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Encoding models are used for predicting brain activity in response to sensory stimuli with

the objective of elucidating how sensory information is represented in the brain. Encoding

models typically comprise a nonlinear transformation of stimuli to features (feature model)

and a linear convolution of features to responses (response model). While there has

been extensive work on developing better feature models, the work on developing

better response models has been rather limited. Here, we investigate the extent to

which recurrent neural network models can use their internal memories for nonlinear

processing of arbitrary feature sequences to predict feature-evoked response sequences

as measured by functional magnetic resonance imaging. We show that the proposed

recurrent neural network models can significantly outperform established response

models by accurately estimating long-term dependencies that drive hemodynamic

responses. The results open a new window into modeling the dynamics of brain activity

in response to sensory stimuli.
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1. INTRODUCTION

Encoding models (Naselaris et al., 2011) are used for predicting brain activity in response
to naturalistic stimuli (Felsen and Dan, 2005) with the objective of understanding how
sensory information is represented in the brain. Encoding models typically comprise two main
components. The first component is a feature model that nonlinearly transforms stimuli to features
(i.e., the independent variables used in fMRI time series analyses). The second component is
a response model that linearly transforms features to responses. While encoding models have
been successfully used to characterize the relationship between stimuli in different modalities
and responses in different brain regions, their performance usually falls short of the expected
performance of the true encoding model given the noise in the analyzed data (noise ceiling). This
means that there usually is unexplained variance in the analyzed data that can be explained solely
by improving the encoding models.

One way to reach the noise ceiling is the development of better feature models. Recently,
there has been extensive work in this direction. One example is the use of convolutional neural
network representations of natural images or natural movies to explain low-, mid- and high-level
representations in different brain regions along the ventral (Agrawal et al., 2014; Cadieu et al.,
2014; Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014; Güçlü and van Gerven, 2015a;
Cichy et al., 2016) and dorsal streams (Güçlü and van Gerven, 2015b; Eickenberg et al., 2016) of the
human visual system. Another example is the use of manually constructed or statistically estimated
representations of words and phrases to explain the semantic representations in different brain
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regions (Mitchell et al., 2008; Huth et al., 2012; Murphy et al.,
2012; Fyshe et al., 2013; Güçlü and van Gerven, 2015c; Nishida
et al., 2015).

Another way to reach the noise ceiling is the development
of better response models. There is a long history of
estimating hemodynamic response functions (HRFs) in fMRI
time series modeling. The standard general linear (convolution)
model used in procedures like statistical parametric mapping
(SPM) expands the HRF in terms of orthogonal kernels or
temporal basis functions that have been motivated in terms of
Volterra expansions. Indeed, commonly used software packages
such as the SPM software have (hidden) facilities to model
second-order Volterra kernels that enable modeling of non-
linear hemodynamic effects such as saturation. In reality, the
transformation from stimulus features to observed responses is
exceedingly complex because of various temporal dependencies
that are caused by neurovascular coupling (Logothetis and
Wandell, 2004; Norris, 2006) and other more elusive cognitive
or neural factors.

Here, our objective is to develop a model that can be trained
end to end, captures temporal dependencies and processes
arbitrary input sequences for time-continuous fMRI experiments
such as watching movies, listening to music or playing video
games. Such time-continuous designs are characterized by the
absence of discrete experimental events as those found in
their block or event-related counterparts. To this end, we
use recurrent neural networks (RNNs) as response models
in the encoding framework. Recently, RNNs in general and
two RNN variants—long short-term memory (Hochreiter and
Schmidhuber, 1997) and gated recurrent units (Cho et al.,
2014)—in particular have been shown to be extremely successful
in various tasks that involve processing of arbitrary input
sequences such as handwriting recognition (Graves et al.,
2009; Graves, 2013), language modeling (Sutskever et al., 2011;
Graves, 2013), machine translation (Cho et al., 2014) and
speech recognition (Sak et al., 2014). These models use their
internal memories to capture the temporal dependencies that are
informative about solving the task at hand. That is, these models
base their predictions not only to the information available at a
given time, but also to the information that was available in the
past. They accomplish this by maintaining an explicit or implicit
representation of the past input sequences and use it to make
their predictions at each time point. If these models can be used
as response models in the encoding framework, it will open a
new window into modeling brain activity in response to sensory
stimuli since the brain activity is modulated by long temporal
dependencies.

While the use of RNNs in the encoding framework has
been proposed a number of times (Güçlü and van Gerven,
2015a,b; Kriegeskorte, 2015; Yamins and DiCarlo, 2016a,b),
these proposals mainly focused on using RNNs as feature
models. In contrast, we have framed our approach in terms
of response models used in characterizing distributed or
multivariate responses to stimuli in the encoding framework.
The key thing that we bring to the table is a generic and
potentially useful response model that transforms features to
observed (hemodynamic) responses. From the perspective of

conventional analyses of functional magnetic resonance imaging
(fMRI) time series, this response model corresponds to the
convolution model used to map stimulus features (e.g., the
presence of biological motion) to fMRI responses. In other
words, the stimulus features correspond to conventional stimulus
functions that enter standard convolution models of fMRI time
series (e.g., the GLM used in statistical parametric mapping).

In brief, we know that the transformation from neuronal
responses to fMRI signals is mediated by neuronal and
hemodynamic factors that can always be expressed in terms of
a non-linear convolution. A general form for these convolutions
has been previously considered in the form of Volterra
kernels or functional Taylor expansions (Friston et al., 2000).
Crucially, it is also well known that RNNs are universal
non-linear approximators that can reproduce any Volterra
expansion (Wray and Green, 1994). This means that we can
use RNNs as an inclusive and flexible way to parameterize
the convolution of stimulus features generating hemodynamic
responses. Furthermore, we can use RNNs to model not just
response of a single voxel but distributed responses over
multiple voxels. Having established the parametric form of
this convolution, the statistical evidence or significance of
each regionally specific convolution can then be assessed using
standard (cross-validation) machine learning techniques by
comparing the accuracy of the convolution when applied to test
data after optimization with training data.

We test our approach by comparing how well a family
of RNN models and a family of ridge regression models can
predict blood-oxygen-level dependent (BOLD) hemodynamic
responses to high-level and low-level features of natural movies
using cross-validation. We show that the proposed recurrent
neural network models can significantly outperform the standard
ridge regression models and accurately estimate hemodynamic
response functions by capturing temporal dependencies in the
data.

2. MATERIALS AND METHODS

2.1. Data Set
We analyzed the vim-2 data set (Nishimoto et al., 2014),
which was originally published by Nishimoto et al. (2011). The
experimental procedures are identical to those in Nishimoto
et al. (2011). Briefly, the data set has twelve 600 s blocks of
stimulus and response sequences in a training set and nine
60 s blocks of stimulus and response sequences in a test
set. The stimulus sequences are videos (512 px × 512 px or
20◦ × 20◦, 15 FPS) that were drawn from various sources.
The response sequences are BOLD responses (voxel size = 2 ×

2 × 2.5mm3, TR = 1 s) that were acquired from the occipital
cortices of three subjects (S1, S2, and S3). The stimulus sequences
in the test set were repeated ten times. The corresponding
response sequences were averaged over the repetitions. The
response sequences have already been preprocessed as described
in Nishimoto et al. (2011). Briefly, they have been realigned to
compensate for motion, detrended to compensate for drift and
z-scored. Additionally, the first six seconds of the blocks were
discarded. No further preprocessing was performed. Regions of
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interests were localized using the multifocal retinotopic mapping
technique on retinotopic mapping data that were acquired in
separate sessions (Hansen et al., 2004). As a result, the voxels
were grouped into 16 areas. However, not all areas were identified
in all subjects (Table 1). The last 45 seconds of the blocks in the
training set were used as the validation set.

2.2. Problem Statement
Let xt ∈ R

n and yt ∈ R
m be a stimulus and a response at temporal

interval [t, t + 1], where n is the number of stimulus dimensions
and m is the number of voxel responses. We are interested in
predicting the most likely response yt given the stimulus history
Xt = (x0, . . . , xt):

ŷt = argmax
yt

Pr
(

yt
∣

∣Xt
)

(1)

= g
(

φ
(

x0
)

, . . . ,φ
(

xt
))

(2)

where Pr is an encoding distribution, φ is a feature model such
that φ (·) ∈ R

p, p is the number of feature dimensions, and g is a
response model such that g (·) ∈ R

m.
In order to solve this problem, we must define the feature

model that transforms stimuli to features and the response model
that transforms features to responses. We used two alternative
featuremodels; a scene descriptionmodel that codes for low-level
visual features (Oliva and Torralba, 2001) and a word embedding
model that codes for high-level semantic content. We used two
response model families that differ in architecture (recurrent
neural network family and feedforward ridge regression family)
(Figure 1). In contrast to standard convolution models for
fMRI time series, we are dealing with potentially very large
feature spaces. This means that in the absence of constraints the
optimization of model parameters can be ill posed. Therefore, we
use dropout and early stopping for the recurrent models, and L2

regularization for the feedforward models.

2.3. Feature Models
2.3.1. High-Level Semantic Model
As a high-level semantic model we used the word2vec
(W2V) model by Mikolov et al. (2013a,b,c). This is a
one-layer feedforward neural network that is trained for
predicting either target words/phrases from source-context
words (continuous bag-of-words) or source context-words from
target words/phrases (skip-gram). Once trained, its hidden
states are used as continuous distributed representations of
words/phrases. These representations capture many semantic
regularities. We used the pretrained (skip-gram) W2V model
to avoid training from scratch (https://code.google.com/archive/
p/word2vec/). It was trained on 100 billion-word Google News

dataset. It contains 300-dimensional continuous distributed
representations of three million words/phrases.

We used the W2V model for transforming a stimulus
sequence to a feature sequence on a second-by-second basis
as follows: First, each one second of the stimulus sequence is
assigned 20 categories (words/phrases). We used the Clarifai
service (http://www.clarifai.com/) to automatically assign the
categories rather than annotating them by hand.Clarifai provides
a web-based video recognition application, which internally
uses a pretrained deep neural network to automatically tag
the contents of the video frames on a second-by-second basis.
Then, each category is transformed into continuous distributed
representations of words/phrases. Next, these representations are
averaged over the categories. This resulted in a 300-dimensional
feature vector per second of stimulus sequence (p = 300).

2.3.2. Low-Level Visual Feature Model
As a low-level visual feature model we used the GIST
model (Oliva and Torralba, 2001). The GIST model
transforms scenes into spatial envelope representations.
These representations capture many perceptual dimensions that
represent the dominant spatial structure of a scene and have
been used to study neural representations in a number of earlier
work (Groen et al., 2013; Leeds et al., 2013; Cichy et al., 2016).
We used the implementation that is provided at: http://people.
csail.mit.edu/torralba/code/spatialenvelope/.

We used the GIST model for transforming a stimulus
sequence to a feature sequence on a second-by-second basis as
follows: First, each 16 non-overlapping 8 × 8 regions of all 15
128 × 128 frames in one second of the stimulus sequence are
filtered with 32 Gabor filters that have eight orientations and
four scales. Then, their energies are averaged over the frames.
This resulted in a 512-dimensional feature vector per second of
stimulus sequence (p = 512).

2.4. Response Models
2.4.1. Ridge Regression Family
The response models in the ridge regression family predict
feature-evoked responses as a linear combination of features.
Each member of this family differs in how it accounts for the
hemodynamic delay.

The R-C model (i) convolves the features with the canonical
hemodynamic response function (Friston et al., 1994) and (ii)
predicts the responses as a linear combination of these features:

ŷt =

(

HcFcB
⊤
)t

(3)

TABLE 1 | Number of voxels per subject and area.

V2 V3 V1 IPS V4 LOC V7 MT+ V3A V3B VO EBA OFA RSC pSTS TOS

S1 1,477 1,141 994 2,251 734 885 0 466 252 256 410 0 0 71 45 0

S2 1,659 1,360 1,043 0 1032 614 400 174 337 223 267 319 246 128 0 0

S3 1,377 1,131 1,366 893 750 408 583 263 282 225 0 131 91 8 16 41
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FIGURE 1 | Overview of the response models. (A) Response models in the RNN family. All RNN models process feature sequences via two (recurrent) nonlinear

layers and one (nonrecurrent) linear layer but differ in the type and number of artificial neurons. L-10/50/10 models have 10, 50, or 100 long short-term memory units

in both of their hidden layers, respectively. Similarly, G-10/50/10 models have 10, 50, or 100 gated recurrent units in both of their hidden layers, respectively.

(B) First-layer long short-term memory and gated recurrent units. Squares indicate linear combination and nonlinearity. Circles indicate elementwise operations. Gates

in the units control the information flow between the time points. (C) Response models in the ridge regression family. All ridge regression models process feature

sequences via one (nonrecurrent) linear layer but differ in how they account for the hemodynamic delay. R-C(TD) models convolve the feature sequence with the

canonical hemodynamic response function (and its time and dispersion derivatives). R-F model lags the feature sequence for 3, 4, 5, and 6 s and concatenates the

lagged sequences.

where Hc ∈ R
t×t is the Toeplitz matrix of the canonical

HRF. That is, it is a diagonal-constant matrix that contains the
shifted versions of the HRF in its columns. Multiplying it with
a signal corresponds to convolution of the HRF with the signal.

Furthermore, Fc =
[

φ
(

x0
)

, . . . ,φ
(

xt
)]⊤

∈ R
t×p and B ∈ R

m×p

is the matrix of regression coefficients.
The R-CTD model (i) convolves the features with the

canonical hemodynamic response function, its temporal
derivative and its dispersion derivative (Friston et al., 1998), (ii)
concatenates these features and (iii) predicts the responses as a
linear combination of these features:

ŷt =

(

[HcFc,HctFc,HcdFc]B
⊤
)t

(4)

where Hct ∈ R
t×t is the Toeplitz matrix of the the temporal

derivative of the canonical HRF, Hcd ∈ R
t×t is the Toeplitz

matrix of the the dispersion derivative of the canonical HRF and
B ∈ R

m×3p is the matrix of regression coefficients.
The R-F model is a finite impulse response (FIR) model that

(i) lags the features for 3, 4, 5, and 6 s (Nishimoto et al., 2011),
(ii) concatenates these features and (iii) predicts the responses as
a linear combination of these features:

ŷt = FfB
⊤ (5)

where Ff =
[

φ
(

xt−3
)

,φ
(

xt−4
)

,φ
(

xt−5
)

,φ
(

xt−6
)]⊤

∈ R
t×4p

and B ∈ R
m×4p is the matrix of regression coefficients.

We used the validation set for model selection (a
regularization parameter per voxel) and the training set for
model estimation (a row of B per voxel). Regularization
parameters were selected as explained in Güçlü and van Gerven
(2014). The rows of B were estimated by analytically minimizing
the L2-penalized least squares loss function. In related Bayesian
models, this corresponds to applying shrinkage priors to the
parameters (weights) of our model.

2.4.2. Recurrent Neural Network Family
The response models in the RNN family are two-layer recurrent
neural network models. They use their internal memories for
nonlinearly processing arbitrary feature sequences and predicting
feature-evoked responses as a linear combination of their second-
layer hidden states:

ŷt = ht2W
⊤ (6)

where ht2 represents the hidden states in the second layer, andW

are the weights. The RNN models differ in the type and number
of artificial neurons.

The L-10, L-50, and L-100 models are two-layer recurrent
neural networks that have 10, 50, and 100 long short-term
memory (LSTM) units (Hochreiter and Schmidhuber, 1997) in
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their hidden layers, respectively. Each LSTM unit has a cell state
that acts as its internal memory by storing information from
previous time points. The contents of the cell state are modulated
by the gates of the unit and in turn modulate its outputs. As a
result, the output of the unit is not only controlled by the present
stimulus alone, but also by the stimulus history. The gates are
implemented as multiplicative sigmoid functions of the inputs of
the unit at the current time point and the outputs of the unit at
the previous time point. That is, the gates produce values between
zero and one, which are multiplied by (a function of) the cell
state to determine the amount of information to store, forget or
retrieve at each time point. The first-layer hidden states of an
LSTM unit are defined as follows:

ht = ot ⊙ tanh
(

ct
)

(7)

ot = σ
(

Uoh
t−1 +Woφ

(

xt
)

+ bo
)

(8)

where ⊙ denotes elementwise multiplication, ct is the cell state,
and ot are the output gate activities. The cell state maintains
information about the previous time points. The output gate
controls what information will be retrieved from the cell state.
The cell state of an LSTM unit is defined as:

ct = ft ⊙ ct−1 + it ⊙ c̄t (9)

ft = σ
(

Uf h
t−1 +Wf φ

(

xt
)

+ bf
)

(10)

it = σ
(

Uih
t−1 +Wiφ

(

xt
)

+ bi
)

(11)

c̄t = σ
(

Uch
t−1 +Wcφ

(

xt
)

+ bc
)

(12)

where ft are the forget gate activities, it are the input gate
activities, and c̄t is an auxiliary variable. Forget gates control what
old information will be discarded from the cell states. Input gates
control what new information will be stored in the cell states.
Furthermore,Us andWs are the weights and bs are the biases that
determine the behavior of the gates (i.e., the learnable parameters
of the model).

The G-10, G-50, and G-100 models are two-layer recurrent
neural networks that have 10, 50, and 100 gated recurrent units
(GRU) (Cho et al., 2014) in the their hidden layers, respectively.
The GRU units are simpler alternatives to the LSTM units. They
combine hidden states with cell states and input gates with forget
gates. The first-layer hidden states of a GRU unit is defined as
follows:

ht =
(

1− zt
)

⊙ ht−1 + zt ⊙ h̄t (13)

zt = σ
(

Uzh
t−1 +Wzφ

(

xt
)

+ bz
)

(14)

rt = σ
(

Urh
t−1 +Wrφ

(

xt
)

+ br
)

(15)

h̄t = tanh
(

Uh

(

rt ⊙ ht−1
)

+Whφ
(

xt
)

+ bh
)

(16)

where zt are update gate activities, rt are reset gate activities and
h̄t is an auxiliary variable. Like the gates in LSTM units, those in
GRU units control the information flow between the time points.
As before, Us and Ws are the weights and bs are the biases that
determine the behavior of the gates (i.e., the learnable parameters
of the model).

The second-layer hidden states are defined similarly to the
first-layer hidden states except for replacing the input features
with the first-layer hidden states. For each previously identified
brain area of each subject, a separate model was trained. That
is, the voxels in a given brain area of a given subject shared
the same recurrent layers but had different weights for linearly
transforming the hidden states of the second recurrent layer to
the response predictions. We used truncated backpropagation
through time in conjunction with the optimization method
Adam (Kingma and Ba, 2014) to train the models on the
training set by iteratively minimizing the mean squared error loss
function. Dropout (Hinton et al., 2012) was used to regularize the
hidden layers. The epoch in which the validation performance
was the highest was taken as the best model. The Chainer
framework (http://chainer.org/) was used to implement the
models.

2.5. HRF Estimation
Voxel-specific HRFs were estimated by stimulating the RNN
model with an impulse. Let x−t , . . . , x0, . . . , xt be an impulse
such that x is a vector of zeros at times other than time 0
and a vector of ones at time 0. The period of the impulse
before time 0 is used to stabilize the baseline of the impulse
response. First, the response of the model to the impulse is
simulated:

[

H∗
r

]t

−t
= gr

(

x−t , . . . , x0, . . . , xt
)

(17)

where
[

H∗
r

]t

−t
=

(

H∗−t
r , . . . ,H∗0

r , . . . ,H∗t
r

)

. Then, the baseline of
the impulse response before time 0 is subtracted from itself:

[

H∗
r

]t

−t
=

[

H∗
r

]t

−t
−H∗−1

r . (18)

Next, the impulse response is divided by its maximum:

[

H∗
r

]t

−t
=

[

H∗
r

]t

−t
/max

[

H∗
r

]t

−t
. (19)

Finally, the period of the impulse response before time 0 is
discarded, and the remaining period of the impulse response is
taken as the HRF of the voxels:

[Hr]
t
0 =

[

H∗
r

]t

0
. (20)

The time when the HRF is at its maximum was taken as the
delay of the response, and the time after the delay of the response
when the HRF was at its minimum was taken as the delay of
undershoot.

2.6. Performance Assessment
The performance of a model for a voxel was defined as the cross-
validated Pearson’s product-moment correlation coefficient
between the observed and predicted responses of the voxel (r)1.
Its performance for a group of voxels was defined as the median
of its performance over the voxels in the group (r̃). The data of all

1The cross-validated correlation coefficient automatically penalizes for model

complexity and therefore can be used as a proxy for model evidence.
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subjects were concatenated prior to analyzing the performance of
the models.

In order to make sure that the differences in the performance
of a model in different areas are not caused by the differences
in the signal-to-noise ratios of the areas, the performance of
the model in an area was corrected for the median of the
noise ceilings of the voxels in the area (r̃∗) (Kay et al., 2013).
Briefly, we performed Monte Carlo simulations in which the
correlation coefficient between a signal and a noisy signal is
estimated. In each simulation, both the signal and the noise
were drawn from a Gaussian distribution. The noisy signal
was taken to be the summation of the signal sample and
the noise sample. The parameters of the signal and the noise
distributions were estimated from the 10 repeated measurements
of the responses to the same stimuli. The noise distribution
was assumed to be zero mean, and its variance was taken
to be the variance of the standard errors of the data. The
mean and the variance of the signal distribution were given
as the mean of the data, and the difference between the
variance of the data and the noise distribution, respectively.
The medians of the correlation coefficients that were estimated
in the simulations were taken to be the noise ceilings of
the voxels, indicating the maximum performance that can be
expected from the perfect model due to the noise in the
data.

Permutation tests were used for comparing the performance
of a model against chance level. First, data were randomly
permuted over time for 200 times. Then, a separate model was
trained and tested for each of the 200 permutations. Finally, the
p-value was taken to be the fraction of the 200 permutations
whose performance was greater than the actual performance. The
performance was considered significant at α = 0.05 if the p-value
was less than 0.05 (Bonferroni corrected for number of areas).

Bootstrapping was used for comparing the performance of
two models over voxels in a ROI (i.e., all voxels or voxels
in an area). For 10,000 repetitions, bootstrap samples (i.e.,
voxels) were drawn from the ROI with replacement, and the
performance difference between the models over these voxels
were estimated. The performance difference was considered
significant at α = 0.05 if the 95% confidence interval of the
sampled statistic did not cover zero (Bonferroni corrected for
number of models).

3. RESULTS

3.1. Comparison of Response Models
We evaluated the response models by comparing the
performance of the response models in the (recurrent)
RNN family and (feed-forward) ridge regression family in
combination with the (high-level) W2V model and the (low-
level) GIST model. Using two feature models of different levels
ruled out any potential biases in the performance difference of the
response models that can be caused by the feature models. Recall
that the models in the RNN family (G/L-10/50/100 models)
differed in the type and number of artificial neurons, whereas the
models in the ridge regression family (R-C/R-CTD/R-F models)
differed in how they account for the hemodynamic delay.

Once the best response models among the RNN family
and the ridge regression family were identified, we first
compared their performance in detail. Particular attention was
paid to the voxels where the performance of the models
differed by more than an arbitrary threshold of r = 0.1.
We then compared the performance of the best response
model among the RNN family over the areas along the visual
pathway.

3.1.1. Comparison of the Response Models in

Combination with the Semantic Model
Figure 2 compares the performance of all response models
in combination with the W2V model. The performance
of the models in the RNN family that had 50 or 100
artificial neurons was always significantly higher than that
of all models in the ridge regression family (p ≤ 0.05,
bootstrapping). However, the performance of the models in
the same family was not always significantly different from
each other. The performance of the G-100 model was the
highest among the RNN family (r̃ = 0.16), and that of the
R-C model was the highest among the ridge regression family
(r̃ = 0.12).

The performance of the G-100 model and the R-C model
differed from each other by more than the chosen threshold of
r = 0.1 in 30% of the voxels. The performance of the G-100
model was higher in 78% of these voxels (1r̃ = 0.17), and that of
the R-Cmodel was higher in 22% of these voxels (1r̃ = 0.14).

Figure 3 compares the performance of the G-100 model in
combination with the W2Vmodel over the areas along the visual
stream. While the performance of the model was significantly
higher than chance throughout the areas (p ≤ 0.05, permutation
test), it was particularly high in downstream areas. For example,
it was the highest in TOS (r̃∗ = 0.55), OFA (r̃∗ = 0.38) and EBA
(r̃∗ = 0.35), and the lowest in pSTS (r̃∗ = 0.14), IPS (r̃∗ = 0.20)
and V1 (r̃∗ = 0.24).

3.1.2. Comparison of the Response Models in

Combination with the Low-Level Feature Model
Figure 4 compares the performance of the all response models in
combination with the GISTmodel. The trends that were observed
in this figure were similar to those that were observed in Figure 2.
TheG-100model was the best among the RNN family (r̃ = 0.18),
and theR-Cmodel was the best among the ridge regression family
(r̃ = 0.14).

The G-100 model and the R-C differed from each other by
more than the threshold of r = 0.1 in 27% of the voxels. The
G-100model was better in 66% of these voxels (1r̃ = 0.17). The
R-Cmodel was better in 34% of these voxels (1r̃ = 0.14).

Figure 5 compares the performance of the G-100 model in
combination with the GIST model over the areas along the
visual pathway. While the G-100 model performed significantly
better than chance throughout the areas (p ≤ 0.05, permutation
test), it performed particularly well in upstream visual areas. For
example, it performed the best in V1 (r̃∗ = 0.39), V2 (r̃∗ = 0.35)
and V3 (r̃∗ = 0.35), and the worst in TOS (r̃∗ = 0.13), IPS
(r̃∗ = 0.16) and pSTS (r̃∗ = 0.16).
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FIGURE 2 | Comparison of the response models in combination with the W2V model. (A) Median performance of response models in RNN (G-X and L-X ) and

ridge regression (R-X ) families over all voxels. Error bars indicate 95% confidence intervals (bootstrapping). Asterisks indicate significant performance difference. All of

the individual bars depict significantly above chance-level performance (p < 0.05, permutation test). (B) Performance of best response models in RNN (G-100 model)

and ridge regression (R-C model) families over individual voxels. Points indicate voxels. Gray points indicate voxels where the performance difference is less than

r = 0.1. Lines indicate (median) performance over all voxels.

FIGURE 3 | Comparison of the G-100 model in combination with the W2V model in different areas. (A) Median noise ceiling controlled performance over all

voxels in different areas. Error bars indicate 95% confidence intervals (bootstrapping). All of the individual bars depict significantly above chance-level performance

(p < 0.05, permutation test). (B) Projection of performance to cortical surfaces of S3.

3.2. Comparison of Feature Models
Once the efficacy of the proposed RNN models was positively
assessed, we performed a validation experiment in which we
assessed the extent to which these models can replicate the earlier
findings on the low-level and high-level subdivision of the visual
cortex. This was accomplished by identifying the voxels that
prefer semantic representations vs. low-level representations.
Concretely, we compared the performance of the W2V model

and the GIST model in combination with the G-100 model
(Figure 6).

The performance of the models was significantly different
in all areas along the visual stream except for pSTS and V3A
(p ≤ 0.05, bootstrapping). This difference was in favor of
semantic representations in downstream areas and low-level
representations in upstream areas. The largest difference in
favor of semantic representations was in TOS (1r̃ = 0.11),
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FIGURE 4 | Comparison of the response models in combination with the GIST model. (A) Median performance of response models in RNN (G-X and L-X ) and

ridge regression (R-X ) families over all voxels. Error bars indicate 95% confidence intervals (bootstrapping). Asterisks indicate significant performance difference. All of

the individual bars depict significantly above chance-level performance (p < 0.05, permutation test). (B) Performance of best response models in RNN (G-100 model)

and ridge regression (R-C model) families over individual voxels. Points indicate voxels. Gray points indicate voxels where the performance difference is less than

r = 0.1. Lines indicate median performance over all voxels.

FIGURE 5 | Comparison of the G-100 model in combination with the GIST model in different areas. (A) Median noise ceiling controlled performance over all

voxels in different areas. Error bars indicate 95% confidence intervals (bootstrapping). All of the individual bars depict significantly above chance-level performance

(p < 0.05, permutation test). (B) Projection of performance to cortical surfaces of S3.

OFA (1r̃ = 0.08) and MT+ (1r̃ = 0.04), and low-level
representations was in V1 (1r̃ = 0.10), V2 (1r̃ = 0.07) and
V3 (1r̃ = 0.05).

Thirty-nine percent of the voxels preferred either
representation by more than the arbitrary threshold of
r = 0.1. Thirty-four percent of these voxels preferred semantic
representations (1r̃ = 0.16), and 66% percent of these voxels
preferred low-level representations (1r̃ = 0.18).

These results are in line with a large number of earlier work
that showed similar dissociations between the representations of

the upstream and downstream visual areas (Mishkin et al., 1983;
Naselaris et al., 2009; DiCarlo et al., 2012; Güçlü and van Gerven,
2015a).

3.3. Analysis of Internal Representations
Next, to gain insight into the temporal dependencies captured
by the G-100 model, we analyzed its internal representations
(Figure 7).

First, we investigated how the hidden states of the
RNN depend on its inputs and output. We constructed
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FIGURE 6 | Comparison of the feature models in combination with the G-100 model. (A) Median performance difference over all voxels in different areas.

Asterisks indicate significant performance difference. Error bars indicate 95% confidence intervals (bootstrapping). (B) Performance over individual voxels. Points

indicate voxels. Gray points indicate voxels where performance difference is less than r = 0.1. Lines indicate median performance over all voxels. (C) Projection of

performance difference to cortical surfaces of S3.

representational dissimilarity matrices (RDMs) of the stimulus
sequence in the test set at different stages of the processing
pipeline and averaged them over subjects (Kriegeskorte et al.,
2008). Per feature model, this resulted in one RDM for the
features, two RDMs for the layer 1 and layer 2 hidden states and
one RDM for the predicted responses. We correlated the upper
triangular parts of the RDMs with one another, which resulted
in a value indicating how much the hidden states of the RNN
were modulated by its inputs and how much they modulated
its outputs at a given time point. We found a gradual increase
in correlations of the RDMs. That is, the RDMs at each stage
were more correlated with those at the next stage compared
to those at the previous stages. Importantly, the hidden state
RDMs were highly correlated with the predicted response RDMs
(r = 0.61 and r = 0.93 for layers 1 and 2, respectively) but less
so with the feature RDMs (r = 0.39 and r = 0.21 for layers
1 and 2, respectively). This means that while the hidden states
of the RNN modulated its outputs at a given time point, they

were not modulated by its inputs to the same extent at the same
time point. This suggests that a substantial part of the output
at a given time-point is not directly related to the input at the
same time-point, but instead to previous time-points. That is,
the RNN learned to use the input history to make its predictions
as expected.

Then, we investigated which time points in the input history
were used by the RNN to make its predictions. We cross-
correlated each hidden state with each stimulus feature, and
averaged the cross-correlations over the features, which resulted
in a value indicating how much a hidden state is selective to
different time points in the input history. The time point at which
this value was at its maximumwas taken as the optimal lag of that
hidden unit. We found that different hidden units had different
optimal lags. The majority of the hidden units had optimal lags
up to -20 s, which are likely capturing the hemodynamic factors.
However, there was a non-negligible number of hidden units with
optimal lags beyond this period, which might be capturing other
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FIGURE 7 | Internal representations of the G-100 model. (A) Correlation between representational dissimilarity matrices of layer 1 and layer 2 hidden states with

each other as well as with those of features and predicted responses. (B) Temporal selectivity of layer 1 and layer 2 hidden units. Points indicate lags at which

cross-correlations between hidden states and features are highest.

cognitive/neuronal factors or factors related to stimulus/feature
statistics. It should be noted that not all hidden units, in particular
those with extensive lags, can be attributed to any of these factors,
and their behavior might be induced by model definition or
estimation. Furthermore, the optimal lags of the hidden units in
the W2V based model were on average significantly higher than
those in the GIST based model (µ = −9.6 s vs. µ = −4.9 s,
p < 0.05, two-sample t-test), which might reflect the differences
in the statistics of the features that the models are based on. That
is, high-level semantic features tend to be more persistent than
the low-level structural features across the input sequence. For
example, over a given video sequence, distribution of objects in
a scene change relatively slowly compared to that of the edges in
the scene.

3.4. Estimation of Voxel-Specific HRFs
Traditionally, models have used analytically derived (Friston
et al., 1998) or statistically estimated (Dale, 1999; Glover, 1999)
HRFs such as the linear models considered here. Estimation
of voxel-specific HRFs is an important problem since using
the same HRF for all voxels ignores the variability of the
hemodynamic response across the brain, which might adversely
affect themodel performance. Recent developments have focused
on the derivation and estimation of more accurate HRFs. For
example, Aquino et al. (2014) has shown that HRFs can be
analytically derived from physiology, and Pedregosa et al. (2015)
has shown that HRFs can be efficiently estimated from data.
Note that, while the methods for statistically estimating HRFs
are particularly suited for use in block designs and event related
designs, they are less straightforward to use in continuous designs
such as the one considered here.

As demonstrated in the previous subsection, one important
advantage of the response models in the RNN family is that they
can capture certain temporal dependencies in the data, which

might correspond to the HRFs of voxels. Here, we evaluate
the voxel-specific HRFs that are obtained by stimulating the
G-100 model with an impulse. We used both feature models in
combination with the G-100 model to estimate the HRFs of the
voxels where the performance of any model combination was
significantly higher than chance (51% of the voxels, p ≤ 0.05,
Student’s t-test, Bonferroni correction) (Figure 8). TheW2V and
G-100models were used to estimate the HRFs of the voxels where
their performance was higher than that of the GIST and G-100
models, and vice versa.

It was found that the global shape of the estimated HRFs
was similar to that of the canonical HRF. However, there was a
considerable spread in the estimated delays of responses and the
delays of undershoots (median delay of response= 6.57± 0.02 s,
median delay of undershoot = 16.95 ± 0.04 s), with the delays
of responses being significantly correlated with the delays of
undershoots (Pearson’s r = 0.45, p ≤ 0.05, Student’s t-test).

These results demonstrate that RNNs can not only learn
(stimulus) feature-response relationships but also can estimate
HRFs of voxels, which in turn demonstrate that the nonlinear
temporal dynamics that are learned by the RNNs capture
biologically relevant temporal dependencies. Furthermore, the
variability in the estimated voxel-specific HRFs revealed by
the recurrent models might provide a partial explanation of
the performance difference between the recurrent and ridge
regression models since the ridge regression models use fixed
or restricted HRFs, making it difficult for them to take such
variability into account.

4. DISCUSSION

Understanding how the human brain responds to its
environment is a key objective in neuroscience. This study
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FIGURE 8 | Estimation of the hemodynamic response functions. The G-100 model was stimulated with an impulse. The impulse response was processed by

normalizing its baseline and scale. The result was taken as the HRF. (A) Median hemodynamic response functions of all voxels in different areas. Error bands indicate

68% confidence intervals (bootstrapping). Different colors indicate different areas. Dashed line indicates canonical hemodynamic response function. (B) Delays of

responses and undershoots of all voxels. Black lines indicate canonical delays.

has shown that recurrent neural networks are exquisitely capable
of capturing how brain responses are induced by sensory
stimulation, outperforming established approaches augmented
with ridge regression. This increased sensitivity has important
consequences for future studies in this area.

4.1. Testing Hypotheses about Brain
Function
Like any other encodingmodel, RNN based encodingmodels can
be used to test hypotheses about neural representations (Naselaris
et al., 2011). That is, they can be used to test whether a particular
feature model outperforms alternative feature models when it
comes to explaining observed data. As such, we have shown that
a low-level visual feature model explains responses in upstream
visual areas well, whereas a high-level semantic model explains
responses in downstream visual areas well, conforming to the
well established early and high-level subdivision of the visual
cortex (Mishkin et al., 1983; Naselaris et al., 2009; DiCarlo et al.,
2012; Güçlü and van Gerven, 2015a).

Furthermore, RNN-based encoding models can also be used
to test hypotheses about the temporal dependencies between
features and responses. For example, by constraining the
temporal memory capacities of the RNN units, one can identify
the optimal scale of the temporal dependencies that different
brain regions are selective to.

Here, we used RNNs as response models in an encoding
framework. That is, they were used to predict responses
to features that were extracted from stimuli with separate
feature models. However, use cases of RNNs are not limited
to this setting. For example, RNN models can be used as
feature models instead of response models in the encoding
framework. Like CNNs, RNNs are being used to solve various

problems in fields ranging from computer vision (Gregor
et al., 2015) to computational linguistics (Zaremba et al.,
2014). Internal representations of task-optimized CNNs were
shown to correspond to neural representations in different brain
regions (Kriegeskorte, 2015; Yamins and DiCarlo, 2016b). It
would be interesting to see if the internal representations of task-
based RNNs have similar correlates in the brain. For example, it
was recently shown that RNNs develop representations that are
reminiscent of their biological counterparts when they learn to
solve a spatial navigation task (Kanitscheider and Fiete, 2016).
Such representations may turn out to be predictive of brain
responses recorded during similar tasks.

4.2. Limitations of RNNs for Investigating
Neural Representations
RNNs can process arbitrary input sequences in theory. However,
they have an important limitation in practice. Like any
other contemporary neural network architecture, typical RNN
architectures have a very large number of free parameters.
Therefore, a very large amount of training data is required for
accurately estimating RNN models without overfitting. While
there are several methods to combat overfitting in RNNs like
different variants of dropout (Hinton et al., 2012; Zaremba et al.,
2014; Semeniuta et al., 2016), it is still an important issue to which
particular attention needs to be paid.

This can also be the reason why gated recurrent unit
architectures were shown to outperform LSTM architectures.
That is, the performance difference between the two types
of architectures is likely to be caused by difficulties in
model estimation in the current data regime rather than one
architecture being better suited to the problem at hand than the
other.
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This also means that RNN models will face difficulties when
trying to predict responses to very high-dimensional stimulus
features such as the internal representations of convolutional
neural networks which range from thousands to hundreds
of thousands dimensions. For such features, dimensionality
reduction techniques can be utilized for reducing the feature
dimensionality to a range that can be handled with RNNs in
scenarios with either insufficient computational resources or
training data.

Linear response models have been used with great success in
the past for gaining insights into neural representations. They
have been particularly useful since linear mappings make it easy
to interpret factors driving response predictions. One might
argue that the nonlinearities introduced by RNNs make the
interpretation harder compared to linear mappings. However,
the relative difficulty of interpretation is a direct consequence
of more accurate response predictions, which can be beneficial
in certain scenarios. For example, it was shown that systematic
nonlinearities that are not taken into account by linear mappings
can lead to less accurate response predictions and tuning
functions of V1 voxels (Vu et al., 2011). Furthermore, since
more accurate response predictions lead to higher statistical
power, the improved model fit afforded by RNNs might make
detection of more subtle effects possible. Moreover, when the goal
is to compare different feature models, such as the GIST and
W2V models used here, maximizing explained variance might
become the main criterion of interest. That is, linear models
might lead to misleading performance differences between the
encoding models in the cases where their assumptions about
the underlying temporal dynamics do not hold. In such cases,
it would be particularly important to fit the response models as
accurately as possible as to ensure that the observed performance
difference between two encoding models is driven by their
underlying feature representations and not suboptimal model
fits. Therefore, RNNs will be particularly useful in settings
where temporal dynamics are of primary interest. Finally,
combining the present work with recent developments on
understanding RNN representations (Karpathy et al., 2015)
is expected to improve the interpretations of factors driving
response predictions.

4.3. Capturing Temporal Dependencies
RNNs can use their internal memories to capture the temporal
dependencies in data. In the context of modeling the dynamics
of brain activity in response to naturalistic stimuli, these
dependencies can be caused by factors such as neurovascular
coupling or stimulus-induced cognitive processes. By providing
an RNN with an impulse on the input side, it was shown
that, effectively, the RNN learns to represent voxel-specific
hemodynamic responses. Importantly, the RNNs allowed us to
estimate these HRFs from data collected under a continuous
design. To the best of our knowledge this is the first time
it has been shown that this is possible in practice. By
analyzing the internal representations of an RNN, it was
also shown that the RNN learns to represent information
from stimulus features at past time points beyond the
range of neurovascular coupling. Hence, the predictions of

observed brain responses are likely induced by stimulus-
related, cognitive or neural factors on top of the hemodynamic
response.

4.4. Isolating Neural and Hemodynamic
Components
In the introduction, we motivated the use of RNNs as a generic
parameterization of any non-linear convolution of stimulus
features to hemodynamic responses. Crucially, this could cover
both neuronal and hemodynamic convolution. In other words,
our black box approach allows for a neuronal convolution of
stimulus feature input to produce a neuronal response that is
subsequently convolved by hemodynamic operators to produce
the observed outcome. This facility may explain the increased
cross-validation accuracy observed in our analyses (over and
above more restricted models of hemodynamic convolution).
In other words, the procedure detailed in this paper can
accommodate neuronal convolutions that may be precluded in
conventional models.

The cost of this flexibility is that we cannot separate the
neuronal and hemodynamic components of the convolution.
This follows from the fact that the RNN parameterization
does not make an explicit distinction between neuronal
and hemodynamic processes. To properly understand the
relative contribution of these formally distinct processes,
one would have to use a generative model approach with
biologically plausible prior constraints on the neuronal and
hemodynamic parts of the convolution. This is precisely
the objective of dynamic causal modeling that equips
a system of neuronal dynamics (and implicit recurrent
connectivity) with a hemodynamic model based upon
known biophysics (Friston et al., 2003). It would therefore
be interesting to examine the form of RNNs in relation
to existing dynamic causal models that have a similar
architecture.

4.5. Conclusions
We have shown for the first time that RNNs can be used to
predict how the human brain processes sensory information.
Whereas classical connectionist research has focused on the
use of RNNs as models of cognitive processing (Elman, 1993),
the present work has shown that RNNs can also be used
to probe the hemodynamic correlates of ongoing cognitive
processes induced by dynamically changing naturalistic
sensory stimuli. The ability of RNNs to learn about long-
range temporal dependencies provides the flexibility to
couple ongoing sensory stimuli that induce various cognitive
processes with delayed measurements of brain activity
that depend on such processes. This end-to-end training
approach can be applied to any neuroscientific experiment
in which sensory inputs are coupled to observed neural
responses.

4.6. Data Sharing
The data set that was used in this paper was originally published
in Nishimoto et al. (2011) and is available at Nishimoto et al.
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(2014). The code that was used in this paper is provided at http://
www.ccnlab.net/.
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