 = 0 and X2 = 10
mm.

The dispersion parameter κs was set to zero. Four different values for κf are used (0, 0.1,
0.2, 0.3) while keeping κs constant. The cube is activated by a potential of Vm = +30 mV,
and the corresponding first principal stress σI is shown in Figure 5. As can be seen in the
figure, an increase in the κf-value toward isotropy lowers the value of σI and also decreases
the contraction in the fiber direction. This is because of the increased dispersion of the fiber
direction, which leads to an increase in active stress components along the X2-direction and
X3-direction and because of the incompressibility of the material, which reduces the
influence of the active stress in the fiber direction in that particular example. Thus, this
example illustrates the influence dispersion has on the active stress tensor σa and the
resulting contraction in the material.

3.4. Passive inflation of a ventricular section

A left ventricular slice model is generated by approximating the cross section of the LV by a
cylinder, as illustrated in Figure 6(a). Two models, say A and B, of the same geometry but
with different fiber and sheet arrangements are created. In model A, the average fiber angle
α varies from +60° to −60° and the average sheet angle β varies from +85° to −85°
transmurally from the epicardium to the endocardium, where the fiber and sheet angles α
and β are defined in Figure 6(b). In Model B, the fiber and sheet angles are assumed to be
zero. The slice geometry is meshed with 400 hexahedral FEs, which are fixed against
translation in the ξ2-direction at the cut surfaces and in the ξ3-direction at the epicardial
border to hinder rigid body movements. No electrical stimulus was applied, that is, the tissue
remained electrically quiescent, and thus no active stresses were generated. Instead, the slice
is passively inflated by applying a pressure load of 100 mmHg to the endocardial surface in
200 incremental load steps of equal size. The influence of the dispersion parameters κf and
κs on the distribution of the first principal stress σI is investigated by either using the
dispersion parameters for healthy and diseased tissues, as provided in Figure 2, or by using
the dispersion parameters κf = 0.2 (strongly dispersed) and κs = 0 (perfect alignment), and
vice versa.

In Figure 7, the resulting first principal Cauchy stress σI at the applied pressure load of 100
mmHg is shown for different dispersion parameters. Figure 7(a) shows the stress distribution
by using the dispersion parameters for a healthy myocardium resulting in a band of higher
stresses in the middle region of the myocardium. This band is noticeably reduced by using
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the dispersion parameters for the fibers related to a diseased myocardium, as shown in
Figure 7(b). Instead, stresses are more spread out radially, and at the endocardial border,
stresses are higher relative to the setup of Figure 7(a). This suggests that the fiber dispersion
alone induces a radial stress gradient where the highest stresses arise at the inner wall, as
commonly seen in, for example, pressurized thickwalled isotropic tubes. This is exactly the
case when using aligned sheets and a pronounced fiber dispersion, as can be seen in Figure
7(c). In the opposite case, that is, with fiber alignment and a pronounced sheet dispersion,
there is an increased stress gradient visible in the middle region of the myocardium, as seen
in Figure 7(d).

For the sake of comparison, for model B, the first principal Cauchy stress σI at 100 mmHg
was computed, and the related results are shown in the Figure 7(e,f) for two sets of
dispersion parameters. For the case of a higher dispersion parameter κf (relates to a diseased
myocardium), the first principal Cauchy stress is slightly higher at the endocardial border.
This effect is not so pronounced when comparing Figure 7(a) with (b). It is also clear that
the symmetric fiber and sheet angles, used in model A, contribute to the increased mid-
myocardial stresses.

3.5. Left ventricle model indicating the influence of fiber and sheet dispersions upon
contraction

To study the influence of fiber and sheet dispersions upon contraction over a cardiac cycle,
an ellipsoidal model of the LV was constructed; the dimensions correlate with a rabbit LV
[35]. The coordinates of the LV are described in prolate spheroidal coordinates with the axes
ξ1, ξ2, and ξ3, pointing in the radial, longitudinal, and circumferential directions,
respectively. The coordinate system is illustrated in Figure 6(a). The arrangements of the
fibers and the sheets correspond to model A, as described in Section 3.4. Pressure boundary
conditions, as imposed by the ventricular deformation and the response of the vascular
system, are applied on the endocardial surface. The pressure p in the cavity is governed as
follows:

1. Non-physiological initial phase with linear pressure increases starting from p = 0 to
the end diastolic pressure (EDP) (p = 20 mmHg).

2. Isochoric LV compression phase, p increases from EDP up to 95 mmHg.

3. Ejection phase where the PV relationship is governed by a Windkessel model, that
is,

(27)

until reversed blood flow.

4. Isochoric LV relaxation phase, p drops down to 12.5 mmHg.

5. Filling phase with linear pressure increases to EDP.

In steps (2) and (4), the pressure p is computed using the iterative relation pn+1 = pn + (Vn+1

− Vn)/Cp to keep the cavitary volume V of the LV constant, where Cp serves as a penalty
parameter [36]. In step (3), where a two-element Windkessel model is used, the parameters
C and R relate to the arterial compliance and the resistance, respectively. The values for C
and R are chosen to generate PV loops that match with experimental data of rabbits [37].
Parameters required for calculating the pressure are the following: C = 0.2 ml mmHg−1, R =
700 mmHg ms ml−1, and Cp = −900 ml mmHg−1. The parameters used to describe both
active and passive mechanical behaviors of the model are summarized in Table I, except for
κf and κs which correspond to the dispersion parameters given in Figure 2. The mechanical
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boundary conditions for the LV are described in Table II. The mesh consists of 5310
hexahedral (mixed) FEs used to solve the mechanics and of 1,201,507 linear hybrid FEs to
solve the electrics [38]. The model by Mahajan et al. [39] is employed to describe cellular
dynamics, where the system of ODEs is solved using the Rush–Larsen algorithm [40] with
several optimizations [41]. The model was initialized by pacing a single cell at a pacing
cycle length of 350 ms until a stable limit cycle was observed.

The state vector η at the end of this pre-pacing procedure was used to populate the LV
model with an initial state vector η0. Transmembrane current injection applied to the
endocardial surface at t = 0 ms initiated the propagation of the action potentials at the
endocardium to approximate a predominantly transmural activation sequence, as induced by
activation via the Purkinje system. In this approximation, the whole endocardium was
activated synchronously, electrical activation delays within the endocardium remained
unaccounted for. We simulated 350 ms of activity to cover one depolarization and
repolarization cycle over the entire LV. The spread of the electrical activation and
repolarization is modeled using Equation (19).

By using the dispersion parameters that relate to the healthy and the diseased tissue, as seen
in Figure 2, the resulting deformations are quite different. This is illustrated at both the end
diastolic volume and the end systolic volume, as shown in the Figure 8(a,b), respectively.
Thereby, the distribution of the magnitude of the difference |uH − uD| between the
displacements is shown (H stands for healthy tissue and = diseased). The resulting PV loops
obtained from the simulations for different sets of dispersion parameters are shown in Figure
8(c); also, the case for no dispersion is illustrated (κf = κs = 0). Although only a minor shift
in the PV loops between the cases with no dispersions and with fiber and sheet dispersions
for a healthy myocardium was observed, a remarkably different behavior is obtained with a
fiber dispersion κf relating to a diseased myocardium; thereby, the end diastolic and systolic
volumes are much larger.

4. DISCUSSION

There are several reports in the literature, which provide evidence for the presence of
dispersion in the fiber and sheet orientations in myocardial tissues. Under healthy
conditions, dispersion is rather mild, but under certain pathologies such as HCM [13, 42,
43], dispersion can be quite pronounced. In the vast majority of modeling studies, however,
dispersion and its influence upon the mechanical response of the myocardium has been
largely ignored. In this study, a mechanical model of myocardial tissue has been proposed,
which explicitly accounts for the dispersion of fibers and sheets. By changing two scalar
(dispersion) parameters, introduced as κf and κs, the dispersion along the fiber and the sheet
direction can be steered independently, thus allowing mechanistic investigations of
pathological changes. The independence of the fiber and sheet directions is a reasonable
approximation, despite the microstructural interaction. An approach that couples the fiber
and sheet orientations is feasible; however, specific data are missing. The dispersion
parameters κf, κs determine the blend between the isotropy (characterized by the invariant
I1) and the transverse isotropy (characterized by the invariants I4f, I4s). Thus, together, they
give a dispersed orthotropic structure response where an increased dispersion leads to a
more isotropic active and passive mechanical response.

The analytical and numerical examples investigated in this study suggest that dispersion
may be an important factor in cardiac electromechanics. The increase in the dispersion along
the fiber direction showed the most striking effect. This is illustrated in, for example, Figure
5 where the increase in the dispersion reduces contraction and the first principal stress. The
enforced incompressibility condition is responsible for this reduced contraction, as can be
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seen from the analytical expressions (20)–(22) and (24)–(26). From a physiological point of
view, there is also an interpretation. As the dispersion increases, the orientation of myocytes,
which are responsible for active contraction, becomes more evenly distributed. When
dispersion is large enough, there is no preferred myocyte orientation anymore. This would
entail an isotropic contraction, which is, however, impossible without altering the volume.
Moreover, besides distributing the direction of active contraction, fiber dispersion also has a
major impact on the passive myocardial response. This is illustrated in Figure 7(a)–(c)
where the fiber dispersion is increased in a ventricular slice model. During passive inflation
of the slice, the first principal stress changes from being elevated in a mid-myocardial band
for low fiber dispersion to being elevated at the endocardial border for high fiber dispersion.
This shift is similar to what is commonly seen when inflating a thick-walled tube.

Although the effects of dispersion in the fiber direction on the mechanical myocardial
response is more striking, numerical results indicate that increases in the sheet dispersion
lead to significant alterations in the model behavior as well. The overall material response
changes gradually from orthotropic toward transversely isotropic where the sheet response
becomes indistinguishable from the sheet-normal response. This can be seen either in the
analytical part of the first example discussed in Section 3.1, see equations (21) and (22),
where κs = 1/3 gives identical expressions for the Cauchy stresses σ22 and σ33, or,
alternatively, from Figure 3(c) where the behavior is identical along the sheet and sheet-
normal directions. The difference in the passive stress response between a (nearly)
transversely isotropic and an orthotropic material can be appreciated by comparing Figure
7(d) with Figure 7(a), where the stress in the middle region of the myocardium is even more
elevated for the (nearly) transversely isotropic material. This large difference in the stress
response also highlights the importance of the orthotropic structure as a factor that has to be
considered when simulating ventricular electromechanical problems. Residual stresses,
however, has not been included in the simulation, why the particular stress distribution, as
shown in Figure 7, should not be considered as the true stress in a ventricle. It merely shows
how the fiber and sheet dispersions affect the stress distribution.

Section 3.5 illustrates the numerical results for an electromechanically coupled model of the
LV from a rabbit for a healthy and a pathological myocardium. Although the effects of using
fiber and sheet dispersion parameters for the healthy myocardium were fairly minor, the use
of fiber dispersions relating to a pathological myocardium had a rather big effect. As can be
seen by comparing the PV loops in Figure 8(c), a significant shift of the entire PV loop
toward larger end diastolic and end systolic LV cavity volumes occurred. Although the PV
loops show that there is a difference in volume of the ventricular lumen, Figure 8(a,b) also
illustrate that the remaining ventricular wall undergoes different patterns of deformation
when using different dispersion parameters.

In summary, our modeling results identified the fiber and sheet dispersions as important
determinants for the electromechanics of the myocardium. Distributed fiber and sheet
orientations should be considered for more reliable predictions of, for example, stress,
deformation, and volume change, in particular when compared with experimental data
obtained from a pathological myocardium.

Limitations of the study

Because of the lack of structural data of pathological myocardium, it is difficult to find
suitable comparisons on which we may validate our approach. Therefore, we have focused
on the description of the dispersion model and have attempted to show the related
mechanisms. Once adequate structural data exist, future work is needed to validate and
modify the model if necessary.
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The fit of the histogram data to the PDF assumes a bell-shaped data distribution. This may
not be suitable in pathological cases with increased fiber dispersion. As shown in Figure
2(b), which displays the fiber dispersion of an HCM-diseased tissue, there may exist two
predominant myocyte orientations in the region of interest. It is certainly possible to retrieve
individual dispersion parameters; however, the increased dispersion obtained from the HCM
sample was only seen within small focal islands throughout the myocardial wall [7, 8]. To
appropriately account for the bimodal distribution of orientations, higher spatial resolutions
would be required than those commonly used within FE studies, including this study.
Because the spatial extent of a single FE in the models used exceeds the size of a focal
island in which increased dispersion can be found, we opted to only use one average
direction that corresponds to a fit of the bell-shaped function over both predominant
orientations.

In the LV model discussed in Section 3.5, the dispersion parameters corresponding to the
tissue diseased by HCM were used throughout the entire LV wall. This is not a realistic
assumption as the dispersion in the smaller focal islands seems only to be present at
approximately 25% of the overall LV volume [7, 8]. Available data show sheet and fiber
dispersions averaged over all islands found in a given ventricle, but no data on the spatial
distribution and morphology of such islands are available. Therefore, simulation results
show an overly diseased case that can be considered as a limiting case for the dispersion
effects. However, the focus of this study is mainly on the description of the modeling
procedure and the potential effects of fiber dispersion and not on the development of a
model that strives for a perfect pathophysiological match for an HCM-diseased LV. In
future higher resolution FE-modeling studies, dispersion parameters may easily be set to
vary from FE to element; however, by considering the paucity of available data on the
spatial dispersion variation, such a detailed investigation would appear to be premature.
Experimental studies that characterize spatial and morphological aspects of the dispersion
over the entire myocardium in health and disease are, therefore, of utmost need to provide a
more solid basis for a more detailed study aiming to provide more specific predictions.

Because of the limited experimental data available, we were not able to use data from one
species only. For example, it was necessary to retrieve the dispersion data from a rat
myocardium [7, 16], whereas passive material parameters were retrieved from a porcine
myocardium [44]. However, this limitation does not affect the qualitative conclusions drawn
from using the proposed dispersed formulation for myocardium.

Furthermore, in the LV model, the parameters κf and κs affected only the mechanical
response of the LV but not the electrical activation sequence because dispersion remained
unaccounted for in the mono-domain equation. That is, the orthotropy in the propagation of
the action potential in the LV model was governed by the mean orientation of the fibers and
the sheets. A consideration of the dispersion in the electrical model would also reduce the
orthotropy. However, the chosen activation sequence, which approximates a normal beat
where the entire endocardium is activated almost simultaneously, leads to a strongly
transmural activation where effects of electrical orthotropy are strongly attenuated. Under
such conditions, the consequence of electrical dispersion is minor and can be neglected,
particularly when considering the rather large uncertainty in the experimental reports on
conductivity values, which vary up to 300% [45].
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APPENDIX A: ELASTICITY TENSORS FOR THE ACTIVE STRESS

Using the definition M0 := f0 ⊗ f0 and the abbreviation (15), (14) may be written as

(28)

The Lagrangian elasticity tensor is given by  which leads to

(29)

Using the derivative  (29) can be written as

(30)

and by using the push-forward operation of  according to

, this leads to the Eulerian elasticity tensor

(31)

where the fourth-order identity tensor  defined in index notation as

, is introduced from the push-forward relation

 and the definition

 has been used.
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Figure 1.
Schematic representation of the structure of the myocardium showing the fiber-reinforced
laminar composite that comprises the averaged fiber, sheet, and sheet-normal directions in a
continuum model, characterized by f0, s0, and n0, respectively.
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Figure 2.
Fit of histogram data for fiber and sheet dispersions adapted from [7, 16], (a) fiber
dispersion in a healthy tissue (κf = 0.00765); (b) fiber dispersion in a diseased tissue (κf =
0.0886); and (c) sheet dispersion in a healthy tissue (κs = 0.0249).
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Figure 3.
(a) Deformation of a unit cube when activated in the fiber direction; analytical results along
the fiber, sheet, and sheet-normal directions using different values for the distribution
parameters κf in (b) and κs in (c). The fiber, sheet, and sheet-normal responses are shown by
solid, dashed, and dotted curves, respectively, and the circles show the finite element results
for comparison reasons using either κf = 1/6, see (b), or κs = 1/6, see (c). Using the limiting
case κf = 1/3 or κs = 1/3, the dash-dotted curves show the stretch responses for all three f, s,
and n-directions, see (b), and for the s and n-directions, see (c).
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Figure 4.
(a) Simple shear deformation of a unit cube with the deformation gradient F = I + γf0 ⊗ s0;
(b) Cauchy stress σ11 versus the amount of shear γ for values κf between 1/8 and 1/3. The
show FE results for comparison reasons using κf = 1/8.

Eriksson et al. Page 20

Int j numer method biomed eng. Author manuscript; available in PMC 2014 March 31.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts



Figure 5.
Cube of myocardial tissue subjected to an active stress corresponding to a potential of +30
mV with the dispersion parameters κf = {0, 0.1, 0.2, 0.3} and κs = 0. The images illustrate
the corresponding first principal stress σI.
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Figure 6.
(a) Coordinate system of the left ventricle model and a section of the left ventricle; (b)
average fiber orientation defined by the angle α in the (ξ2, ξ3)-plane, and average sheet
orientation defined by the angle β in the (ξ1, ξ2)-plane. The arrows point in the positive
directions of the angles.
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Figure 7.
Distribution of the first principal stress σI at applied pressure load of 100 mmHg in a section
of a ventricular model. Models A and B pertain to different fiber and sheet-orientations;
Model A: −60° ≤ α ≤ +60° and −85° ≤ β ≤ +85°; Model B: α = β = 0 (α and β denote fiber
and sheet angles, respectively, as defined in Figure 6(b)). For some dispersion parameters,
see Figure 2.
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Figure 8.
Magnitude of the difference |uH − uD| between the displacements (H stands for healthy
tissue and D for diseased) for (a) the end diastolic volume (EDV) and (b) the end systolic
volume (ESV). (c) Pressure–volume loops for different sets of dispersion parameters κf and
κs.
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Table I

Material parameters used for both analytical and numerical calculations, except for the dispersion values of κf

and κs, which are provided in the respective section. The material parameters for the passive tissue behavior

are taken from [18], whereas the parameters for the active stress are taken from [25].

Passive stress

μK = 3333 kPa a = 0.333 kPa b = 9.242 (–)

af = 18.535 kPa bf = 15.972 (–)

as = 2.564 kPa bs = 10.446 (–)

afs = 0.417 kPa bfs = 11.602 (–)

Active stress

κSa = 0.50 kPa mV−1 Vr = −86.796 mV Vs = −80.0 mV

∊0 = 1.0 ms−1 ∊∞ = 0.1 ms−1 ζr = 0.1 mV−1
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Table II

Mechanical boundary conditions (BCs) for the left ventricle in terms of the prescribed traction t, where tn is a

component of t normal to the endocardial surface on which the pressure p acts and the displacement u with
components uξ1, uξ2, uξ3 in the direction of the coordinates given in Figure 6(a).

BCs Coordinates Description

tn = −p ξ1 = ξ1 min For all ξ2, ξ3 Endocardial surface

uξ2 = 0 ξ2 = ξ2max For all ξ1, ξ3 Basal surface

uξ3 = 0
ξ1 = ξ1 max

For all ξ3 Outer boundary at the base surface
ξ2 = ξ2max
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