Modeling the effects of Burst Packet Loss and Recency on Subjective Voice Quality

Alan Clark Telchemy

alan@telchemy.com

Embedded Monitoring

- Need to monitor QoS to provide feedback on network performance / impact on subjective quality
- Desirable to provide monitoring in the form of a lightweight software agent
- Focus on time varying impairments burst packet loss and "recency"

Embedded Monitoring

The E Model

- "Mouth to ear" transmission quality measurement
- Produces an "R" factor typically in the range 50 (bad) -95 (good)
- R factor can be related to MOS score, Terminate Early (TME) etc.
- ITU G.107/ G.108 and ETSI ETR250

R Factor vs MOS

R Factor

MOS

Percentage of users that terminate calls early

E Model

 $\mathbf{R} = \mathbf{R}\mathbf{o} - \mathbf{I}\mathbf{s} - \mathbf{I}\mathbf{d} - \mathbf{I}\mathbf{e} + \mathbf{A}$

Base R value
- Noise level

Impairments that occur simultaneously with speech

- received speech level
- sidetone level
- quantization noise

Impairments that are delayed with respect to speech

- talker echo
- listener echo
- round trip delay

Advantage factor

Equipment Impairment Factor - CODEC

- multiplexing effects

Extended E Model

Instantaneous Quality

Source France Telecom

"Recency" effect

60 second call

Jitter and Packet Loss

Loss Model - Markov model

Loss Model - mapping loss to I_e

Determining QoS metrics

1. Determine "good" and "bad" state Ie Factor

Determining QoS metrics

Determining QoS metrics

Measuring Delay

Estimation of recency effect

Execution model

Integration with VoIP SMS

Ranking accuracy – Set 1

Ranking Accuracy – Set 2

Ranking Accuracy – Set 4

Conclusions

- Computational model meets design goals
- Ranking accuracy is comparable to human listener
- But need -
 - Systematic comparison with PSQM/ PESQ
 - Increased level of subjective testing
 - Add support for VAD, non-PLC
 - Improved accuracy requires some information on voice frame content

Further work areas

- Use CODEC generated frame loss event indicate presence of speech energy
- Additional subjective testing
 - Wider variety of audio sources
 - Force listeners to focus on call content
 - Design impairments to isolate recency effect, burst characteristics, masking effects