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Ĥacc
ep perturbation of acoustic phonons to the electronic Hamiltonian
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Ĥso operator of the spin-orbit interaction, in the pseudopotential
theory

i imaginary unit

Iα rate of spontaneous photon emission

Ini weight factors of a propagating electron wave function

k̂ operator of the electron wave vector

k wave vector

kB Boltzmann constant

ki component of the wave vector

ks reaction rate at the Si/SiO2 interface

K symmetry point of the zinc blend Brillouin zone

L length

Lm mean free path

L symmetry point of the zinc blend Brillouin zone

m mass

M Fröhlich coupling constant of LO phonons

M number of conducting transverse modes

m∗ effective mass

m0 electron rest mass (9.1095 ·10−28 g)

M
i f
q amplitude of a phonon-assisted transition between the elec-

tronic states i and f

N number of atoms in the crystal

n normal of the interface

NΩ number of unit cells



N1 number of oxidant molecules in the SiO2 unit volume

ne density of electrons

nh density of holes

nki
occupation number of photon mode ki

Nq Bose distribution function of phonons

nni number of neighbor atoms of atom i

p hydrostatic pressure

p̂ operator of the momentum

P electric polarization

P parameter of the k·p Hamiltonian

P± parameter of the k·p Hamiltonian

P0 k·p parameter of the conduction-valence band coupling

Pz parameter of the k·p Hamiltonian

q charge

q diffusive flux or phonon wave vector, depending on the context

Q parameter of the k·p Hamiltonian

r vector of the position in real space

R parameter of the k·p Hamiltonian

rcurv curvature radius

S parameter of the k·p Hamiltonian

Sel vector of the elastic strain

T temperature

t time

T stress vector

Td symmetry group associated with the zinc blende lattice

tox thickness of the oxide layer in thermal oxidation of Si



t i
ox thickness of the oxide layer at t = 0 in the Deal-Groove model

of thermal oxidation of Si

tQW quantum well thickness

trl thickness of the reaction layer in thermal oxidation of Si

T (E) transmission probability as a function of the electron energy

U strain energy

û field of atomic displacement

U symmetry point of the zinc blend Brillouin zone

V potential

v velocity

v material velocity, in the mass conservation problem of thermal
oxidation of Si

V volume

Vα(r) atomic pseudopotential

VΩ volume of the unit cell

VAs(AlAs) pseudopotential of an As atom in an AlAs lattice

VAs(GaAs) pseudopotential of an As atom in a GaAs lattice

VB bias voltage

V c activation volume of the stress-dependent oxide viscosity

vg group velocity

vn interface velocity, in the mass conservation problem of thermal
oxidation of Si

W width

Wf i transition rate between states i and f

W A
i1i2→ f1 f2

transition rate of the Auger process between the initial states i1,
i2 and the final states f1, f2

W symmetry point of the zinc blend Brillouin zone

X symmetry point of the zinc blend Brillouin zone

Z parameter of the k·p Hamiltonian





1 Introduction

The research of microelectronic materials is driven by the need to tailor and optimize the

electronic and optical properties of specific device applications. The recent progress in

microelectronic processing techniques has made it possible to fabricate artificial materi-

als which are dedicated and tailored directly for nanoelectronics and nanophotonics. [1]

The electronic structure, of these materials, is varied by imposing a man-made and atomic

level material composition. The materials are designed to achieve a confinement of elec-

trons to nanometer size foils or grains, often called quantum structures because of the

quantization of the electron energies. Artificial materials, based on quantum structures,

cannot be understood adequately using classical physics. They must be analyzed using

quantum mechanics since their material characteristics are based on features appearing

only in quantum mechanics. The analysis and interpretation of experiments on any quan-

tum mechanical system is very dependent on, not only the available theoretical models

but also on the numerical and computational tools. In this work I have developed compu-

tational models for the electronic structure, photonic recombination and carrier dynamics

of quantum confined charge carriers of artificial materials.

1.1 Quantum confinement to nanometer structures

A quantum confined electron is enclosed in a local potential energy minimum and its

kinetic motion is consequently restricted in one or several dimensions. All confined elec-

trons possess a quantized energy. However, this energy quantization becomes observable

only in small structures, where the size of the confinement potential approaches the so

called the exciton Bohr radius. Quantum confinement of electrons and holes can be the

result of a locally varying material composition, electric potential or strain field. Struc-

tures with quantum confined carriers are usually classified according to the degree of

confinement (see figure 1.1). In (1) a bulk semiconductor there is no carrier confinement

and the electrons and holes are allowed to spread out in the whole crystal. In (2) a quan-

tum well (QW) the charge carriers are restricted into a thin foil and in (3) a quantum
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wire (QWR) the charge carriers are restricted into or a wire. In (4) a quantum dot (QD)

structure the charge carriers are confined to a point-like grain and have consequently no

translational freedom.

Quantum electronic structure are often analyzed in terms of the density of states

(DOS), which describes the energy spectrum of the electrons and holes. Figure 1.1 depicts

the prominent transformation from the continuum of states, in a bulk crystal, to the set

of discrete electron levels of QDs. The DOS of a bulk semiconductor is proportional to

the square root of the electron energy. The DOS of QDs, on the other hand, consists of

sharp atomic-like peaks corresponding to discrete QD levels. The band gap energy also

increases with increasing degree of confinement as a result of an increasing ground-state

confinement energy.
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Figure 1.1: The density of states for a (a) bulk semiconductor, (b) quantum well, (c)
quantum wire, and (d) quantum dot.

The fine structure of the experimentally observable DOS is always somewhat soft-

ened by the finite lifetime of the electronic states. For instance the zero-width delta peaks

of the QD DOS become, as a consequence, Lorenzian peaks, with the width of a few

µeV. The QDs of an experimental sample are, furthermore, not all of the same size and

different sizes mean different eigenenergies. The peaks in the DOS are accordingly dis-

tributed around some average energies, corresponding to the average QD size. In many

applications, the active device material contains a large ensemble of quantum structures.
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Their combined DOS includes then a statistical broadening characterized by a Gaussian

distribution. The linewidth broadening of the statistical size distribution is called in-

homogeneous broadening in distinction to the lifetime broadening, called homogeneous

broadening.

In this work we have simulated the quantum confinement of charge carriers us-

ing a semiempirical multiband effective mass model. Despite the fact that our numeri-

cal approach is neither atomistic nor a first-principle model, it accounts for crystal band

structure properties, strain effects and piezoelectric fields as well as for the influence of

external electro-magnetic fields on a few nanometer large carrier systems.

1.2 Photoluminescence of quantum confined carriers

The energy spectrum of quantum confined electron states of compound semiconductor

QDs is commonly studied with photon absorption or emission measurements. The quanti-

zation of electron energies in QDs was also first verified by Ekimov and Onushenkov with

a photon absorption measurement on CdS nanocrystals. [2] More recently, several groups

have performed photoluminescence (PL) measurements on single QDs [3, 4] showing

very clearly the atom-like properties of QDs.

The photon emission spectrum serves as a finger print of the joint density of

states (JDOS) because of the optical selection rules, which follow from the laws of energy

and momentum conservation. Measured QD spectra are also influenced by the symme-

tries of the electron (hole) states and smoothed by homogeneous and inhomogeneous

linewidth broadening. The inhomogeneous broadening ranges typically from a few to a

few hundreds of µeV, [5] whereas the homogenous broadening is typically a few tens of

meV. [6].

In this work we have theoretically predicted photonic spectra of carrier populations

confined to various quantum structures. The theoretical PL follows from a quantization

of the electromagnetic field and its electric-dipole interaction with electrons, allowing

simulations of both continuous wave (CW) and time-resolved PL effects.
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1.3 Ballistic transport in electron waveguides

Ballistic transport of electrons (ballistic conductance) means that the conductance elec-

trons move through a conductor without any inelastic scattering. Therefore, the electrons

do not dissipate any energy within the conductor and, as a consequence, they do not heat

the conductor either. This means a nearly lossless transport of electrons which is typically

observed at low temperatures in very pure and small (length < 500 nm) conductors.

The conductance of a ballistic conductor is a staircase like function (quantized)

of the electron Fermi energy. It is, in contrast to the ohmic conductance of classical

conductors, independent of the length of the conductor (up to some upper length). The

ohmic conductance G of a classical conductor is proportional to its width W and inversely

proportional to its length L: G = σW/L, where the conductivity σ is a material depen-

dent constant. This is, however, valid only for large conductors, where the conductance

electrons are repeatedly scattered by crystal imperfections and impurities. This scatter-

ing is characterized by the mean free path Lm, which is the average traveled distance by

an electron, between two scattering processes. The ohmic conductance brakes down for

very small conductors at low temperatures, where most of the electrons can pass through

the conductor without any scattering. This occurs when the dimensions of the conductor

become smaller than one or several length scales characterizing the electron transport.

These are the de Broglie wavelength, the mean free path, the phase-relaxation length and

the screening length. [7] The electrons in the conductor are, in this case, well described

by standing waves or wave packets, propagating through a waveguide. Ballistic con-

ductors are therefore also called electron waveguides. Figure 1.2 shows one of the first

experimental observations of quantized conductance . [8]

We have studied using theoretical models and simulations the possibility to

fabricate ballistic electron waveguides using standard Si complementary metal-oxide-

semiconductor (CMOS) processing in combination with electron beam (EB) lithogra-

phy. These analyzes have been motivated by the need of a smooth integration of ballistic

transistors in commercial Si circuits. We have focused on understanding the operational

difficulties related to oxidation-induced strain and oxide charges. For this purpose we
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Figure 1.2: Quantized conductance of a ballistic conductor (left panel). A negative
voltage on a pair of metallic gates (right panel) was used to deplete and narrow the con-
striction progressively. Reproduced with permission from B. J. van Wees et al. Phys. Rev.

Lett., 60, 848 (1988).

have developed a semiempirical model for the computation of oxidation-induced strain in

thermally oxidized electron waveguides. A thorough understanding and good predictabil-

ity of the oxidation-induced strain is very important since it influences easily the electron

potential of a waveguide and might even ruin the ballistic operation of the transistor.

1.4 Si versus III-V compound semiconductors

Si and III-V compound semiconductors are different in many aspects, not only when it

comes to the physical properties but also the available processing techniques are very

different. Si has for decades been the most common semiconductor in the electronic

integrated circuit (IC) technology, whereas, III-V compound semiconductors are common

in optical and high-frequency electronic applications ( f > 10 GHz).

The fabrication techniques of quantum structures are commonly divided into top-

down and bottom-up approaches. The former can be considered as the conventional,

where the structures are created using lithography, etching etc. This has also been used

successfully in the fabrication of Si quantum structures. [9–11] The bottom-up approach,

on the other hand, is based on self-organized growth like molecular beam epitaxy (MBE)

and metal organic vapor phase epitaxy (MOVPE). The bottom-up approach has been used
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very successfully in the so called Stranski-Krastanow type growth of III-V compound

semiconductor QDs. [12, 13]

The Si based CMOS technology has reached its dominating position much because

of the excellent insulator SiO2 and the well established batch processing techniques. The

well isolating Si/SiO2 interface enables even room temperature operation of single elec-

tron transistors (SETs). [14, 15] However, it has been found that the Si/SiO2 interface is

ill-suited for electron waveguide applications, [16] because of random oxide charges and

the thermal oxidation-induced strain. The III-V compound semiconductors, on the other

hand, offer excellent possibilities to tailor the energy band structure in geometries practi-

cally free of defects. Figure 1.3 shows some of the possible alloying conditions that the

III-V compound semiconductors offer.

G a P
A l A s

A l S b

G a S b

I n S b
I n A s

I n P

G a A s

2 . 5

2 . 0

1 . 5

1 . 0

0 . 5

0 . 0
5 . 6 5 . 8 6 . 0 6 . 2 6 . 4

G e

S i

B
an

d 
G
ap

 E
ne

rg
y 
(e
V
)

L a t t i c e  C o n s t a n t  ( Å )

1 . 0

2 . 0

3 . 0

0 . 5

W
av

el
en

gt
h 
( m
m
)

6 . 0

D i r e c t  g a p

I n d i r e c t  g a p

Figure 1.3: Band gap energy as a function of the lattice constant of selected III-V
compound semiconductors. Solid and dahsed lines correspond to direct and indirect band
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Microelectronics and integrated circuits are very sensitive to embedded strain as it can

affect the electronic properties and the long-term durability of the device. The strain

is, however, not necessarily a flaw of the device. It can also be intentional and used

to improve the operation characteristics like e.g. in strained metal-oxide-semiconductor

field effect transistors (MOSFETs) [17] and QW lasers. [18] The operation of strain-

induced quantum dots (SIQDs) [19] is even entirely based on the utilization of an internal

strain field, induced by the integration of lattice mismatched materials. It is, therefore, of

great importance to be able to accurately predict the effects of strain in nanotechnology.

In this chapter we will describe a macroscopic strain model (continuum elasticity) for

the simulation of strain in nanometers-size semiconductor structures and compare it with

atomistic elasticity.

2.1 Continuum elasticity

Continuum elasticity describes a semiconductor crystal as an indefinitely divisible mate-

rial, neglecting all atomic level information. [20, 21] It follows that continuum elasticity

(CE) should be used with care for very small geometries. [22–24] The power of CE comes

from the possibility to determine all CE model parameters, by very accurate macroscopic

experiments (see table 2.1) and from the possibility to also model piezoelectric coupling.

The general stress-strain relationship is given by Hooke’s law: [20]

T = CSel, (2.1)

where T is the stress vector, C is the elasticity matrix and Sel is the elastic strain given by

Sel
i = εi−εth

i , (i ∈ [xx, yy, zz, xy, yz, xz]), where ε j is the total strain. The thermal strain

is in turn given by εth = ∆T [αx αy αz 0 0 0]T , where ∆T is the temperature change with

respect to the reference temperature and αi are the coefficients of thermal expansion. In

our case the temperature change ∆T was only used as a strain source to include the strain

of the lattice mismatched heterostructures. This was done by expanding or shrinking all
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Table 2.1: Elastic constants from reference [25] unless otherwise noted. The elastic
constants c11, c12 and c44 are given in units of 1011 kgm−1 s−2 and the piezoelectric
constant is given in Cm−2.

Parameter a (Å) c11 c12 c44 e14

GaAs 5.6534 1.190 0.538 0.595 −0.160
InAs 6.0584 0.833 0.453 0.396 −0.045
AlAs 5.6620 1.202 0.570 0.589 −0.225 [26]
InP 5.8687 1.011 0.561 0.456 −0.040

materials by an amount equal to the relative lattice mismatch with respect to the substrate.

For example in the case of InP (lattice constant aInP) grown on GaAs (lattice constant

aGaAs), we used αx = αy = αz = (aGaAs−aInP)/aInP and ∆T = 1.

The lattice symmetry of crystalline materials simplifies equation (2.1) considerably

and in the case of a cubic lattice the stiffness matrix takes the following form

C =





























c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44





























. (2.2)

The strain of the crystal is calculated by minimizing the total strain energy, given by

U =
1
2 ∑

i, j

σiCi jσ j. (2.3)

2.1.1 Piezoelectric coupling in III-V semiconductors

The piezoelectric coupling in III-V compound semiconductors is due to the ionic bonds

between the atoms of type A (cation) and type B (anion). A displacement of atoms from

their equilibrium positions in the crystal gives rise to local atomic dipoles and an electric
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field. This electric field gives rise to a force opposing the displacement. The electric

interactions of the ionic crystal couples therefore the elastic strain with an internal electric

field. The piezoelectric coupling can be included in equation (2.1). The vectors of the

stress T and the electric flux D are in this case related to the strain S and electric field E

vectors as [27]




T

D



 =





C e

eT −ε









S

−E



 . (2.4)

The symmetry of the crystal enters equation (2.4) through the elasticity matrix C and the

piezoelectric matrix e. The piezoelectric matrix, for zinc blende lattice, is given by

e =











0 0 0 0 e14 0

0 0 0 0 0 e14

0 0 0 e14 0 0











T

, (2.5)

where e14 is the piezoelectric constant. The dielectric properties of the materials are

described by the dielectric matrix ε = ε0εr 13×3, where 1 denotes the identity matrix.

The piezoelectric coupling, in lattice mismatched semiconductor heterostructures,

is in general weak. The diagonal strain components εii are typically about 1− 4% and

the effect of the piezoelectric coupling is about 1% of this value. As a result one can

approximate the piezoelectric polarization directly from the strain: off-diagonal strains

induce an electric polarization given by

Pi = e14ε jk, (2.6)

where {i jk} are cyclic permutations of {xyz}. Note, however, the definition of the strain:

εi j ≡ ∂ui

∂r j
+

∂u j

∂ri
, where ui is the displacement along the r j axis. If there are no external

charges, the electric field reduces to

Ei =
e14ε jk

ε0εr

. (2.7)

The direction of the polarization depends on the lattice orientation and sign of the
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piezoelectric constant. The common III-V semiconductors have a negative piezoelectric

constant, whereas II-VI semiconductors have a positive piezoelectric constant. As an

example, we consider a strained-layer (111) QW superlattice of III-V compound semi-

conductors: The semiconductor with the larger lattice constant (and with εii < 0), will

have the polarization vector pointing from the A (cation) to the B (anion) face and the

semiconductor with the smaller lattice constant (i.e. εii > 0) will have the polarization

pointing from the B to the A face. [28]

2.2 Atomistic elasticity

In atomistic elasticity (AE) the strain is calculated from the atomic displacement field.

The atomic structure of the strained crystal is obtained by a minimization of the crystal

energy using a material-specific inter-atomic potential. Next we will briefly describe AE

calculations, based on the Keating valence force field (VFF) potential, which we used as

a reference model of AE.

2.2.1 The valence force field potential

The Keating VFF potential [29, 30] expresses the energy of the crystal through a two-

body part, describing bond-stretching, and a three-body part, describing bond-bending.

The total crystal energy EVFF is obtained by summing over all N atoms and their nni

nearest neighbors,

EVFF =
N

∑
i

nni

∑
j

3
8

α
(1)
i j ∆d2

i j +
N

∑
i

nni

∑
k> j

3βi j

8d0
i jd

0
ik

[

(r j − ri) · (rk − ri)− cos(ϑ0
jik)d

0
i jd

0
ik

]2
, (2.8)

where ∆di j = [(ri − r j)
2 − (d0

i j)
2]/d0

i j, with ri being the actual coordinate of atom i, ϑ0
jik

is the equilibrium bond angle j − i− k at atom i and d0
i j is the equilibrium bond length

between atoms i and j. The parameters α and β of equation (2.8) are calculated by fitting

the potential to the macroscopic elastic constants of each material. Ternary alloys of

type AxB1−xC can be approximated by effective binary alloys with only AB and C atoms,

forming an ideal zinc blende structure. Potential parameters for this effective material are
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obtained by interpolation, according to Vegard’s law. [26]

Williamson et al. have further generalized the VFF potential in order to obtain

a better fitting to the macroscopic elasticity of zinc blende semiconductors. [31] They

included a higher order bond-stretching term and an additional bond-stretching/bond-

bending interaction term. The equilibrium strained structure is obtained by minimizing

the total potential energy using e.g. the conjugate gradient (CG) method. [32] The local

strain, at each atom, is then calculated from the relative difference between the deformed

(simulated) atomic bonds and those of a strain-free crystal.

2.3 Atomistic versus continuum elasticity

The AE and CE models are both fitted to macroscopic elasticity constants of bulk ma-

terials, however, only the atomistic model can describe anharmonic effects and capture

the correct point-group symmetry of the atomic lattice (C2v for zinc blende). [24] The

CE is, on the contrary, computationally more efficient for large models and capable of

also describing the electro-elastic coupling of piezoelectric materials. Asymptotically,

the differences between the two models increase with decreasing feature size. The appli-

cability of the two models, for overgrown InAs QDs, has been studied by Pryor et al.. [24]

The results of AE and CE were very different close to the InAs/GaAs material interface.

However, the models predict very similar strain inside the InAs QD itself. The energy

difference in the simulated conduction band edge was about 20 meV in the QD.

We have in publication III studied the strain of corrugated QWs using both AE and

CE. Figure 2.1 shows the εxx (a) along a line through an apex of the corrugation and (b)

in the whole structure. We found that the two strain models yield in general very similar

results, although, there are large differences at the sharp apex of the interface corrugation.

We note also that, the VFF potential cannot exactly reproduce the macroscopic elastic

properties of zinc blende lattices, because of an unambiguous parameter fitting. This

gives consequently rise to somewhat different elastic properties on the atomic scale as

well.

Within both CE and AE, the strain tensor is undefined at a material interface and the
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strain is discontinuous here. The strain in the vicinity of the material interface is also con-

siderably different, in the two models, because of the very different numerical approaches.

The CE cannot describe the discrete nature of the an atomic interface and its validity has

to be judged for each case separately. The AE model, on the other hand, describes the ma-

terial interface atom-by-atom. However, the parameters of the VFF potential are typically

fitted to macroscopic properties. It depends, therefore, on the particular interface how

accurately the VFF potential describes the atomic bonding of two materials with different

macroscopic properties and different equilibrium bond lengths. It is thereby natural that

the models yield somewhat different results, however, the results of both models should

be judged very critically whenever the feature size is below 10 nm. For example, in the

case of 6.5 nm high pyramid QDs, the material interface effects will influence the whole

QD.
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Figure 2.1: Strain in a periodically corrugated Al0.2Ga0.8As/In0.3Ga0.7 QW. (a) εxx

using both AE (solid line) and CE (dashed line) along a path across the QW. (b) εxx,
calculated with CE, at a cross sectional (001) plane. The path, to which figure (a) corre-
sponds, is shown by a white dashed line in figure (b).



3 Electronic structure calculations

The electronic structure and the formation of bands in crystalline matter is a result of

the periodic arrangement of the atoms. The band line-up and symmetries derive from

the properties of the unit cell of the crystal. Ge and Si have diamond lattices whereas

III-V compound semiconductors, like GaAs, form a zinc blende lattice. Figure 3.1 shows

schematically the zinc blende and its first Brillouin zone with a selection of high symmetry

points (specified in Tab. 3.1). [26]. The zinc blende lattice consists of two interpenetrating

face centered cubic (FCC) sublattices, composed atoms of groups III and V (red and blue)

in the elementary table. The sublattices are displaced from one another by a/4 along the

[111] diagonal (where a is the lattice constant). Each site of each sublattice is thereby

tetrahedrally coordinated with sites from the other sublattice. That is, each atom is at the

center of a regular tetrahedron formed by four atoms of the opposite type. The diamond

lattice is obtained from the zinc blende lattice by setting all atoms equal.
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( b )

Figure 3.1: (a) The zinc blende lattice is composed of two interpenetrating FCC sublat-
tices (lattice constant a) of different atoms (red and blue). (b) The first Brillouin zone of
the FCC lattice with its main symmetry points.

In III-V binary compounds there are eight electrons per unit cell which contribute

to the inter-atomic chemical bonds. The same electrons are also the ones that contribute

to the electronic properties as the other electrons are tied to interior closed-shell con-
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Table 3.1: Points of high symmetry in the first Brillouin zone of the FCC lattice

Special pt. k coordinates Special pt. k coordinates
Γ (0, 0, 0) K (2π/a)(3/4, 3/4, 0)
L (2π/a)(1/2, 1/2, 1/2) U (2π/a)(1/4 , 1 , 1/4)
W (2π/a)(1/2, 1, 0) X (2π/a)(0, 1, 0)

figurations and are highly bound to the nuclei. The eight outermost electrons hybridize,

forming tetrahedral bonds between one atom (say Ga) and its four nearest neighbors (As).

The orbitals of every atom hybridize with every orbital of its neighboring atoms, giving

rise to one bonding and one anti-bonding level. These levels are broadened by the large

number of unit cells, giving rise to energy bands. The bonding s levels are always occu-

pied by two electrons, while the remaining six electrons fill the three bonding p levels.

The occupied bonding levels form the valence bands and the empty anti-bonding levels

form the conduction band. [33] Figure 3.2 shows the energy bands of bulk GaAs and Si.
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Figure 3.2: Band structure of (a) GaAs and (b) Si [34]. GaAs is a direct gap semicon-
ductor whereas Si is an indirect gap semiconductor, with its conduction band minimum
(shown with blue color) at (2π/a)(0.85, 0, 0) and valence band maximum (shown with
red color) at (0, 0, 0). The symmetry points of the k axis were defined in figure 3.1(b)
and table 3.1
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3.1 Electronic structure

The electron band dispersion of bulk semiconductors can be determined by the single-

particle Schrödinger equation of electrons in a periodic crystal potential:

[

p̂2

2m0
+V (r)+

h̄

4m2
0c2

(σ×V (r)) · p̂
]

ψn(r) = Enψ(r)n, (3.1)

where V (r) = V (r+∑i niai) is the crystal potential energy and ai is any of the three basis

vectors of the Bravais lattice. The third term of the Hamiltonian represents the spin-orbit

interaction and σ is the vector of the Pauli spin matrices. The periodicity of the potential

imposes periodicity and wave vector k dependence on the eigenstates. The solutions of

equation (3.1) can, therefore, be written using the Bloch ansatz [26]

ψnk(r) =
1√
V

eik·r|unk(r)〉, (3.2)

which is normalized over the crystal volume, provided that the periodic part

|unk〉 = |unk(r)〉 is normalized to one unit cell. Substituting equation (3.2) into equation

(3.1) gives the Schrödinger equation of the periodic Bloch functions

{

p̂2

2m0
+V (r)+

h̄

4m2
0c2

[σ×V (r)] · p̂+
h̄2k2

2m0
+

h̄k · p̂
m0

}

|unk〉 = Enk|unk〉. (3.3)

Bloch’s theorem [equation (3.2)] implies that the electrons move in an ideal crystal

without scattering. The exponential factor eik·r represents a plane wave (wave vector k),

which extends over the whole crystal. Any electron moving in the crystal can, thereafter,

be described as a wave packet of these plane waves. The group velocity vg (velocity of the

electron) of this kind of a wave packet is given by vg = ∇kω = ∇kEnk/h̄. [35] It follows

that the time derivative of the ith (i = x,y,z) component of the group velocity is given by

v̇
g
i =

1
h̄

d

dt
[∇kEnk]i =

1
h̄
∑

j

∂2Enk

∂ki∂k j
k̇ j. (3.4)

By relating this to the analogous classical Newton’s equation of motion v̇ = m−1F, where

F = h̄k̇ is the external force acting on the electron, one finds that the inverse of the effec-
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tive mass tensor of band n is given by

(

1
m∗

n

)

i j

=
1

h̄2

∂2Enk

∂ki∂k j
. (3.5)

3.1.1 Effective mass approximation

The lowest conduction band of a semiconductor is often nondegenerate (except for the

spin degeneracy). Equation (3.3) can in this case be approximated in the vicinity of the

band minimum (at k = k0) by

[

Ec(k0)+∑
i

h̄2 (k−k0)
2
i

2m∗
Ci

]

|uCk〉 = ECk|uCk〉, (3.6)

where 1/m∗
Ci ≡ (1/m∗

c)ii are the inverse effective masses in the orthogonal principal direc-

tions and Ec(k0) is the energy of the conduction band minimum at k = k0. This is called

the parabolic band or effective mass approximation (EMA). For direct gap semiconduc-

tors with cubic symmetry m∗
C1 = m∗

C2 = m∗
C3 and k0 = 0 (e.g. for GaAs m∗

C1 = 0.0635m0),

whereas e.g. the indirect gap semiconductors Ge and Si have m∗
C1 = m∗

C2 6= m∗
C3 and

k0 6= 0 (e.g. for Si m∗
C1 = 0.1905m0 and m∗

C3 = 0.9163m0).

3.2 The k·p model

In the multiband k·p model, [36–39] the k dependence of equation (3.3) is evaluated

by expanding the k-dependent atomic Bloch functions |unk〉 as linear combinations of Γ

point Bloch functions, |uν〉 ≡ |uν0〉:

|unk〉 =
8

∑
ν=1

Fnν(k)|uν〉, (3.7)

where Fnν(k) are the linear coefficients to be solved for. We will limit ourselves to dis-

cussing Γ point k·p models. It is assumed that a global description of the bulk band

dispersion, covering the whole Brillouin zone, is unnecessary for our applications. This

approach is in practise accurate only for k . 0.05 · 2π/a. The Hamiltonian of the coeffi-
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cients Fnν(k) is given by

∑
j

〈ui|Ĥ|u j〉Fn j(k) = EnkFni(k), ∀ i (3.8)

where Ĥ was defined in equation (3.3) and the matrix elements of Ĥ are evaluated by

integrating the Bloch functions over one unit cell.

For computational reasons one is often forced to truncate the summation in equa-

tion (3.7), including only a group of eight Bloch functions (group A). The effect of more

distant bands, on the bands of A, is taken into account by second order perturbation the-

ory. [37, 39] By a basis transformation one reduces the Hamiltonian coupling between

the states of A and more distant states (the remaining coupling is of third order in k or

higher). This technique effectively permits a direct diagonalisation of only a small group

of states, still taking into account the effect of distant states (/∈ A) on the states of A. The

Hamiltonian of equation (3.3) is in the new transformed basis given by [39]

〈ui|Ĥ|u j〉 =

[

E0
i +

h̄2k2

2m0

]

δi j +
h̄

m0
〈u0

i |Ĥ ′|u0
j〉

+
1
2 ∑

m/∈A

〈u0
i |Ĥ ′|u0

m〉〈u0
m|Ĥ ′|u0

j〉
(

1

E0
i −E0

m

+
1

E0
j −E0

m

)

,

(3.9)

where the upper index 0 refers to eigenstates and eigenenergies of Ĥ(k = 0). The new

perturbatively projected basis functions are given by

|uν〉 = |u0
ν〉+ ∑

m/∈A

|u0
m〉

〈u0
m|Ĥ ′|u0

ν〉
E0

ν −E0
m

+
1
2 ∑

k∈A
m/∈A

|u0
k〉
〈u0

k|Ĥ ′|u0
m〉〈u0

m|Ĥ ′|u0
ν〉

(ε0
k − ε0

m)(ε0
m − ε0

ν)
. . . , (3.10)

where Ĥ ′ = Ĥ(k)− Ĥ(k = 0) ≈ h̄k ·p/m0.

If the crystal is under elastic strain the atomic orbitals and consequently also the

Bloch functions will be perturbed, as a result of the deformation of the interatomic bond

lengths and angles. This is also taken into account in the k·p model by perturbation theory.

[36, 38, 40] The strain both shifts the band energies and affects the intraband coupling of

the k·p Hamiltonian. We will only list the main results. For a thorough discussion and
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derivation of the strain terms see e.g. Ref. [38].

We have used the following eight Bloch functions |u0〉 of group A

Γ6 : |u1〉 = i|S ↑〉, |u2〉 = i|S ↓〉,
Γ8 : |u3〉 = 1√

2

(

|X ↑〉+ i|Y ↑〉
)

, |u6〉 = i√
2

(

|X ↓〉− i|Y ↓〉
)

,

Γ8 : |u4〉 = i√
6

(

|X ↓〉+ i|Y ↓〉
)

− i

√

2
3 |Z ↑〉, |u5〉 = 1√

6

(

|X ↑〉− i|Y ↑〉
)

+
√

2
3 |Z ↓〉,

Γ7 : |u7〉 = 1√
3

(

|X ↓〉+ i|Y ↓〉+ |Z ↑〉
)

, |u8〉 = − i√
3

(

|X ↑〉− i|Y ↑〉− |Z ↓〉
)

,
(3.11)

which span the eight-dimensional subspace of the irreducible representations Γ6, Γ8, and

Γ7 of the Td symmetry group associated with the zinc blende crystal.

The strain-free eight-band k·p Hamiltonian [equation (3.10)] is commonly param-

eterized using the energy of the conduction (valence) band edge Ec (Ev), the conduction

band effective mass parameter γc (related to Kane’s parameter A′) Luttinger parameters

γL
i (i = 1,2,3), spin-orbit splitting energy ∆so, conduction-valence band coupling energy

Ep and Kane’s band parameter B. [38, 41] The additional terms of the strain are parame-

terized using the six independent components of the strain tensor εi j and the deformation

potentials ac, av, bv, and dv. The self-adjoint Hamiltonian of equation (3.9) may now be

written as (the lower part can be obtained by complex conjugation of the upper part)

Ĥ =

A 0 −i
√

3P+ −
√

2Pz −iP− 0 −iPz −
√

2P−

A 0 P+ −i
√

2Pz
√

3P− −i
√

2P+ Pz

−Q−P iS R 0 −S/
√

2 −i
√

2R

Q−P 0 R i
√

2Q −
√

3
2S

Q−P −iS −
√

3
2S∗ i

√
2Q

−Q−P −i
√

2R∗ −S∗/
√

2

Z 0

Z

, (3.12)
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where we have defined the following parameters

A = Ec + γc
h̄2k2

2m0
+ac

(

εxx + εyy + εzz
)

,

P = −Ev + γ1
h̄2k2

2m0
−av

(

εxx + εyy + εzz
)

,

Q = γ2
h̄2

2m0

(

k2
x + k2

y −2k2
z
)

− bv
2

(

εxx + εyy −2εzz
)

,

Z = Ev −∆so − γ1
h̄2k2

2m0
+av

(

εxx + εyy + εzz
)

,

Pz = 1√
3

(

ih̄

√

Ep
2m0

kz +Bkxky

)

,

P± = 1√
6

[

ih̄

√

Ep
2m0

(

kx ± iky
)

+Bkz
(

ky ± ikx
)

]

,

S =
√

3γ3
h̄2

m0
kz
(

kx − iky
)

+dv
(

iεyz − εxz
)

,

R = −
√

3 h̄2

2m0

[

γ2
(

k2
x − k2

y
)

−2iγ3kxky
]

−
√

3bv
2

(

εxx − εyy
)

− idvεxy.

(3.13)

The modified Luttinger parameters γi [42] (also called Dresselhaus’ parameters) are re-

lated to the original Luttinger parameters γL
i [43] by

γ1 = γL
1 −

Ep

3Eg
, γ2 = γL

2 −
Ep

6Eg
, γ3 = γL

3 −
Ep

6Eg
. (3.14)

The six-band k·p model is obtained from the eight-band model by substituting Ep = 0

and B = 0. This decouples the six valence bands from the conduction band and makes

the conduction band (CB) a distant band (/∈ A). The γ parameters describe the coupling

between A and distant bands, and are consequently different in the six- and eight-band

models.

3.2.1 Material parameters

Bahder has derived analytic band dispersions for the eight-band k·p Hamiltonian of a

bulk semiconductor. [44,45] The numerical bands are, up to third order in k and omitting
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strain effects, given by

Ec(k) = Eg + h̄2k2

2m0

(

γc +
Ep
Eg

(Eg+
2
3 ∆so)

Eg+∆so

)

,

Ehh(k) = − h̄2k2

2m0

(

γL
1 −2γL

2

)

, for k ‖ [001],

Elh(k) = − h̄2k2

2m0

(

γL
1 +2γL

2 +
2Ep∆so

3Eg(3Eg+∆so)

)

, for k ‖ [001],

Ehh(k) = − h̄2k2

2m0

(

γL
1 −2γL

3

)

, for k ‖ [111],

Elh(k) = − h̄2k2

2m0

(

γL
1 +2γL

3 +
2Ep∆so

3Eg(3Eg+∆so)

)

, for k ‖ [111],

Eso(k) = −∆so − h̄2k2

2m0

(

γL
1 −

2Ep∆so
3(Eg+∆so)(3Eg+∆so)

)

,

(3.15)

where the top of the valence band was set as the energy zero-level. Equation (3.15)

expresses the numerical Γ point band dispersions analytically (at the limit of k → 0),

in terms of the k·p model parameters It allows us to the derive numerical values of the

parameters, which yield the best fit between the eight-band k·p model and experimental

effective mass values [cf equation (3.5)]. Note, however, that this procedure aims only at

the best fit at the Γ point, in accordance with the k·p derivation, and does therefore not

give any guaranties of the numerical band dispersion for large k values.

3.3 Conventional multiband envelope wave function theory

The conventional envelope function approximation (EFA) theory is based on the k·p the-

ory, of the near-band-edge dispersion of bulk semiconductors. [36, 38, 44, 46–48] It was

originally developed by Luttinger and Kohn for analyzing hole states around defects in

semiconductors. [49] It has later been heuristically generalized to include the conduction

band and applied to semiconductor heterostructures where the carrier confinement is due

to the material dependence of band edges or strain effects. The EFA model has been

used for the modeling of a wide variety of III-V compound semiconductor QWs, [48,50]

QWRs [51, 52] and QDs. [24, 53–56] The EFA model parameters originate still always

from a fitting to experimental or theoretical band gap and effective-mass values of the

pertinent bulk semiconductors.

In our (the conventional) EFA model the geometry, of an arbitrary semiconductor

quantum structure, consists of piecewise continuous material regions, where each par-
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tial volume of a semiconductor is modeled with the pertinent bulk band parameters. It

is assumed that the electron and hole confinement potential is a gentle perturbation on

the pertinent bulk reference potential. The real space equations satisfied by the envelope

function are equivalent to the k·p eigenvalue problem of bulk crystals, [41] except for the

material parameters which are allowed to be functions of the position. The Hamiltonian

becomes consequently a function of r where the matrix elements are averaged over a sin-

gle unit cell, located at r. We will later (in section 3.4) make a comparison with the latest

developments of the envelope function theory. The conventional EFA Hamiltonians of

QWs and QDs have been defined in publications III - VI, respectively. Typical numerical

results of the conventional EFA model will be shown in section 6.3.

3.4 The envelope wave function theory of Burt and Foreman

In the conventional EFA model, when applied to semiconductor quantum structures, it

is implicitly assumed that the EFA equations are also valid across an atomically abrupt

material interface. The original derivation by Luttinger and Kohn [49] is, however, not

strictly applicable to this case and a lot of work has been done to derive a consistent EFA

theory, [57–63] with position dependent material parameters.

Burt [64, 65] and Foreman [66, 67] have developed an alternative formulation of

the envelope function theory for semiconductor heterostructures, starting from the single

particle Schrödinger equation. The Burt-Foreman (BF) envelope function theory circum-

vents the issue of correct continuity conditions at material interfaces as it accounts from

the beginning for possible material discontinuities in terms of material-independent basis

functions. [64] In particular, since the substitution k→ k̂≡−i∇ is not made in the BF the-

ory, the need to symmetrize the position dependent Luttinger and Kohn EFA Hamiltonian

never arises either. As pointed out by Foreman, [67] the symmetrization is not needed

to make the EFA Hamiltonian Hermitian. The BF derivation shows, therefore, that the

operator symmetrization, in the conventional EFA Hamiltonian, is not correct. [66–68]

The symmetrization gives rise to a local numerical error everywhere where the material

parameters are functions of the position.
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In order to write the BF Hamiltonian in terms of experimentally measurable bulk

dispersion parameters, one is forced to approximate the exact form of the BF envelope

function Hamiltonian [equation (6.4) of [64]]. [68, 69] Doing so allows one to compare

the conventional EFA model (see section 3.3) and the BF model [66] in terms of the

individual elements of the eight-band Hamiltonians. A detailed comparison of the EFA

and BF Hamiltonians is given in publication VI.

A comparison of the conventional EFA model and the BF model shows that the

EFA model suffers from an inaccurate derivation of effective mass equations from the

analytically correct bulk k·p model. The main source of error in the conventional EFA

model is the unjustified operator-symmetrization of the Hamiltonian. The band mixing is

consequently overestimated at interfaces between materials with very dissimilar Luttinger

parameters. This can lead to nonphysical solutions, particularly for strong magnetic fields.

[70] The discrepancies between the two models seem, though, to decrease with increasing

size of the Bloch function basis and with increasing feature sizes (see e.g. figures 6-8

in [71]).

Several numerical comparisons of the conventional and the BF model have shown

that the BF model is indeed superior to the conventional EFA model. [71–73] However,

the BF model is still an approximation [69] to the exact EFA equations of reference [64].

The exact EFA equations are difficult to implement numerically, because it is obviously

not feasible to obtain values of all model parameters from experiments alone. [70] The

electronic structure calculations presented in this work were calculated using the conven-

tional EFA model and using symmetrized Hamiltonian operators. The results and con-

clusions are, however, not likely to be changed by the BF model, since the Luttinger pa-

rameters of the analyzed heterostructure materials are very similar. The nonsymmetrized

form of the BF Hamiltonian is therefore likely to give fairly small material boundary

corrections.
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3.5 Spurious states in EFA models

The multiband EFA model does in some particular cases fail in predicting the electron

structure of quantum confined systems. This is seen either as an appearance of additional

and malformed eigenstates (bands) or as a distortion of the correct eigenstates. These new

or distorted eigenstates are nonphysical and have in the literature been called spurious,

wing-band or oscillating states. [67, 71, 74, 75] Figure 3.3 shows selected eigenstates and

their eigenenergies of a 10nm wide InAs/GaAs QW, including both spurious states (black

lines) and physically correct states (blue lines). Some new states appear even in the

forbidden energy band gap of the well material.
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Figure 3.3: Eigenstates and corresponding eigenenergies of a 10nm wide InAs QW
between GaAs barriers. The black and blue lines correspond to the same material param-
eters [76] that were used for the bulk InAs bands of Fig. 3.4.

The spurious states of the multiband EFA model in low-dimensional simulations

are due to the inaccuracy of the k·p model for bulk semiconductors at large k and the

additional band coupling between low k and high k components, which is induced by

abrupt material interfaces and the spatial dependence of the material parameters. Since

all material parameters are defined and fitted according to the band dispersion of bulk

material at Γ point only, it follows that some materials, with strong conduction-valence

band coupling, are described by a band structure with not only bad but even nonphysical

high-k band tails. This is illustrated in figure 3.4, showing that the k·p model can give

rise to energy bands which, at high k values, cross the Γ point band gap (black line

corresponds to simulations without k4 terms).
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The nonphysical band gap crossing of the k·p model can influence the EFA eigen-

states of quantum confined carriers despite that this occurs for very large k values. This is

due to the coupling between different k components, introduced to the low-dimensional

EFA model by the position dependence of material parameters and band edges. The

eigenstates of e.g. figure 3.3 are consequently linear combinations of different k compo-

nents (standing waves), where the mixing coefficients are specified by the EFA Hamilto-

nian. The wave function coupling to high k components can be avoided by heuristically

adding, to the EFA Hamiltonian, a diagonal term, proportional to k4. [55] This has little

effect on the near-Γ-point band dispersion but prevents the nonphysical band gap cross-

ing (see figure 3.4). It does also remove the spurious states from the EFA model (see

figure 3.3).
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Figure 3.4: Band structure of InAs using the material parameters of Reference [76].
The blue lines correspond to energy bands of a k·p model with an additional diagonal
conduction band term Ck = 10−56k4 Jm2 and a valence band term Vk = 0.5 ·10−56k4 Jm2.

One approach to eliminate the spurious states has been to modify the bulk k·p
Hamiltonian; improving the band dispersion at large k values with, as small as possible,

effect on the band dispersion near the Γ point. [55, 67, 75] The spurious states have also

been treated as a pure boundary condition problem, [60,77] related to the EFA continuity

conditions of abrupt material interfaces. We removed the spurious states from our EFA

simulations by reducing the numerical value of Ep and simultaneously adjusting the diag-

onal conduction band elements, so that the effective masses of the pertinent bulk materials
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were changed as little as possible.

Stier eliminated the spurious states using a combination of tuned material param-

eters and nonsymmetric finite differentiations of the operator k̂ = −i∇. [23, 51, 56] By

modifying the k·p material parameters Stier aimed at the best available agreement with

the bulk band structures calculated from the pseudopotentials within the largest possible

region around the Γ point. [56] This approach is clearly not in line with the calculation

of k·p parameters from the Γ point Bloch functions according to their definitions in the

perturbation theory. [37, 39] Stier’s technique extends the applicability of the bulk k·p
model to larger k values on the expense of the model accuracy for k = 0.

We have found that Stier’s discretization technique eliminates the spurious states

of some special cases. However, Stier’s numerical approach does not converge mono-

tonically, as a function of the grid size, towards the exact result and it does influence the

geometrical symmetry of the model.

3.6 The EFA model compared with the empirical pseudopo-

tential method

In this subsection we review the main concepts of the empirical pseudopotential method

(EPM), as an example of atomistic electron structure calculations, and compare it with the

EFA continuum model. The EPM [34,78,79] is based on the use of empirical atomic po-

tentials (so called empirical pseudopotentials) in electronic structure calculations. Note,

that empirical pseudopotentials are different from first-principles pseudopotentials. [80]

The pseudopotential technique itself was used already in the 60’s for simulations of bulk

bands, [81] however, the rapid development of computers and numerical tools has made it

attractive for the simulation of low-dimensional systems as well. [82] The pseudopotential

method permits an atomistic description of QWs, [83] QWRs [84] and QDs. [85]

In the EPM one writes the total crystal potential, of the single-electron Hamiltonian

in equation (3.1), as a sum of atomic pseudopotentials Vα(r). [86] These pseudopotentials

are in the first-principle derived using density functional theory (DFT) calculations of ei-

ther bulk material [87] or simple superlattice structures. [83] The single-electron Hamil-
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tonian, describing a QD becomes, hence, [31]

Ĥψn(r) =

[

− h̄2

2m0
∇2 +∑

n
∑
α

Vα(r−Rn −dα)+ Ĥso

]

ψn(r) = εnψn(r) (3.16)

where n runs over all unit cells with unit cell vectors Rn, dα runs over all atomic positions

within the cell, α denotes the atomic species (e.g. Ga or As) and Ĥso is a spin-orbit

interaction term. [31]

The pseudopotential of an atom depends also on the types of the neighbor atoms,

i.e., the pseudopotential VAs(GaAs) of an As atom in GaAs is different than VAs(AlAs) of

an As atom in AlAs. This becomes critical in dilute binary alloys or strongly segregated

systems, where the atomic configuration is heterogeneous or even random. [88–90] Mäder

and Zunger have suggested [79] a weighted potential average, for e.g. an As atom, bound

to 4−n Ga atoms and n As atoms, the potential is given by

VAs(Ga4−nAlnAs) =
4−n

4
VAs(GaAs)+

n

4
VAs(AlAs). (3.17)

Equation (3.16) is also a function of eventual elastic strain, through the pseudopotentials

and their dependence on the inter-atomic bond lengths. The experimentally observed

hydrostatic deformation potentials can in fact be used to tune the form factors of a typical

pseudopotential. [79, 91]

The pseudopotential Hamiltonian [equation (3.16)] can be solved using a plane

wave expansion of the eigenstates, [92, 93]

ψbulk
n (r) = eik·r ∑

G

Bn(G)eiG·r, (3.18)

where G are reciprocal lattice vectors, k is the electron wavevector and Bn(G) are the

expansion coefficients to be solved for. [83] In the case of fully confined eigenstates the

wavevector becomes zero, k = 0. The use of pure plane waves is computationally very

demanding because of the required large basis set. [85] Wang and Zunger have, therefore,

derived an approximative EPM approach, for the simulation of low-dimensional systems,

based on strained linear combination of bulk bands (SLCBB). [85] In the SLCBB model,
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one uses bulk Bloch bands instead of the pure plane wave expansion. This is in essential

a truncation of the plane wave basis on the ground of the electron eigenstates of bulk

materials.

The main difference between the conventional EFA model and the EPM is the con-

tinuum versus atomistic nature. The EFA model averages the crystal potential of the

unit cell, in terms of the bulk material parameters, treating the bulk semiconductor as a

continuum medium, whereas the EPM preserves the discrete and atomic character of the

lattice potential in terms of the empirical pseudopotentials. The advantages of using the

all-atomistic EPM, instead of the EFA model, are: (i) An exact description of the ge-

ometry, including the symmetry (or the lack of it) of an arbitrary atomic structure. This

applies both to the atomic configuration of material interfaces [94] and the anion-cation

ordering (e.g. in no-common ion structures like GaAs). [85]. (ii) The EPM can be used

with arbitrary small structures, whereas the EFA model fails in describing the very small-

est structures which electronic structure is dominated by material interface effects. [95]

(iii) A full bulk-band (the whole Brillouin zone) description allows computations of intra-

valley coupling effects [96] and avoids spurious states.

The advantages of the EFA model, compared with the EPM are on the contrary:

(i) A good transferability of the model, to arbitrary model geometries of different semi-

conductors. The EFA models of low-dimensional systems are typically defined in terms

of well established bulk band structure parameters. This makes it easier to transfer the

model to arbitrary structures as long as the pertinent bulk parameters are known. The

EPM is, on the other hand, based on a potential fitting to both experimental data and DFT

calculations. (ii) The EFA model is very adaptive to the size of the confinement potential

because of its continuous description of matter. The EFA is thereby computationally less

demanding, in particularly for larger (& 20nm) geometries.

We finally note that the recent advances in the EFA modeling (see Sec. 3.4) has

narrowed the gap between the EFA and EPM considerably. [69] Using the BF approach it

is in principle possible to derive an EFA model, which takes into account the microscopic

details of an atomistic geometry. [68, 97] We predict that this will permit truly micro-

scopic EFA simulations. However, these kind of EFA simulations will, similarly to the
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EPM simulations, rely on several model parameters, which can only be obtained through

separate first-principles calculations or from very advanced experiments.



4 Strain in thermally oxidized Si electron

waveguides

The Si/SiO2 interface, which forms the heart of the modern MOSFET - the building block

of the integrated circuit - is arguably the worlds most economically and technologically

important materials interface. Si microelectronic devices will also for the foreseeable

future be manufactured with SiO2 (or SiOx) isolation. However, the continued down-

scaling of integrated CMOS devices and a continued adherence to Moore’s law, will

necessitate the introduction of an alternative transistor circuitry and/or alternative gate

dielectric once the gate dielectric thickness approaches ∼ 1.2 nm. [98] Electron waveg-

uides [quantum point contacts (QPCs) and QWRs] are one emerging technology which

could enable continued microelectronic feature-size scaling, beyond the limitations of

traditional MOSFETs. Electron waveguides are particularly promising because of their

very short switching times and low power consumption.

In this section we will describe the thermal oxidation process and how the related

oxidation-induced strain is likely to influence the ballistic transport in Si electron waveg-

uides. We limit our discussion to dry oxidation only, since dry oxides are much better

suited for these waveguides, because of their superior dielectric properties. We discuss

the numerical modeling of thermal oxidation and the challenges of realistic oxidation

simulations, predicting the geometry and strain of thermally oxidized waveguides.

4.1 The kinetics of thermal oxidation of Si

In thermal (dry) oxidation, Si is exposed to O2 at a high temperature (typically 600 -

1250◦C). [99] In the initial stage of the oxidation, the O2 reacts with the atoms of the Si

surface, forming a thin SiO2 coating. Once, the Si surface has been covered with SiO2,

the O atoms have to dissolve into the oxide and diffuse through it before they can react

with bare Si atoms and form new oxide. Figure 4.1 shows schematically the oxidation

process, when an initial SiO2 surface layer has already been formed. The chemisorption

of oxygen, from the gas to the outer SiO2 surface (flux φ1), and the consumption of
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oxygen at the Si/SiO2 interface (flux φ3), give rise to an oxygen gradient and a diffusive

flux (flux φ2) through the SiO2. The diffusion of oxygen is at least partially substitutional,

with diffusing oxygen atoms being exchanged with those tied to the SiO2. [100] The

chemical reaction, where one unit volume of Si is turned into 2.25 unit volumes of SiO2,

does not take place at a sharp Si/SiO2 interface, but at a 1.5−3.0 Å thick SiOx reaction

layer. [101, 102] The thickness of this reaction layer depends on the orientation of the

interface and decreases with increasing oxidation temperature. [101] The oxidation of

(111) surfaces has been categorized as a layer-by-layer growth process, which indicates

an only one monolayer thick reaction layer on (111) surfaces. [103, 104]
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Figure 4.1: Thermal oxidation of Si. There is a continous chemisorption of O2 molecules
from the gas to the SiO2 surface, from where the oxygen diffuses trough the SiO2 layer
towards the reaction layer (“SiOx ”) where the chemical process takes place.

The diffusion of oxidant atoms into the Si/SiO2 reaction layer gives rise to an in-

ternal reaction-controlled volume expansion, straining both the exterior amorphous SiO2

and the interior crystalline Si. The magnitude of the strain depends to a large extent on the

interface curvature and the oxidation conditions. This strain in turn retards the oxidation

process because of the stress-dependence of the oxygen diffusion and oxidation reaction

rates. [105, 106] Even the oxidation of planar structures gives, at low temperatures, rise

to an (in-plane) stress. [107] However, planar oxides created at high temperatures are

practically strain-free, as a result of the continuous bond-breaking in the reaction layer,

which very effectively lubricates the reaction layer. For a general review of the oxidation
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kinetics see Ref. [98] and chapter 2 of Ref. [99].

4.2 The Deal and Groove model: planar oxides

Since 1965 the most used theoretical framework of the thermal oxidation of SiO2 has

been the Deal and Groove model. [108] It considers diffusion of O2, through a planar

SiO2 film, from the surface to the Si/SiO2 interface. The process is described using

constant diffusivity and assuming (i) a steady state regime, where the gradient of the

oxidant species is constant over the oxide film (the O2 concentration in figure 4.1 is a

linear function of the depth); and (ii) reaction between O2 and Si at a sharp Si/SiO2

interface (trl = 0 in figure 4.1). Assumption (i) requires an initial oxide layer (thickness

t i
ox) before the model starts to describe the oxide growth. The thickness of the initial oxide

layer was estimated to be between 20 and 30nm. [108]

By setting the O2 fluxes equal φ1 = φ2 = φ3 (see section 4.1 and figure 4.1), we

obtain the oxide thickness tox as function of time t,

t2
ox +ADG tox = BDG(t + τDG), (4.1)

where ADG, BDG, and τDG are experimental fitting parameters. They are related to the

initial oxide thickness t i
ox, diffusion constant D, oxidation rate ks at the Si/SiO2 interface

and reaction rate κ at the SiO2/gas surface:

ADG = 2D

(

1
ks

+
1
κ

)

, BDG = 2D
C∗

N1
, τDG =

(

t i
ox
)2

+ADG t i
ox

BDG
, (4.2)

where C∗ is the equilibrium concentration of oxidant species in SiO2 and N1 is the

number of oxidant molecules in the oxide unit volume. Two asymptotic regimes of

equation (4.1) can be distinguished. At large oxidation times, (t ≫ A2
DG/4BDG and

t ≫ τDG) we obtain a parabolic oxidation rate: t2
ox = BDG t. For small oxidation times

(t ≪ A2
DG/4BDG) the oxidation rate becomes linear in t: tox = (t + τDG)BDG/ADG.

The linear reaction rate BDG/ADG is an exponential function of the temperature and

nearly four orders of magnitude larger at T = 1200◦C than at T = 700◦C. [99] It
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is also very much dependent on the orientation of the Si/SiO2 interface. At a tem-

perature of T = 1200◦C, the linear reaction rate is the largest for the oxidation of

(111) surfaces, [BDG/ADG ](111) = 1.12 µm/hr. For (110) and (100) surfaces it is

[BDG/ADG ](110) = 0.90 µm/hr and [BDG/ADG ](100) = 0.56 µm/hr, respectively. The ef-

fect of the interface orientation becomes more pronounced at lower temperatures as the

oxidation process becomes more surface-reaction controlled. [99]

The Deal-Groove oxidation model has been developed for relatively thick (tox &

30nm) and planar oxides. There are several reasons why it fails in predicting the growth

of thin oxides. The oxygen species density profile is far from linear in the initial stage of

the oxidation process and the role of the reaction layer increases with decreasing oxide

thicknesses. These two facts violate the main assumptions of the Deal-Grove model and

it can, therefore, not be used with thin oxides. Another shortcoming of the Deal-Groove

model is its limitation to only planar oxides, i.e., one-dimensional oxidation. It can, as

such, not account for anisotropic (and thereby maybe inhomogeneous) oxidation rates

and strain-retardation of the oxidation rate, features which are important in the modeling

of oxide growth on nonplanar geometries.

4.3 Coupled diffusion-reaction-mechanical oxidation models

The above described Deal-Groove cannot be applied to the oxidation of truly two or

three dimensional geometries (i.e., nonplanar geometries), where the following addi-

tional mechanisms must be considered: (i) anisotropic evolution of the Si/SiO2 interface

because of an oxidation reaction rate which depends on the local Si/SiO2 interface ori-

entation, (ii) oxidant diffusion through a nonplanar and arbitrarily shaped oxide layer,

(iii) generation of strain in the structure, (iv) strain-relaxation through viscous flow of

the oxide, and (v) the stress-dependence of the oxidation reaction and oxygen diffusion

rates. [106]

Various different numerical approaches and strategies have been used for the mod-

eling of thermal oxidation and describing the oxide relaxation. [109–111] In this section

we will describe the oxidation model of P. Causin and coworkers as an example of the
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most advanced numerical oxidation models available. [111]

4.3.1 Mass conservation

The diffusion-reaction problem can be derived from a general mass balance equation,

where the interface Γ = Ω+ ∩Ω−, between the Si (Ω+) and SiO2 (Ω−) domains is

described as a surface of discontinuity in the density of oxidant. The mass conservation

can be expressed by the following equation [110, 111]

∫

Ω

[

∂C

∂t
+∇(Cv)−b+∇q

]

dr3 = 0, (4.3)

where Ω = Ω+∪Ω− is the combined volume of the Si and SiO2 domains, C is the con-

centration, v is the material velocity, b is a volume source term and q = −D∇C is the

diffusive flux, D being the diffusion constant. Equation (4.3) holds separately for each

species (Si, O2 and SiO2) of the oxidation reaction.

As an example we analyze equation (4.3) for the concentration CO2 of O2

molecules, which have been dissolved in the oxide but are not tied to the Si atoms. Equa-

tion (4.3) states now that the time-derivative of the O2 concentration (1st term) equals

the sum of: the divergence of the convective flux of O2 atoms with the material flow (2nd

term) and the creation or annihilation of O2 atoms (3rd term) by e.g. the chemical reaction

at the interface Γ, and the divergence of the diffusive flux (4th term), which in turn is due

to the gradient of the concentration.

It can be argued that all terms of equation (4.3) are small, in the Ω+ and Ω− do-

mains, under a steady-state condition. [111] Equation (4.3) becomes, as a result, a mass

balance integral of the interface (reaction layer) only:

∫

Γ

{

[[C]](v ·n− vn)+ [[q ·n]]
}

dγ = 0, (4.4)

where n is the normal of the interface Γ (directed from Ω− towards Ω+), vn is the in-

terface normal velocity, bΓ is an interface source term and [[ f ]] ≡ f + − f− denotes the

discontinuity of function f across Γ. Equation (4.4) holds pointwise for r ∈ Γ and we
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obtain for each species



























b
O2
Γ = [[qO2 ·n]]− [[CO2]]vn, r ∈ Γ

b
SiO2
Γ = −[[CSiO2]]vn, r ∈ Γ

bSi
Γ = [[qSi ·n]]− [[CSi]]vn, r ∈ Γ

(4.5)

where the oxide flux has been set to zero, since the coordinate axes have been fixed with

respect to the oxide. The stoichiometric balance of the chemical reaction implies that

b
SiO2
Γ =−bSi

Γ =−νb
O2
Γ , where ν = 1 for dry oxidation and ν = 0.5 for wet oxidation. [111]

The oxidant consumption is turn given by the first-order reaction law b
O2
Γ = −ksC

−
O2

. It

follows that the interface velocity vn is given by

vn = ks
νC−

O2

C−
SiO2

. (4.6)

4.3.2 Strain effects

The thermal oxidation of Si is also to large extent a fluid-mechanical problem between Si,

which is a linear elastic material (with an anisotropic response because of its crystalline

structure) and SiO2, which behaves as an incompressible fluid with a nonlinear viscosity.

Causin and coworkers use the following stress-dependent oxide viscosity [111, 112]

η(σ) = η0
σmax/σc

sinh(σmax/σc)
, (4.7)

where η0 is the viscosity at zero stress, σmax is the maximum shear stress and σc =

2kBT/V c is a critical shear stress value, V c being an activation volume.

Several different models have been used for the oxide, including various combina-

tions of elasticity and viscosity. [109, 112–116] However, the nature of the oxide is very

difficult to verify in situ and it is evidently very dependent on the exact oxidation condi-

tions. A coupling between the oxidant diffusion and the fluid-mechanical problem also
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exists as a result of the stress-dependence of the oxygen diffusion [111, 112]

D(p) = D0 exp
(

− pV d

kBT

)

, for p > 0 (4.8)

and of the oxidation reaction rate

ks(σ) = ks0 exp
(

(σn) ·nV r

kBT

)

, for σnn ≡ (σn) ·n < 0, (4.9)

where p is the hydrostatic pressure, D0 (ks0) is the stress-free diffusion (reaction) rate

coefficient and V d and V r are suitable activation volumes.

4.3.3 Numerical algorithms

The time evolution of the thermal oxidation is solved repeatedly for small discrete time

steps using e.g. the finite element method (FEM). A typical [111] calculation flow of a

single time step can be divided in (i) computing the oxidant concentration at the Si/SiO2

interface Γ, (ii) computing the interface velocity vn, (iii) refining the element mesh at Γ

according to vn, (iv) solving the fluid-mechanical problem in all materials, and (v) refining

the element mesh according to the new computed geometry.

This numerical strategy has been used for the simulation of both two and three-

dimensional oxidation geometries. It is, however, evident that the computations become

very heavy and time-consuming already for very simple three-dimensional geometries.

The typical oxidation simulation contains a series of FEM calculations, where each step

might require its own optimized element grid. When each FEM step might in addition

require to be solved iteratively, because of the viscous flow of the oxide, it is obvious that

the simulation of large three-dimensional geometries (see Sec. 4.4 below) is impossible,

with the currently available computational resources.

4.4 Semi-empirical model of oxidation-induced strain

The advanced oxidation model described above is in practice unfeasible for fully three-

dimensional simulations. The current development of integrated electronics is, never-
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theless, more and more favoring three-dimensional transistor architectures, as they per-

mit a better carrier confinement and a better controlled current switching in short drain-

source channels. The finFET transistor [117] and ballistic electron waveguide transis-

tors [118,119] are good examples of promising three-dimensional transistor architectures.

We have developed a semiempirical model for the oxidation-induced strain to estimate its

influence on the electronic properties of three-dimensional Si/SiO2 electron waveguides

(see publications I-II). Our strain model relies on the availability of cross-sectional trans-

mission electron micrographs (TEMs) of an already oxidized Si/SiO2 device geometry.

We have simulated electron waveguides (QPCs and QWRs) on silicon on insulator

(SOI) wafers, fabricated by Ahopelto and coworkers [118,120] using EB lithography and

thermal oxidation. Figure 4.2 shows an analysis of a thermally oxidized Si wire in terms

of a cross sectional TEM. The final Si/SiO2 interface geometry is a result of an anisotropic

and locally strain-retarded (yellow circles) thermal oxidation. The large oxidation rate in

the [111] direction gives rise to a triangular geometry with clear {111} planes. Figure 4.2

shows, furthermore, that the Si wire has been oxidized from below because of an oxygen

diffusion through the buried SiO2 of the SOI wafer.
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Figure 4.2: Oxidation analysis based on TEM images [118,121] of a thermally oxidized
Si wire. The red dashed line is an estimate of the initial Si geometry before the oxidation.

Figure 4.3 shows the model geometry of a Si QPC, which was build according
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to available TEM images. [121] The model includes the Si channel, the thermal SiO2

and the buried SiO2 of the SOI wafer. The oxidation-induced strain was introduced to

the structure by an anisotropic expansion of a phenomenological interface layer at the

Si/SiO2 interface (shown in green in Fig. 4.3). The expansion was defined perpendicular

to the Si/SiO2 interface. The Si was modeled as a cubic lattice crystal and the amorphous

SiO2 was modeled as an isotropic material.

The semiempirical strain model predicts an oxidation-induced strain, which is pro-

portional to the curvature of the interface and is in good agreement with the hydrodynam-

ical model. It reproduces well the strain of analytically solvable axisymmetric geome-

tries. [105, 106] We expect that the predictivity of the model is fair also for the studied

QPCs. [120] The semiempirical model relies, however, on an appropriate choice of the

interface thickness and expansion coefficient. The model cannot predict the exact magni-

tude of the strain and has, therefore, to be fitted (or scaled) to experimental observations

or more advanced oxidation simulations in simpler test geometries.
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Figure 4.3: Semi-empirical model for the simulation of oxidation-induced strain in Si
waveguides. The Si waveguide is shown on the left, excluding the surrounding SiO2
mantle. Two different cross sections, of the complete strain model, are shown on the
right. The green region correspond to the expanding interface layer.
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4.4.1 Numerical simulations

The strain was computed using the linear CE and FEM with a combined element mesh

of first and second order volume elements. [122] The large three-dimensional geometry

proved to be numerically very challenging to model even with our semiempirical ap-

proach. The numerical accuracy of the calculations became a critical issue, despite a

large effort on optimizing the element mesh. There were several reasons to this difficulty.

The very small interface curvature (rcurv < 10nm) along the corners of the Si waveguide

gives rise to very sharp strain maxima/minima and an accurate description of these areas

requires, as a consequence, a very dense element grid. The validity of the semiempirical

approximation also depends strongly on the thickness of the expanding interface layer;

The thinner this layer is, the better is the accuracy, but reducing the interface thickness

also increases the number of required elements.
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Figure 4.4: Oxidation-induced strain in a Si QPC, in the middle of the constriction.
The inset shows the model geometry and the cross sectional plane for which the strain is
plotted. Note that the current channel of the QPC is aligned along [110] and z ‖ [110].

We had to limit our numerical strain calculations to 105 elements in total, for com-



4.4 Semi-empirical model of oxidation-induced strain 39

putational reasons. Although, this was enough to obtain strain fields and deformation

potentials which were very smooth to the bare eye, it was not enough for later conduc-

tance calculations. Ballistic conductance is, in general, very sensitive to the smoothness

of the potential and to the shape of the current channel. Particularly, periodic potentials or

ripples in the potential are likely to give rise to strong interference effects in the ballistic

conductance. This is problematic considering the regular element mesh of an automatic

mesh generator, [122] which gives rise a relatively periodic numerical error at the abrupt

element boundaries. The results had therefore be smoothed by interpolation or averaging

over neighboring elements using a moving average filter, where the strain was convoluted

over a 6×6×6nm3 sampling volume.

Figure 4.4 shows the strain at a cross section in the middle of the QPC constriction.

Figure 4.4 was calculated using model parameters (thickness and expansion of the SiO2

interface layer), which yield a radial strain of εrr = −1% in an axisymmetric Si wire

with a diameter of 60nm. The small curvature radius of the Si/SiO2 interface in the

corners of triangular Si QPC gives rise to a very large compressive strain. It will later

(in section 5.2.3) be shown that this induces current channeling, i.e. electronic transport

which is localized to the highly strained corner regions of the QPC.
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5 Ballistic transport in Si electron waveguides

In this section we discuss the conductance, accounting for the oxidation-induced strain,

of the ballistic Si waveguides (quantum mechanical transistors), which were introduced

in section 4. We briefly review the theoretical ground of the conductance calculations of

publication II. This analysis is based on calculating the scattering matrix of conduction

electrons by the numerical mode-matching technique and using the Landauer-Büttiker

formalism to calculate the conductance.

5.1 The Landauer-Büttiker formalism

The Landauer-Büttiker formalism describes the conductance of a ballistic conductor

(electron waveguide) in terms of transmission and reflection probabilities as a function of

the electron energy. The electrons are described as wave packets, which travel from the

source to the drain, through the conductor. They scatter elastically by the lead-conductor

junctions and by potential variations within the conductor. This leads to a conductance

which is governed by the transmission and reflection probabilities of the electron wave

packet components. The leads are commonly very large and considered as completely

thermalized electron reservoirs, described by the Fermi-Dirac distribution. The differ-

ence of the chemical potentials µS and µD of the source and drain is governed by an

external bias voltage VB = (µS −µD)/e.

In the Si electron waveguide (QPCs, described in section 4) the source and drain

reservoirs are made of heavily n-doped regions. The electron waveguide consists of an

hour-glass shaped and undoped Si constriction. The energy of the conductance electrons

is tuned using a metallic gate and by adjusting the electric potentials of the two leads.

[120]

5.1.1 The Landauer formula

At zero temperature and negligible bias voltage, the current is carried only by the electrons

at the Fermi surfaces of the two leads. It is, therefore, enough to know the transmission
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probability T (EF) of the waveguide at the Fermi energy EF only. The conductance G, of

a waveguide, is in this case given by the Landauer formula [7]

G =
2e2

h
M T (EF), (5.1)

where M is the number of available conducting transverse modes in the waveguide, at the

particular Fermi energy. For a completely adiabatic waveguide we have T (EF) = 1. Equa-

tion (5.1) predicts a quantized conductance (as a function of M, which is a nonnegative

integer) with a constant contact resistance of the lead-waveguide connections.

5.1.2 Transverse modes

The wave function of an electron, propagating in a uniform waveguide (aligned along the

x axis), is given by

ψn(r) = ϕn(y,z)
(

In1eiknx + In2e−iknx
)

, (5.2)

where ϕn(y,z) is the nth transverse mode of the waveguide cross section, kn is the wave

vector and In1 and In2 are weight factors of the propagating component. From equation

(5.2) it follows that an electron cannot propagate in the waveguide unless its energy E

exceeds the eigenenergy E0 of the ground state transverse mode ϕ0(y,z). The quantization

of the conductance of the waveguide follows from the fact that the propagating electron

can only make use of transverse modes for which En ≤ E and from the quantization of

the transverse mode energies En.

5.1.3 Multi-mode transmission at a finite temperature

Equation (5.1) was derived assuming zero temperature and zero bias voltage, where the

current is carried only by electrons of the Fermi surface. In the case of a finite bias

voltage, the current is carried by electrons of a wider energy range µD ≤ E ≤ µS, where

µD and µS are the electrochemical potentials of the drain and source, respectively. At a

finite temperature the Fermi distribution of the reservoir electrons is broadened and a the

range of conducting electrons is further increased by a few kBT . The conductance of the
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waveguide is in this case given by the Landauer-Büttiker formula: [7]

G = −2e2

h

µS+nkBT
∫

µD−nkBT

dE
∂ fe(E)

∂E
T (E), (5.3)

where fe(E) is the Fermi-Dirac distribution at the source, T (E) is the transmission matrix

of the waveguide as a function of the electron energy E and n is a positive constant stating

that the relevant energy range is a few kBT s around the chemical potentials.

5.2 Conductivity using the mode-matching technique

In the mode-matching technique (MMT) [123] the conductivity of a nonuniform elec-

tron waveguide is computed by decomposing the waveguide geometry into smaller uni-

form waveguide sections and junctions. The uniform sections are described in terms of

their standing transverse modes [see equation (5.2)]. The transverse modes of neighbor-

ing waveguide sections are then connected (matched), yielding a generalized scattering

matrix (GSM) for each junction. The conductivity of the complete waveguide is then

obtained in terms of the combined GSM (chained from the individual GSMs) of all junc-

tions.

The MMT was in publication II applied to a Si QPC as follows: (i) the electron

potential was computed separately for electrons in the conduction band minima (valleys)

along all three crystal principal axes [see figure 3.2(b)], taking into account the effect of

oxidation-induced strain with the technique described in section 4.4.1. (ii) The electron

waveguide potential was divided in about 300 uniform subsections, forming together a

good approximation of the smoothly curved QPC geometry. The energetically relevant

transverse modes were solved for each subsection using a stationary two-dimensional

Hamiltonian. (iii) The GSMs, between adjacent waveguide subsections, were computed

in terms of the wave function overlap integrals between the transverse modes of neighbor-

ing subsections and using a position and mode dependent wave vector (which accounted

for the amount of kinetic energy) of the conductance electrons. (iv) The conductivity of

the complete waveguide was in the end obtained by equation (5.3) using the chain product
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of all GSMs, as the transmission matrix T (E).

5.2.1 Electron waveguide potential

The electron waveguide potential consists of the Si/SiO2 band edge discontinuity, the

oxidation-induced strain deformation potential and the Coulomb potential of possible ox-

ide charges. [124,125] The oxide charges have so far not been included in the conductance

calculations as they easily give rise to Coulomb blockade effects, [126] which violate the

ballistic transport. They are, however, likely to play a large role in the conductance of

many fabricated Si QPCs [16,120,127] and should be accounted for in future simulations

of Si QPCs.

The Si/SiO2 band edge discontinuity is very large (∆Ec ≈ 3.1eV and ∆Ev ≈ 3.8eV

[125]) and the interfaces was in the simulations approximated as an infinitely hard po-

tential barrier. The strain-induced band edge deformations has to be computed separately

for each pair of the Si conduction band valleys. We denote these pairs of valleys by

[±a,0,0], [0, ±a,0] and [0,0, ±a]. [128] The deformation potentials of the electrons at

these conduction band valleys are given by [129]

δE [±a,0,0] = Ξ
(100)
d

(

εxx + εyy + εzz
)

+Ξ
(100)
u εxx, (5.4a)

δE [0,±a,0] = Ξ
(100)
d

(

εxx + εyy + εzz
)

+Ξ
(100)
u εyy, (5.4b)

δE [0,0,±a] = Ξ
(100)
d

(

εxx + εyy + εzz
)

+Ξ
(100)
u εzz, (5.4c)

where the Si deformation potentials Ξ
(100)
d = 5eV and Ξ

(100)
u = 9.2meV [25] are very dis-

similar, giving easily rise to a valley splitting and a lowering of the band edge degeneracy

in strained Si.

Figure 5.1 shows the oxidation-strain-induced deformation potential of the elec-

trons in the [0,0, ±a] and [±a,0,0] valleys. The strain lowers the [0,0, ±a] minima be-

low the other four conduction band valleys. It gives also rise to a channeling effect where

the electron current will follow the sharp corners of the triangular QPC cross sections.
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Figure 5.1: Iso-surfaces of the strain-induced potential channels for electrons of the (a)
[0,0, ±a] and (b) [±a,0,0] minima of the conduction band.

5.2.2 Transverse modes in Si electron waveguides

The transverse modes ϕn(y,z) of electrons in a Si QPC can be calculated using the single-

and parabolic-band effective mass model (see section 3.1.1). This has to be done for

each conduction band valley separately, accounting for the pertinent effective masses and

strain-induced potential. The transverse modes ϕ
[0,0,±a]
n (y,z) at x, of electrons in the

[0,0, ±a] valleys, are given by

[

− h̄2

2m∗
t

∂2

∂y2 −
h̄2

2m∗
l

∂2

∂z2 +V (y,z)
]

ϕ
[0,0,±a]
n (y,z) = E

[0,0,±a]
n ϕ

[0,0,±a]
n (y,z), (5.5)

where m∗
l = 0.98m0 is the longitudinal and m∗

t = 0.19m0 is the transverse valley mass.

The potential V , the eigenenergies E
[0,0,±a]
n and the transverse modes ϕ

[0,0,±a]
n depend on

the x coordinate and are different in each waveguide section, but equation (5.5) is always

solved for a single (averaged) x value for each section.

For the electrons of the [0, ±a,0] and [±a,0,0] valleys we have

[

− h̄2

2

(

cos2 ϑ

m∗
t

+
sin2 ϑ

m∗
l

)

∂2

∂y2 − h̄2

2m∗
t

∂2

∂z2 +V (y,z)
]

ϕ
[0,±a,0]
n (y,z) = E

[0,±a,0]
n ϕ

[0,±a,0]
n (y,z),

[

− h̄2

2

(

sin2 ϑ

m∗
t

+
cos2 ϑ

m∗
l

)

∂2

∂y2 − h̄2

2m∗
t

∂2

∂z2 +V (y,z)
]

ϕ
[±a,0,0]
n (y,z) = E

[±a,0,0]
n ϕ

[±a,0,0]
n (y,z),

(5.6)

where ϑ = π/4 defines the orientation of the QWR (i.e. the uniform subsection of the

electron waveguide), with respect to the [100] principal axis.
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5.2.3 Conductance quantization in Si QPCs

In publications I and II it was shown that the oxidation-induced strain in Si electron

waveguides has several consequences on the conductance. The anisotropic strain in the

electron waveguides will lower all conduction band valleys, but the [0,0, ±a] will be far

below the [0, ±a,0] and [±a,0,0] valleys as a result of the large εzz compression. The

anisotropic strain is in turn a result of the orientation and triangular cross section of the

studied electron waveguides. The conductance of the waveguide, at small Fermi energies,

will as a consequence be determined by the electrons of the [0,0, ±a] valley alone.

The oxidation-induced current channels can even give rise to confined station-

ary electron states in the constriction of the waveguide (see publication I). However, if

the constriction is very short, as in the case of a QPC, no confined states appear. The

oxidation-induced strain gives in this case rise to multiple effective ballistic conductors

within a single Si wave guide. There is one effective conducting channel in each corner

of the triangular-like Si wave guide (see figure 5.1). This channeling of the current gives

rise to a doubling of the conductance steps. More detailed results and a more thorough

analysis of the conductance of Si electron waveguides is presented in publications I and

II.
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In this section we discuss briefly strain-induced quantum dots (SIQDs), [19] which differ

substantially from the conventional overgrown InAs QDs regarding the confinement of

carriers. The confinement of carriers to InAs QDs is due to the different chemical poten-

tials (band edge discontinuity at the material interface) of InAs and GaAs, [23] whereas

the carrier confinement of SIQDs is due to a local strain field of a stressor nanocrystal and

a QW potential. [130] SIQDs are nearly ideal for basic research of carrier relaxation and

photonics in quantum devices because of their almost parabolic confinement potential and

the prominently regular atomic-like PL spectrum (see publications V and VI). A detailed

review of SIQDs was presented in publication VI.

6.1 Fabrication of QDs using self-organized growth

The InP stressor islands are grown by self-organized molecular beam or vapour phase epi-

taxy on the GaAs substrate. The island formation is a result of the large lattice mismatch

between InP (lattice constant aInP = 5.87 Å) and the GaAs substrate (aGaAs = 5.65 Å).

The topmost deposited InP minimizes its potential energy, during the growth, by forming

coherent, i.e. defect-free, strained islands. The formation of strained islands during epi-

taxial growth is known as self-organized Stranski-Krastanow growth. [12, 13] The effect

is similar to the formation of water droplets on a well polished surface. The shape of

the islands is defined by the self-organized energy minimization, which favors low-order

crystal planes ({001}, {101} and {111}). [131] The height and lateral width of the island

varies between 15 . . .25 nm and 60 . . .120 nm, respectively. Typical island densities are

around 109 cm−2 depending on the exact growth conditions. [132]

6.2 Elastic strain and band edge deformation

The strain-induced carrier confinement of SIQDs is due to the pseudomorphic interface

between the InP nanocrystal and the GaAs top barrier. The crystal lattice of InP and

GaAs are joined without forming any dangling bonds or dislocations, despite the 3.8%



48 6 Strain-induced quantum dots

difference in the lattice constants of InP and GaAs. [25] This is accomplished by an

elastic deformation of both materials. The InP island is completely under compressive

strain, whereas the GaAs substrate is tensile strained below the InP island.

Figure 6.1 shows the strain and the carrier confinement potentials (with respect

to the strained QW band edges) in the middle of the QW, beneath an axisymmetric and

beneath an angular InP stressor island. The tensile strain reduces the band gap and creates

a potential minimum within the QW. [130] The confinement in the vertical direction is

enhanced by the GaAs barrier, mantling the QW. The result is a widely tunable QD. The

depth and size of the QD carrier confinement can be tuned by changing the widths and

material composition of the well and barrier layers, [130] and by tuning the size of the

InP island (which depends on the growth conditions). [132, 133].

6.3 Electronic structure

The energy spectrum of SIQDs is very evenly spaced as a result of the smooth, almost

axisymmetric and parabolic confinement potential. Figure 6.2 shows the electron and

hole confinement potential; and the probability densities of both electron and hole states

in SIQDs, calculated with the conventional EFA model (see section 3.1). The electronic

structure simulations were discussed in detail in publications V and VI. The results in-

clude the effect of the strain, the piezoelectric potential, the experimentally observed

island geometry, and typical material compositions.

The probability density of the electron ground state ψe0 is seemingly axisymmetric

and the excited electron states show fairly equal lateral confinement along the [110] and

[110] axes, whereas the hole densities of figure 6.2(b) are all elongated along the [110]

axis as a result of the piezoelectric potential (PEP). The influence of the piezoelectric

potential (PEP) on the DOS cannot be overemphasized. The PEP minima contain also

many hole states, of which several are more strongly confined than the hole ground state

|h0〉 of the deformation potential (DP) minimum [figure 6.2(b)]. The confinement energy

of the PEP ground state |p0〉 is several tens of meV larger than that of |h0〉. A more

detailed analysis of the electronic structure of SIQDs has been presented in publication
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Figure 6.1: Elastic strain εxx in SIQD structure, with an (a) axisymmetric and (b) an-
gular InP stressor island. The stressor islands induce a hydrostatic tensile strain (b-c) in
the otherwise biaxially compressed QW. This, together with the induced piezoelectric
potential, gives rise to a QD confinement of both electrons (e-f) and holes (g-h) beneath
the stressor island. The outer contour of the InP island is shown with a white dashed line.

VI. The photonic carrier dynamics of SIQDs will be discussed in section 8.3.
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In this chapter we briefly review the most important theory, underlying our computa-

tions of the optical properties of corrugated QWRs (publication III), the polarization of

gain in QW lasers (publication IV) and the photonic properties of SIQDs (publications V

and VI). The outstanding photonic properties of III-V compound semiconductor QDs has

been one of the largest motivations of the past and current research on optical QDs as it is

likely to enable the use of dense matrices of self-organized QDs as the active material of

the coming superior solid-state lasers. A solid theoretical basis of the photonics in semi-

conductor quantum structures is, therefore, important also from the technological point of

view. We start this section by briefly summarizing the quantum mechanical description

of an electromagnetic field and the interaction of photons with quantum confined carriers

of optically active artificial materials.

7.1 The quantized electromagnetic field

In the quantum theory of the electromagnetic field, [134] the field observables Ê and B̂

are represented by operators, which in turn are expressed in terms of a vector potential Â

and a scalar potential Φ.

The quantized electromagnetic field is composed as a superposition of the standing

waves of an optical cavity (photon or cavity modes). The total radiation field in the

cavity is specified by the number of photons nk1 , nk2, nk3 , . . . excited in the complete set

of cavity modes k1, k2, k3, . . . , where we have used a combined notation ki of both the

wave vector and the polarization. The vector potential of the electromagnetic field in the

cavity is, in SI units, given by [134]

Â(r, t) = ∑
k

√

h̄

2εrε0V ωk

[

αkâke−iωkt+ik·r +α∗
kâ

†
keiωkt−ik·r

]

, (7.1)

where V is the volume of the cavity, ωk is the angular frequency, αk is the unit vector of

the polarization, âk (â†
k) is the photon annihilation (creation) operator of photon mode k.
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A more detailed description of the quantization of the electromagnetic field can be found

in references [134], [135], and [136]

7.2 Electrons in an electromagnetic field

The Hamiltonian of quantum confined electrons, in an external electro-magnetic (photon)

field, is in quantum mechanics obtained from the first-order single-particle Hamiltonian

by the minimal substitution [134, 136]

p̂ → p̂−qÂ, (7.2)

where q is the charge (for electrons q = −|e|) and Â is the vector potential of the elec-

tromagnetic field. The total eigenstate Ψ, of electrons in the electro-magnetic field, is

described in terms of a product state of the electronic eigenstate ψ and the photon number

eigenstate |nk1 , nk2, nk3 , . . .〉 of the cavity field.

Solving the eigenstates Ψ with the complete Hamiltonian Ĥ(p̂−qÂ) is not feasi-

ble. It is instead common to solve the electronic eigenstates using Ĥ(p̂) and to calculate

the effect of the electromagnetic field on the electronic eigenstates using perturbation

theory where Ĥ ′ = Ĥ(p̂− qÂ)− Ĥ(p̂) is the perturbation. The interaction between the

electrons and the electromagnetic field couples the different electronic eigenstates. The

field-induced transition rate Wf i between an initial electron state ψi and a final state ψ f is

given by the Fermi golden rule (which follows from first-order time-dependent perturba-

tion theory), [26]

Wf i =
2π

h̄
|
〈

ψ f

∣

∣Ĥ ′∣
∣ψi

〉

|2δ
(

E f −Ei ∓ h̄ω
)

, (7.3)

where the upper (lower) sign corresponds to the absorption: nk → nk−1 (emission: nk →
nk +1) of a photon and a simultaneous excitation (deexcitation) of the electron.
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7.2.1 The electric dipole matrix element

In the Coulomb gauge the matrix elements
〈

ψei

∣

∣Ĥ ′∣
∣ψh f

〉

, of the electric dipole operator,

are (using multi-band EFA eigenstates) given by [48]

〈

ψei

∣

∣Ĥ ′∣
∣ψh f

〉

=− eh̄

m0
Â ·
〈

ψei |p̂|ψh f

〉

=− eh̄

m0
Â ·∑

lm

[〈

Fil | 〈ul |p̂|um〉|Ff m

〉

+δlm

〈

Fil |p̂|Ff m

〉]

,
(7.4)

where |Fil〉 and |Ff m〉 are the envelope functions of the initial and final states of the tran-

sition [cf equation (3.7)]. The second term of equation (7.4) is close to zero for an inter-

band transition and can safely be neglected. The first term on the right hand side (RHS)

of equation (7.4) can be derived from the eight-band Hamiltonian Ĥ [137]

〈ul |p̂|um〉 =
m0

h̄

〈

ul

∣

∣

∣

∣

∂Ĥ

∂k

∣

∣

∣

∣

um

〉

. (7.5)

7.3 Photon emission

The emission of photons or photoluminescence (PL) occurs as a result of the electromag-

netic coupling of the quantum confined electron states. The total rate of the spontaneous

emission of photons is given by the sum of all allowed, photon-assisted, partial transition

rates. The rate of spontaneous emission of photons, with the energy h̄ω and polarization

α, becomes now (in SI units) [26]

Iα(h̄ω) =
e2 h̄ω

8π2m2
0h̄2v3ε0εr

∑
i, f

{

∣

∣α∗ ·
〈

ψei |− ih̄∇|ψh f

〉∣

∣

2
fe(Ei) fh(E f )δ

(

E f −Ei − h̄ω
)

}

,

(7.6)

where we have used g(h̄ω) = (h̄ω)2/(2πh̄v)3 for the 3D density of photon states, v =

c/
√

εrµr for the velocity of light and Ĥ ′ ≈ −ieh̄Â ·∇/m0 (using q = −e for electrons).

Equation (7.6) takes into account the electron and hole population of the initial conduction

band state |ψei〉 and final valence band state |ψh f 〉 through the electron and hole Fermi

functions fe(Ei) and fh(E f ), where Ei and E f are the electron and hole eigenenergies,

respectively.
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The total rate of spontaneous photon emission is obtained by integrating Iα(h̄ω)

over the direction of the photon wave vector and summing over two orthogonal polariza-

tions. This replaces |α∗ · 〈ψei| − ih̄∇|ψh f 〉|2 → 8π|〈ψei| − ih̄∇|ψh f 〉|2/3. Note also that

it might be convenient to convert the summation over the conduction (i) and valence ( f )

states, in equation (7.6), into a combined summation over different bands and integration

over k within these bands. [26]. In the case of bulk semiconductors we then obtain the

total spontaneous emission per unit volume, in the very general form

Ibulk
α (h̄ω) =

e2 h̄ω

8π2m2
0h̄2v3ε0εr

∑
i

∫

d3k

(2π)3

{

|α∗ · 〈ψc(k) |− ih̄∇|ψVi(k)〉|2

× fe[Ec(k)] fh[EVi(k)] δ [Ec(k)−EVi(k)− h̄ω]
}

,

(7.7)

where the summation runs over all valence bands.

Figure 7.1 shows schematically how the requirement of simultaneous conservation

of electron momentum [follows mathematically from the matrix elements of −ih̄∇ in

equation (7.7)] and total energy limits the emission of photons, with the energy h̄ω, to

vertical transitions between the conduction Ec and valence bands Ev, for which Ec(k)−
Ev(k) = h̄ω.

7.4 Optical gain

The optical gain (also called material gain) describes the enhancement of a photon field,

in an optically active material. The optical gain of bulk material is given by the emission

(spontaneous and stimulated) minus the absorption coefficients, both of which are func-

tions of the electron and hole quasi-fermi functions. [26] As an example of calculations

of the optical gain, we will here briefly review the optical gain and its polarization in QW

lasers.
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Figure 7.1: The simultaneous conservation of electron momentum and total energy
limits the electron-hole recombination (blue arrow) to only vertical electron transitions
on a surface (bulk material), path (QWs) or line (QWRs) in the k space.

7.4.1 The polarization of gain in quantum wells

In publication IV we studied the polarization of gain in QW lasers. The optical gain was

computed from numerical eight-band electron structure data without assuming parabolic

band dispersion. The optical gain is in this case given by (se also publication IV)

G (h̄ω) =
e2h̄

2π2m2
0TQW

1
h̄ω

√
µrµ0√
ε0εr

× ∑
n,m

∫

dk2
‖ |Wcn,vm|2

{

fe

[

Ecn(k‖)
]

− fh

[

Evm(k‖)
]}

Γh̄ω
[

Ecn

(

k‖
)

−Evm

(

k‖
)

− h̄ω
]2

+Γ2
h̄ω

,
(7.8)

where TQW is the width of the QW, µr ≈ 1 is the relative permeability, Γh̄ω is the linewidth

broadening, and the summation indices n and m run over the conduction and valence

bands, respectively. For the electric dipole matrix element we have used

Wcn,vm = α∗ · 〈ψcn |− ih̄∇|ψvm〉 , (7.9)
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ψcn and ψvm being the electron and hole eight-band eigenstates. The polariza-

tion of the amplified photon field enters equation (7.8) through the polarization vec-

tor α. Figure 7.2 shows the polarization of the optical gain in a lattice-matched

Ga0.47In0.53As/Al0.48In0.52As (001) QW, using different gain and electronic structure

models. The 6 and 8 band results were obtained using equation (7.8), whereas the AKS

results refer to a symmetry-adopted two-band model (AKS), [138] as explained in publi-

cation IV.
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Figure 7.2: Material gain, using different models for (a) the TM and (b) TE polarizations
in a 10nm wide, lattice-matched and (001) oriented Ga0.47In0.53As/Al0.48In0.52As QW.
All results correspond to a line-width of Γh̄ω = 6.6meV and charge carrier densities of
ne = nh = 5x1018cm−3.

The polarization dependence of the gain in QW lasers originates from the sym-

metries of the electron and hole eigenstates, which form the lowest conduction and the

highest valence bands, respectively. In publication IV, we studied how the symmetry of

the valence bands change as a function of the wave vector k. We found that the heavy-

hole (HH) eigenstates rotate with the k vector, thereby, also affecting the polarization of

the differential gain as a function of k. This effect cannot be described accurately without

accounting for the coupling of the valence bands, i.e., by using a parabolic band model.

However, already six-band models seem to describe this effect very accurately.

The symmetry of the electron and hole states does also set the gain of the TE and
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TM laser modes apart. The highest valence band of a typical lattice matched QW has a

strong HH character and couples thereby effectively to the TE mode (α perpendicular to

the QW growth axis). The TM mode (α parallel with the QW growth axis) can, on the

contrary not couple to HH-type bands and is as a consequence amplified by electronic

recombinations, involving more excited valence bands. It follows that the threshold ener-

gies and the gain profiles of the two laser modes are different.
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8 Carrier dynamics in quantum dots

In publications V and VI we reported simulations of the QD PL and carrier dynamics of

SIQDs corresponding to physical conditions in selected spectroscopic experiments. These

simulations were based on a master equation model of the time-evolution of the electron

and hole populations. In this section we review the main carrier relaxation phenomena

(and the modeling of these), which together with the radiative recombination governs the

dynamics of SIQDs and define their PL.

8.1 Phonon scattering

Phonons are energy quanta of elastic vibrations in an atomic lattice. The related field

of atomic displacement û can be described using standing waves and the technique of

second quantization [26, 139]

û =

√

h̄

2NΩmωqα
∑
q

[(

â
†
−q + âq

)

αqeiq·r +
(

â†
q + â−q

)

α∗
qe−iq·r

]

, (8.1)

where αq is the polarization, ωqα is the angular frequency, NΩ is the number of unit

cells in the lattice, â
†
q (â†

−q) is the annihilation (creation) operator of mode q and m is the

atomic mass. In zinc blend lattices, where the unit cell contains two atoms of different

species, there are four different phonon branches. The acoustic (optical) modes corre-

spond to the atomic displacement, where both atoms of the unit cell move in the same

(opposite) direction. The longitudinal (transverse) modes, on the other hand, correspond

to an atomic displacement along (perpendicular to) the phonon wave vector k.

8.1.1 Phonons in heterostructures

In semiconductor quantum structures, the phonon modes are altered by the imposed spa-

tial dependence of atomic masses and spring constants (elastic constants). This changes

the energy dispersion of the photons and gives rise to interface or confined photon modes.

[140] A thorough description and understanding of the phonon modes in artificial mate-
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rials and their coupling to the electronic states would require first-principle calculations

of the normal phonon modes. [141–143] In SIQDs the situation is further complicated

by the build-in strain, the stressor island and the semiconductor interface. Atomic level

simulations of phonon spectra in SIQDs have to our knowledge not been done and it is

out of the scope of this work. We have, therefore, described the phonon-relaxation of

electrons in terms of either experimental or theoretical (bulk phonon mode) estimates of

the corresponding time constants (see below). [144–146]

8.1.2 Electron-phonon interaction

The interaction between electrons and phonons is the key mechanism by which the carrier

temperature approaches the lattice temperature. The interaction between electrons and

phonons arises from the electric field, associated with the harmonic displacement field

of the phonons. The two main types of electron-phonon interactions, in III-V compound

semiconductors, arise as a consequence from (1) the strain-induced band-edge deforma-

tion by the elastic displacement of the phonon field and from (2) the local electric dipoles,

which are induced by the deformation of the ionic crystal. [26]

The Hamiltonian of the electron - acoustic phonon interaction can be derived as an

elastic strain-induced and time-dependent band edge deformation. The electronic pertur-

bation of acoustic phonons Ĥacc
ep is proportional to the gradient of the deformation and the

deformation potential D of the studied band valley: Ĥacc
ep = D∇ ·u. [26] Note, however,

that the divergence of the electric field of transverse optical phonons is zero ∇ ·E = 0 and

they do consequently not couple to the electronic states.

Polar optical phonons arise in III-V compound semiconductors, as a result of the

ionic structure of the material. The electronic perturbation is in this case a result of the

dipole, produced by the vibration of the cation against the anion, in each unit cell. [26]

The main phonon scattering of electrons is thereby due to the emission of longitudinal

acoustic (LA) and longitudinal optical (LO) mode phonons.

Inoshita and Sakaki have shown that also two-phonon processes are important for

the QD scattering processes. [147]. We will, however, for simplicity only list the main

single-phonon relaxation rates in QDs. The relaxation time for first-order LO or LA
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phonon emission is given by

1
τph

=
2π

h̄
∑
q

∣

∣

∣
M

i f
q

∣

∣

∣

2
(Nq +1)δ

(

E f −Ei − h̄ωq

)

, (8.2)

where Nq = [exp(h̄ωq/kBT −1)]−1 is the Bose distribution function. The matrix elements

M
i f
q can be written as [147]

M
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where V is the system volume, ρ is the bulk density, v is the sound velocity and the

Fröhlich coupling constant is given by

M =

√

2πe2 h̄ωLO

(

1
ε∞

− 1
ε0

)

, (8.4)

ωLO being the angular frequency of the LO phonons and ε0/ε∞ the dielectric constants.

8.1.3 The phonon bottleneck in quantum dots

The intraband relaxation in SIQDs proceeds, under small carrier densities, through the

emission of either LA or LO phonons. The emission of LA phonons gives rise to a

very effective mechanism of hole relaxation, because of the small level spacing of the

hole levels ∆E . 3meV. The electron levels have, on the contrary, a level spacing of

∆E ≈ 10−15meV, which is too large for an efficient emission of LA bulk phonons and

too small for the emission of LO bulk phonons. This is the result of the requirement of

simultaneous conservation of momentum and energy; and the energy dispersion of bulk

phonons. [148, 149] This lack of efficient phonon relaxation mechanisms is called the

phonon bottleneck. [146] The relevance of the phonon bottleneck in laser applications

and photonic devices is, however, not well understood and subject of open controversy

(compare e.g. References [150] and [151]).
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8.2 Relaxation by carrier-carrier interactions

The scattering (trapping) of carriers from the QW state continuum to the discrete states of

a QD, proceeds either through Coulomb scattering in the two-dimensional electron-hole

gas [26] or through phonon emission. The former is very much dependent on the carrier

concentration of the QW and very effective at high carrier densities. [144] In the scattering

from the two-dimensional electron-hole gas to the QD, the carrier has to donate all of their

kinetic momentum and a certain amount of energy to the electron-hole gas, in order to

enter any of the QD states. The Coulomb scattering from the QW state continuum to the

QD was computed and discussed in detail by Bockelmann and Egeler in Reference [152];

and by Braskén et al. in Reference [144].

The Auger process is another Coulomb mediated mechanism of energy exchange

between two carriers. [153] Figure 8.1 shows a few possible Auger processes in a QD,

where one electron is relaxed (or recombines) by exciting another electron or a hole to

the continuum of QW states. The rate of the Auger process is given by [26]

W A
i1i2→ f1 f2

=
2π

h̄

∣

∣

∣

∣

〈

ψ f1 ,ψ f2

∣

∣

∣

∣

e2

4πε0εr(r1,r2)|r1 − r2|

∣
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2

δ[E f1 −Ei1 −(E f2 −Ei2)],
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where ψi1 and ψi2 are the wave functions of the two initial states; and ψ f1 and ψ f2 are the

wave functions of the final states (assumed empty) of the transitions.

The confinement-induced enhanced Coulomb interaction and the relaxation in the

translation momentum conservation leads to increased Auger rates in comparison with

those in bulk materials. [154] However, the discrete electronic structure of QDs reduces

again the QD Auger rates because of the reduced availability of initial and final states,

conserving the energy. The Auger relaxation in QDs can as a result occur efficiently only

with the participation of at least one state from the continuum of QW states (or with the

assistance of a phonon, as a four-particle process). [155] The relaxation of electrons in

QDs [through the process in figure 8.1(b)] becomes effective as soon as there are already

a few holes in the QD states. The rate of the Auger process is in this case proportional to

the occupation of the QD hole states and the density of vacant hole states in the QW.
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Figure 8.1: The carrier relaxation through Auger processes conserves the total energy
and can proceed with or without the assistance of phonons. Energy exchange between
(a) two electrons and (b) an electron and a hole. The Auger process can also give rise
to (c) non-radiative recombination. Process (b) is expected to be the main mechanism of
electron relaxation in QDs.

8.3 Master equation modeling of strain-induced quantum

dots

The electron-hole population of QDs under optical excitation is typically not under ther-

mal equilibrium or quasi-equilibrium. The populations are instead governed by an inter-

play of continuous relaxation and recombination. The optical excitation generates con-

tinuously highly excited carriers, which undergo a sequential process of relaxation and

recombine randomly either after reaching the QD ground state or during the relaxation

process. It follows that, the carrier populations and their time evolution are not described

by the Fermi distribution. The carriers populations have instead to be modeled by differ-

ential master equations, where the steady-state is reached as a balance between the partial

transition and recombination rates.

In publication V we presented a master equation model and Monte Carlo simula-

tions of the carrier dynamics in SIQDs. This model made use of both experimental and

theoretical time constants of the intraband relaxation and radiative recombination pro-

cesses. The electronic structure of the model was based on numerical eight-band EFA

electronic structure calculations.
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8.3.1 General carrier dynamics

Figure 8.2 depicts the main carrier dynamics processes of a SIQD and the surrounding

QW. In a typical PL experiment the carriers of SIQDs are created by optical laser pump-

ing (e.g. Ar+ laser, where the excitation energy is well above the QWband gap energy).

This generates hot carriers mainly in the bulk barrier material, from where they subse-

quently relax to the bulk band edge and diffuse to the SIQD either directly or through

the QW state continuum. The lifetime of the LO-phonon assisted QD-capturing is of

the order of τ ∼ 1ps, whereas the radiative lifetime of the QW carriers is of the order of

τ ∼ 0.5ns. The intraband relaxation of holes in the QD has been estimated to the order

of 30ps, but the relaxation lifetime of the QD confined electrons is not very well known

(see section 8.1.3 on the phonon bottleneck). [144] The radiative recombination life time

of QD carriers is of the order of τ ∼ 1ns. [144]

Q W  l u m i n e s c e n c e
t  ~  0 . 5 n s

C o n d u c t i o n  b a n d

V a l e n c e  b a n d

A u g e r  p r o c e s s

I n t r a b a n d
t r a n s i t i o n

Q D  l u m i n e s c e n c e
t  ~  1 n s

L A - p h o n o n
p r o c e s s  t  ~  3 0 p s

L O - p h o n o n
e m i s s i o n  t  ~  1 p sC o u l o m b  s c a t t e r i n g

i n t o  Q D e

e
e

e

e

e e

e

e

h
h

h h
h h

hh

e

2 m e V
1 0 m e V

9 5 m e V

1 4 m e V

2 D  e l e c t r o n  g a s

2 D  h o l e  g a sh

Figure 8.2: Intra- and interband carrier processes in strain-induced quantum dots.
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8.3.2 Electron-hole recombination

The electron-hole recombination in SIQDs proceeds mainly through radiative recombi-

nation between electrons and holes confined to the deformation potential (DP) minima

in the center of the SIQD. The radiative recombination between electrons confined to

the deformation potential (DP) minimum and holes in the PEP minima is also possible,

although, less probable because of the spatial electron-hole separation. This recombina-

tion probability does, however, increase with increasing state excitation and decreasing

spatial confinement. The recombination rate of the very deepest PEP states is still negli-

gible. These states are optically dark, having a radiative lifetime of up to 1s. The relative

amplitudes of the different recombination used were in our master equation simulations

were obtained both numerically and from experimental observations. [156]

8.3.3 Intraband relaxation

At high carrier concentrations the intraband relaxation of carriers is very efficient. It is a

combined result of Auger processes and phonon emission. In our master equation models

we have assumed, for simplicity, that the intraband relaxation occurs only between subse-

quent electron or hole levels, without addressing the relaxation to a particular mechanism.

The intraband relxation lifetimes were fitted to experimental observations. [156]

8.3.4 Long-lived charge separation

The large density of hole states in the PEP minima gives rise to an effective flow of holes

from the QW state continuum towards the deepest PEP states. However, the long lifetimes

of these states prevents the holes of these states to recombine, which in turn gives rise to

accumulation of positive charge in the PEP minima. Since the SIQDs can be assumed

charge neutral (see publications V and VI) it follows that, the DP will in turn hold excess

electrons. This gives rise to a polarization of the SIQD and a spatial charge separation,

which can persist even long after turning off the carrier generation.
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8.3.5 Carrier modulation with a THz field

Figure 8.3 shows schematically the experimental setup, that was analyzed in publication

V, and the main results. We showed that an intense external THz field breaks the above

discussed electron-hole separation. This was shown to affect the QD PL both in the CW

and in the transient regimes. The THz field, assuming that the energy of the THz photons

matches the energy separations of the PEP and DP states, couples the hole populations of

the PEP and DP minima. This gives rise to a new relaxation path, in addition to the ladder

of DP states, between the QW carrier reservoirs and the deepest DP states. The THz field

can, furthermore, release the stored charge of the SIQD and thereby activate a short pulse

of ground state QD PL even a second after the carrier generation has been turned off. For

more details on the effect of an external THz field on the PL of SIQDs see publications V

and VI.

Q D  S a m p l e  

P L  D e t e c t i o n

Q D  i n t r a b a n d
e x c i t a t i o n

A r +  o r  T i - S a p

( a )

P
L
 in

te
n
si
ty
 (
a
rb
. 
u
n
its

)

( c )

w i t h  T H z
w i t h o u t  T H Z

E x p e r i m e n t

E n e r g y  ( e V )
1 . 2 2 1 . 2 6 1 . 3 0

Q W

Q D 1

T h e o r y( d )

I n t e r b a n d  e x c i t a t i o n  

E C

E H H

A r +
2 . 5 4  e V

T i - S a p
~ 1 . 3  e V

Q W

V i s i b l e  a n d  N I R  l a s e r s

E C

E H H

F E L ,  0 . 5 ~ 2 0  m e V

F E L

Q W

Q D 1

Figure 8.3: (a) Experimental setup, that was theoretically analyzed in publication V.
SIQDs are simultaneously pumped by an Ar+ (or Ti-Sap) laser and a free electron laser
(FEL). The THz radiation increases the ground state QD PL, at the same time reducing
the PL of the excited QD transitions and of the QW. The experimental (b) and simulated
(c) PL are in good qualitative agreement.
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The integration of quantum mechanically operating structures and devices in applied elec-

tronics has proven to be very challenging. The development of the main-stream integrated

circuitry relies currently, as a result, on the down scaling of classically operating transis-

tor architectures. The main reasons to the slow introduction of quantum devices are the

indirect band gap of Si (making Si optically inactive), the vulnerability of quantum me-

chanical states (the coherence time becomes very short at room temperatures for any

quantum system), and the difficulties associated with the preparation and the read-out

of a quantum mechanical state. However, quantum mechanical circuits are superior to

their classical counterparts in many aspects, for instance in terms of power consump-

tion, switching times and in particular the enabling of quantum computations hold great

promise of superior numerical power in specific computational tasks. In this work we

have been studying both the integration of quantum mechanical electrical transistors with

Si complementary metal-oxide-semiconductor (CMOS) circuits and the basic physics of

optically active III-V compound semiconductor quantum devices. We have in particu-

lar focused on the effect of strain on the quantum mechanical operation of the studied

devices.

We have modeled the effects of strain, induced by the thermal oxidation of Si, on

the conductance of ballistic Si electron waveguides using a semiempirical strain model.

The computational strain model was based on detailed cross-sectional transmission elec-

tron micrograph (TEM) images and elastic continuum-based hydrodynamical oxidation

considerations. The waveguide conductance was simulated using the Landauer-Büttiker

formalism. We have predicted a large and non-uniform strain in Si waveguide transis-

tor, fabricated by dry thermal oxidation. This oxidation-induced strain may, according to

our results, lead to carrier traps or multiple current channels within the single-crystal Si

devices, depending on the device geometry. The predicted effects should be experimen-

tally observable in conductivity experiments as Coulomb blockade or as a doubling of the

conductance quantization.

We studied the formation of quantum wires (QWRs) in (In,Ga)As quantum wells
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(QWs), as a result of a corrugated well-barrier material interface, using continuum elastic-

ity and the multi-band envelope function model. Several empirically predicted device ge-

ometries and material combinations were investigated. We predicted clear QWR-like fea-

tures in the optical absorbtion spectra of these structures, although the QWR-confinement

of carriers within the QW was in general fairly weak. The strain, caused by the lattice

mismatch was, however, found to enhance the QWR-confinement.

We studied also the polarization of gain in regular QWs using the multi-band enve-

lope wave function model in the single-particle and electric-dipole approximations. The

emphasis was on the analysis of similar previously reported and currently widely used

gain models. We analyzed in particular the role of the inter-valence band and conduction-

valence band mixing on the polarization of gain.

The largest part of this thesis is formed by our simulations and analyses of strain-

induced quantum dots (SIQDs). This study was thoroughly reviewed in publication VI

and include the simulation of the elastic strain, electronic structure, carrier dynamics and

photoluminescence. We were able to shed new light on several important features of

SIQDs. These include the simulations of the long-lived charge separation (and trapping),

time-resolved quantum dot (QD) photoluminescence, quantum confined stark effect, and

the analysis of THz radiation-induced cooling of radiative QD excitons.
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