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Abstract

Background: Besides the promising application potential of nanotechnologies in

engineering, the use of nanomaterials in medicine is growing. New therapies employing

innovative nanocarrier systems to increase specificity and efficacy of drug delivery

schemes to reach non-operable structures are already in clinical trials. However the

influence of the nanoparticles (NPs) themselves is still unknown in medical applications,

especially for complex interactions in least investigatable neural systems. The aim of

this study was to investigate in vitro effects of coated silvernanoparticles (cAg-NPs) on

the excitability of single neuronal cells and to integrate those findings into an in silico

model to predict possible effects from single cells up to neuronal circuits and finally to

neural field potentials generated by those circuits.

Methods: First, patch-clamp measurements were performed to investigate the effects

of nano-sized silver particles, surrounded by an organic coating, on excitability of single

cells. Second, it was determined which parameters were altered by exposure to those

nanoparticles using the Hodgkin-Huxley model of the sodium current. As a third step

those findings were integrated into a well defined neuronal circuit of thalamocortical

interactions to predict possible changes in network signaling due to the applied cAg-NPs,

in silico. Fourthly, the model was extended to observe neural fields originating from

Hodgkin-Huxley type neurons. Therefore it was investigated how the neural field poten-

tials influence the spike generation in neurons that are physically located within these

fields, if this feedback causes relevant changes in the underlying neuronal signaling within

the circuit, and most important if the cAg-NPs effects on single neurons of the network

are strong enough to cause observable changes in the generated field potentials themselves.

Results: A rapid suppression of sodium currents was observed after exposure to

cAg-NPs in the in vitro recordings. In numerical simulations of sodium currents the

parameters most likely affected by cAg-NPs were identified. The effects of such changes

on the activity of networks were then examined. In silico network modeling indicated

effects of local cAg-NP application on firing patterns in all neurons in the circuit. It has

been shown that field potentials have strong effects on the action potential generation

of neurons that are exposed to those fields. Furthermore, it was also shown that this is

also affecting the underlying neuronal signaling. The assumed cAg-NPs presence in the

circuit’s thalamic cells were finally found to also have distinctive effects on the emerging
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neural field potentials.

Conclusion: The sodium current measurements and simulations show that suppression

of sodium currents by cAg-NPs results primarily in a reduction in the current amplitude

right after a few seconds of particle addition. The network simulations on larger scale

show that locally cAg-NPs induced changes result in diversification of activity in the

entire circuit. This was also found for the field potential simulations on a more larger

scale. The results indicated that local application of cAg-NPs may influence the activity

throughout the network and may cause distortions in cortical field potentials in vivo.

This multiscale model may subserve as basic approach to estimate the NPs affected

spatiotemporal dynamics of cortical field potentials on a very small cortical patch. The

electrophysiological detection of this simulated effect by utilizing the voltage sensitive

dyes technique is part of the future work that will be carried out by the group ”Systems

Neuroscience and Neurotechnology Unit”.
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Zusammenfassung

Hintergrund: Neben den vielversprechenden Anwendungsmöglichkeiten von Nanotech-

nologien in Ingenieurswissenschaften steigt die Verwendung von Nanomaterialien in

medizinischen Anwendungen exponenziell. Neue Therapieformen, welche sich bereits

in klinischen Tests befinden, bedienen sich innovativer Nanocarrier-Systeme um sowohl

die Spezifizität als auch die Effektivität von gezielter Pharmakotherapie zum Erreichen

inoperabler Strukturen zu verbessern. Hinsichtlich medizinischer Anwendungen sind

jedoch die physiologischen Einflüsse von Nanopartikeln (NPs) noch weitestgehend un-

bekannt, dies gilt vor allem im Hinblick auf komplexe Interaktionen solcher nanoskaliger

Partikel mit nur schwer untersuchbaren neuronalen Systemen im Organismus. Das

Ziel dieser Studie war die Untersuchung von in vitro Einflüssen von ummantelten

Silber-Nanopartikeln (cAg-NPs) auf die Erregbarkeit einzelner neuronaler Zellen.

Anschließend sollten diese Effekte in ein in silico Modell übertragen werden um mögliche

Auswirkungen, angefangen bei Einzelzellen über neuronale Schaltkreise bis hin zu neu-

ronalen Feldpotenzialen, welche durch diese Schaltkreise generiert werden, vorauszusagen.

Methoden: In einem ersten Schritt wurden Patch-Clamp Untersuchungen durchgeführt,

mit Hilfe derer die Effekte nanoskaliger Silberpartikel mit organischer Ummantelung

auf die elektrophysiologische Erregbarkeit von einzelnen Zellen erforscht werden sollten.

Im zweiten Schritt wurden unter Einbeziehung des elektrophysiologischen Modells von

Hodgkin und Huxley für Natriumströme diejenigen (Modell-)Parameter bestimmt, welche

durch die Hinzugabe von cAg-NPs verändert werden. Als drittes wurden diese Resultate

in ein etabliertes Modell thalamo-kortikaler Interaktion integriert, um damit mögliche

cAg-NPs basierte Veränderungen in der korrespondierenden Netzwerkkommunikation

vorherzusagen. Im vierten Schritt erfolgte die Erweiterung des entwickelten Modells um

die Simulation neuronaler Feldpotenziale, welche durch die Hodgkin-Huxley Neuronen

des ober aufgeführten Modells verursacht werden. Zu diesem Zweck wurde untersucht,

wie neuronale Feldpotenziale das Feuerverhalten von Neuronen, welche physisch in

den generierten Feldern gelegen sind, beeinflussen. Die Frage, ob dieses Feedback

relevante Veränderungen in den unterliegenden neuronalen Kommunikation innerhalb des

Schaltkreises hervorruft wurde genauso adressiert wie schließlich die Fragestellung, ob

die durch cAg-NPs verursachten Effekte auf einzelne thalamische Zellen ausreichen, um

tatsächlich Veränderungen in den höherskaligen kortikalen Feldpotenzialen hervorzurufen.
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Ergebnisse: Nach der Zugabe von cAG-NPs konnte in vitro eine schnelle Suppression

der Natriumströme beobachtet werden. Die numerische Simulation von Natriumkanälen

ließ die Identifizierung von denjenigen Hodgkin-Huxley Parametern zu, welche durch die

cAg-NPs beeinträchtigt wurden. Nachfolgend konnten auf dieser Basis die Effekte der

NPs induzierten Änderungen der Aktivität von Zellnetzwerken im Modell untersucht

werden. Das entwickelte in silico Neuronenmodell war in der Lage, die Effekte durch

die lokale cAg-NPs Applikation (ausschließlich thalamische Zellen) im Netzwerk auf das

Feuerverhalten aller im Schaltkreis befindlichen Neuronen abzubilden. Weiter konnte

gezeigt werden, dass Feldpotenziale einen starken Einfluss auf die Generierung von

Aktionspotenzialen von Neuronen haben, welche innerhalb dieser Feldern lokalisiert

sind und dass sich diese Beeinflussung ebenfalls auf die neuronale Reizweiterleitung

im gesamten Neuronenverbund auswirkt. Schließlich konnte anhand des um neuronale

Feldpotenziale erweiterten Modells auch gezeigt werden, dass die angenommene lokale

cAG-NPs Präsenz im Schaltkreis eindeutig observierbare Effekte auf die höherskaligen

neuronalen Feldpotenziale haben.

Zusammenfassung: Die elektrophysiologischen Messungen, wie auch die Simulation

von Natriumströme haben gezeigt, dass die cAg-NPs bedingte Suppression sich primär

in einer Reduktion der Amplitude dieser Ströme wenige Sekunden nach Zugabe der

Partikel darstellt. Die höherskaligen Simulationen von Netzwerkkommunikation und

Feldpotenzialen offenbaren, dass eine lokale, cAg-NPs bedingte Modifikation des

Feuerverhaltens weniger Zellen eine Änderung des gesamten neuronalen Schaltkreises

und der damit korrespondierenden neuronalen Feldpotenziale zur Folge hat. Bezüglich

einer Transferierung dieser Ergebnisse in vivo indizieren diese, dass die lokale Applikation

von cAg-NPs die Aktivität des gesamten Netzwerks beeinflussen kann und dies könnte

eine Verzerrung damit verbundener kortikaler neuronaler Feldpotenziale bedingen. Das

entwickelte Multiskalenmodell stellt somit eine erste grundlegende Methode dar, um

die NPs bedingte Änderung der Dynamik kortikaler Feldpotenziale eines sehr kleinen

Kortexausschnitts abzuschätzen. Eine elektrophysiologische Erfassung dieses simulierten

Effekts unter Nutzung von Voltage Sensitive Dyes im Tiermodell ist Ziel der Folgearbeiten

innerhalb der Arbeitsgruppe ”Systemische Neurowissenschaften und Neurotechnologie

Unit”.
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Notation

ADHD attention deficit hyperactivity disorder

ADP afterdepolarization

AEP auditory evoked potential

Ag silver

Ag+ silver-ions

Ag-NPs silver-nanoparticles

AHP after hyperpolarization

AMPA α-amino-3-hydroxyl-5-methyl-4-isoxazole-

propionate

AP action potential

cAg-NPs coated silvernanoparticles

Cm membrane capacitance

CuO copperoxide

DE differential evolution

EEG electroencephalography

FS fast spiking

GABAA γ-aminobutyric acid-A

GABAB γ-aminobutyric acid-B

GPi internal segment of the globus pallidus

G-protein guanine nucleotide-binding protein

HH-model Hodgkin-Huxley-Model

ICa calcium current

ID dendritic current

IK potassium current
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IK−AHP long-lasting calcium-dependent AHP potassium

current

IK−C calcium-dependent potassium current

IK−DR delayed rectifier potassium current

IN interneuron

INa sodium-current

IS somatic current

ISI interspike interval

ISY N synaptic current

LFP local field potential

MUA multi unit activity

Na+ sodium-ions

NMDA N-methyl-D-aspartate

NPs Nanoparticles

NSTC non-specific thalamic cell

ODE ordinary differential equation

PDE partial differential equation

PIR post-inhibitory rebound

PY pyramidal neuron

RS regular spiking

RTN reticular thalamic nucleus

STC specific thalamic cell

TC thalamocortical

VD dendritic voltage

VS somatic voltage

ZnO Zincoxide
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Chapter 1

Introduction

1.1 Nanoparticles in Medicine

The areas of application of nanomaterials have increased in the last decade and

are not easy to grasp any more. They range from the application in paints and

cosmetics to textiles, foods, food grade packaging, and various other technical

products. The use of nanomaterials in medicine is notable since it comes with

high expectations and hopes for treatment of hitherto untreatable diseases.

Nanoparticles (NPs) offer a wide range of sizes, morphologies, and surface features

that assure potential implementation in drug delivery, diagnostics, and therapy

(Gupta and Gupta 2005). A big challenge in current research is to overcome

existing drug delivery barriers such as biomembranes and the blood-brain barrier

employing nonviral vectors functioning at the nano-to-micro scale. Those systems

could be utilized for the systemic delivery of drugs or genes to target cells for

therapy of cancer, inflammation or for the intended modulation of neural activity

in brain tissue, e.g., see Zhang et al. 2012; Lamarre and Ryadnov 2011.

Regarding nanotoxicology, research is in its infancy and many questions remain

unanswered and unadressed. Studies in biological systems show that the physical

parameters of nanosized particles influence their non-specific absorption in cells

and their potential to induce cellular responses (Chithrani et al. 2006). Existing

studies provide limited information in terms of the cellular processes affected by

exposure to NPs and their subsequent impact. To understand how NPs of different

material, size, and geometry interact with cells it is necessary to explore the
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1.2 Computational Modeling

NP-membrane interaction processes on the molecular scale, i.e., receptor-binding,

endocytosis, and signaling activation (Jiang et al. 2008; Unfried et al. 2007).

Regarding excitable cells, a starting point is the electrophysiological behavior of

cells exposed to NPs. Recent nanotoxicology studies (Oberdörster 2010; El-Ansary

and Al-Daihan 2009; Wijnhoven et al. 2009) identified (pure) silver nanoparticles

(Ag-NPs) as potentially toxic in tissue, especially in neurons. Xu et al. 2009;

Zhao et al. 2009b; Liu et al. 2009 examined the influence of nano-sized CuO,

ZnO, and Ag on single neurons in vitro using the patch-clamp method. They

observed effects of Ag-NPs on the amplitude and the time course of the sodium

current (INa). The underlying mechanism of the changes in INa was not determined.

1.2 Computational Modeling

Mathematical and computational neuronal models are powerful and important

tools for the exploration and the comprehension of the evolution and structure

organization of the nervous system, and in particular the dynamic processes in

mammalian brains. A wide spectrum of neuronal models have been developed

within the last decades. They capture and describe processes ranging from single

cell dynamics in the microscopic level, up to large-scale neuronal population

activity. As models can be employed as bridges between different levels of com-

plexity, they must be detailed enough to capture the dynamics at the lower level

of complexity, yet simple enough to provide clear results at the the higher level.

Hence, the smart integration of single neuron models into large-scale computational

network models possess the promise of boosting studies of the brain by providing

potentialities to test hypotheses, while it simultaneously allows to employ models

of complex biological processes where experiments are not longer feasible.

1.2.1 Single Neuron Models

The biophysically most meaningful mathematical representation of a single neuron

was introduced by Alan Hodgkin and Andrew Huxley, developed in the 50s of

last century, see Hodgkin and Huxley 1952. The so called Hodgkin-Huxley model
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1.2 Computational Modeling

(HH-model), that combines a set of nonlinear ordinary differential equations,

is suitable to exhibit the neuronal behavior and properties of the nerve cells

depending on measurable electrophysiological parameters such as the maximal

conductance, steady-state (in)activation functions and time constants and thus has

the best spatiotemporal resolution (Hodgkin and Huxley 1952; Izhikevich 2004;

Nelson 2004).

Such models are important not only because their parameters are biophysically

meaningful and measurable, but they allow us to investigate issues related to

synaptic integration, effects of dendritic morphology, the interplay between ionic

currents, and other issues related to single cell dynamics (Hodgkin and Huxley

1952). Because of its complex formalism, the disadvantage of this model in the

recent years was that its calculation is of extremely high computational cost

(1200 operations/1ms), hence, it is time consuming. But since computational

power increases steadily, this one returns and moves more and more into the focus

of modern modeling for questions where largest spatiotemporal resolutions are

needed, see Hodgkin and Huxley 1952; Izhikevich 2004; Nelson 2004 for detailed

discussions.

Although more than 50 years after Hodgkin and Huxley analyzed the squid axon,

simple neuron models still offer surprises, many following studies criticized that

the standard Hodgkin-Huxley formalism neglect the neuron’s spatial structure

and focus entirely on how its various ionic currents contribute to sub threshold

behavior and spike generation (Izhikevich 2004; Rinzel and Ermentrout 1989; Herz

et al. 2006). Therefore, in order to analyze the behavior of the cell precisely, it

is sometimes useful to consider the different parts of the neuron separately, i.e.,

via compartmental models. One of the significant and more realistic models that

were also applied for the pyramidal neurons (PY) in this study’s utilized circuit is

the mathematical two compartment model of the HH-formalism, which consists of

the dendrite and the soma plus axonal initial segments described in (Pinsky and

Rinzel 1994). In this model, the dendrite receives synaptic inputs and is coupled

to the soma where the neuron’s response is generated (Herz et al. 2006). As a

consequence, this model is also able for the exploration of how neurons adapt their

intrinsic properties to represent stimuli (Stemmler and Koch 1999).

Up to now, there are also a couple of other single neuron models that have shown

to be valid to fit neural firing patterns from (in vivo and in vitro) recordings

in different spatial resolutions. Clearly, the challenge for all such studies is to

find the least complex neuron model with which the observed phenomena can
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1.2 Computational Modeling

still be recreated (Herz et al. 2006). However, since most of those models are

preferably developed to mimic the more macroscopic effects of neuronal firing

by concomitantly neglecting paying attention to smaller details, these techniques

are not discussed within this thesis. Please follow Izhikevich 2007 for a detailed

discussion of such models.

1.2.2 Neuronal Circuit Models

Extensive synaptic connectivity is a characteristic property of neural circuitry: an

exemplary neuron, for instance, which is located in the mammalian neocortex,

receives thousands of synaptic inputs. The computational potential of such connec-

tivity can be explored by analysis and simulations of network models (Dayan and

Abbott 2001). Detailed investigations on cerebral neuronal circuits have provided

further evidence that these circuits exhibit fascinating stereotypical characteristics,

but that these stereotypical circuit patterns are quite complex (Gupta et al. 2000;

Thomson et al. 2002; Gupta 2003). The reason for this complexity originates

from the fact that stereotypical cortical microcircuits are composed of a fairly

large number of different types of neurons and synapses that are combined in

rather regular circuit patterns. In terms of numerical modeling, this provides in

addition the challenge to accomplish the organization of computations in such

complex microcircuits. Therefore it needs to be adressed how the variety of

those microcircuits’ components and their connection patterns complexity could

contribute - or even be elemental - for the enormous computational power of

biological neural systems.

At present time it seems to be hopeless to analyze realistic models for biological

neural microcircuits including all elements that are known to play a functional key

role within those by theoretical methods. However, computer simulations provide

the most promising tool for that challenge (Natschläger et al. 2003; Faber 2011).

They are very helpful for deducing causal connections and testing hypotheses

about individual aspects of neuronal processing and interactions.

As introduced in the subsections before, mathematical models allow neuronal

processes to be studied at several scales, from molecular interactions over single

neural models up to communication in neuronal circuits. The critical decision

when creating such simulation tools is again determining the right balance between
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1.2 Computational Modeling

detail and abstraction and in terms of multiscale modeling how to connect scale

specific models.

Taken now the advantage of a biologically high resolved neuron model like the

one introduced by Hodgkin and Huxley, modern computer technology makes it

possible to interconnect such neuron models into a neuronal circuit (even though

the required computational power is expected to be huge).

Detailed anatomical and physiological studies about the neural interactions of

particular networks discovered the intrinsic variables (synaptic interconnectivity,

transmitter release processes, reaction times) that open the door for the considera-

tion of building a biophysically meaningful computational model of those.

A neuronal circuitry that gained a lot of attention in the last decades and that

is therefore well explored is the thalamocortical loop system, studied to explore

conscious states in the brain and the famous ’binding problem’ (a detailed descrip-

tion can be found in subsection 2.5 in the methods part). Models of consciousness

that attribute a role to the thalamic system are no recent development. Almost 30

years ago, Crick 1984 offered one of the first hypotheses about consciousness, the

so called thalamic searchlight hypothesis. This hypothesis described for the first

time that the thalamus is in charge to control which region of the cortex becomes

the focal point for consciousness. Ten years later, a similar but more sophisticated

idea has been proposed by Llinás and Ribary 1993 and Llinás et al. 1994 which

hypothesized that the oscillations of certain neurons in the thalamus serve as a

sort of basic rhythm with which the cortical oscillations of the various sensory

modalities synchronize themselves to form a unified image of the environment.

These thalamocortical loops have come to play an important role in practically

all of the neurobiological theories that attempt to explain the higher states of

consciousness. Therefore, and due to their wide acceptance in the scientific society,

they were chosen to build the quantitative basis for the multiscale simulations on

Ag-NPs cell-interactions that are discussed in this thesis.

1.2.3 Neural Field Oscillation Models

Accurately representing both the architecture and functions of the human cerebral

cortex bears an interesting challenge; most of neuronal phenomena are not directly

observable. Due to the complexity of neural networks, simplifications are applied
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1.2 Computational Modeling

to their parameters, in order to keep neuronal representations as simple as possible

with as little as possible compromising their realism. This can insofar be solved

through a series connection of different modeling approaches. Here, each model

would consider a different spatiotemporal scale, reaching from single ion channels

over neurons up to neuronal populations and into neural fields, spike distributions

or single elements, all pointed to describe the complex dynamics in neuronal

activity (due to the interaction between different neuron types). One of the most

singular breakthroughs in modeling the neuronal behavior was done by Hodgkin &

Huxley, with their model of the giant squid neuron (Hodgkin and Huxley 1952),

providing a quantitative description of membrane dynamics, most specifically cur-

rent interactions due to ionic conductance. HH-single-neuron ensemble dynamics

have been studied in the microscopic domain, showing for example, how sporadic

firing is caused by background stochastic inputs (e.g., from brainstem spontaneous

activity) and how uniform sensory inputs (i.e., constant synaptic currents) lead to

a stable limit cycle dynamics and phase locking within the whole ensemble (Deco

et al. 2008).

Spiking dynamics have also been implemented in similar one-compartment,

point-source neuronal models as the leaky integrate-and-fire (LIF) (Knight 1972).

Together, the HH and the LIF models, among others, have been the basis for studies

based on spike-generating events. Due to the high computational requirements of

modeling single-neuron ensembles (in particular HH), for investigations on larger

scales, research focused only on the mean of their dynamics. In the past, neural

mass modeling allows representing a large population of spiking neurons through a

probability distribution function; the ensemble density of the population is replaced

by a point mass (e.g., a delta function) and the dynamics are location-dependent.

Moreover, temporary uncorrelated stochastic firing is reduced (e.g., ensemble mean

dynamics are linearly stable).

Another approach is the study of neural fields. Unlike neural mass modeling,

neural field models do not consider the neurons as single units, compartments or

point sources, but instead they examine the macroscopic (e.g., a cortical layer,

spatial gradients and horizontal spreading) result of the interaction within neuronal

masses. Its field of study resides in a continuum (time-space) or field, in which

neuronal dynamics such as depolarization can be observed. Parameters such as

synaptic time, signal propagation, volume conduction, among others, become

relevant for approaching EEG generation (according to the desired modeling

scope) and are therefore used within neural field models (see Deco et al. 2008 for a
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1.2 Computational Modeling

summary).

Both neural mass and field approaches are known as valid dimensional reductions,

see Luck 2005 or David and Friston 2003 for detailed discussions of those. In such,

the activity of the cortex is modeled based on the sum of synchronized neuron

columns, instead of modeling each neuron by itself. To be mentioned here is the

work done by Wilson and Cowan 1973, who established a concrete framework

for spatiotemporal interaction of excitatory and inhibitory neurons; considering

a two-dimensional layer with homogeneously distributed neurons (due to cortical

columns providing redundancy, useful for data integrity). In such a planar array,

both neuron types react in function of a distance-controlled lateral inhibition. As

a consequence of recurrent excitatory iterations, three dynamical response modes

were described: those were able to relate active transient behavior to sensorial

activity (such as the primary visual cortex), oscillatory responses to thalamic

neuron clusters and generation of EEG rhythms, and finally stable steady states of

activity related to short term memory within prefrontal connections.

A few years later a simplified form of the neural field equation was proposed by

Amari 1977, who studied the dynamics of excitation patterns in neural fields within

both excitatory and inhibitory layers (as well as both excitatory and inhibitory

neurons in a single, homogeneous layer). Lateral inhibition was implemented

with predominant excitatory connections for proximate neurons and inhibitory

connections with increasing distance. Amari discussed the interaction between

excitation patterns, as well as the dynamic patterns within two-layered fields

(oscillatory and traveling waves). His neural field equation presents a simple and

basic model, yet accurate enough to represent neural field dynamics.

Since then, such framework has been used in a variety of ways; Freestone et al.

2011 developed a framework in which they tried to adjust a continuum neural field

model (such as Amari 1977 and Wilson and Cowan 1973) to patient-specific clinical

data (such as epilepsy surgery patients) through finite-element method of the

neural field, transforming the PDE neural field equations into a finite-dimensional

system. Applications of such works is seen in epilepsy treatment, by tracking

parameter combinations that lead to seizures in the model and apply them for

patients, hopefully preventing the onset of an attack. Pinpointing the mechanisms

of abnormal excitatory and/or inhibitory behavior within the cortex (i.e., para-

metric estimation within such scenarios) would also allow for improved therapies.

Prominent investigations on neural mass models were undertaken by da Silva et al.

1976 and Jansen and Rit 1995. They observed phase synchronization by coupling
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1.2 Computational Modeling

two identical neuronal columns and alpha/beta oscillations by stimulating two

different columns; Those researchers were also able to address the role of synaptic

delay and inter-column connectivity on the appearance of evoked potentials within

their model. As of lately, the Wilson-Cowan model, together with such neural

mass models, have been thoroughly studied and used to describe localized neuronal

populations, e.g., David and Friston 2003 in which a alpha-oscillatory model was

expanded to produce rhythms ranging from the beta to the gamma band.

However, the Amari model for neural fields is still relevant and presents opportu-

nities to implement cortical dynamics, and more specifically, to study the behavior

of neural fields once the dynamics of neuronal masses are known (Potthast and

beim Graben 2009; Doubrovinski and Herrmann 2009; Aram et al. 2013).

Figure 1.1: Example for a modeled neural field based on the equations of Amari

1977.

Figure 1.1 shows an example of an Amari modeled field at an example timepoint.

One of the most common features describing neural field activity is the firing rate.

8



1.3 Contribution of this Work

It is represented usually as a sigmoidal function, not actually derived from biolog-

ical properties but from physical convenience. Adding a coupling weight, defining

a domain (e.g., cortical layer) and integrating over such domain leads to equations

such as the ones proposed by Wilson and Cowan 1973 and Amari 1977. Interac-

tion between neurons is mediated through firing rates, or explicitly through action

potentials. As Roxin et al. 2011 studied, this firing rate has some interesting prop-

erties. A time-averaged firing rate distribution presents a non-linearity, which can

be accounted as a biological inherent property of neuronal activity due to neuronal

noise for example extracellular current elicited by the dynamics of the neuronal

fields in which a cell is embedded, (which is now firmly believed to convey impor-

tant information as well; it has been sometimes neglected for large-scale networks,

thus making firing rate deterministic in nature). Such non-linearity produces a

right-skewed, long-tailed Gauss-like distribution. Single-cell spike trains are highly

non-linear (Poisson distributed) in vivo. Both in vivo, in vitro, and in neuronal mod-

els of neuronal networks (and both IF and conductance-based networks) present a

skewed distribution due to noise contribution. Only in the case of linear synaptic

inputs would a firing rate be represented by a normal distribution. This would be

the case, e.g., when a constant input current is being injected to the neurons or

for a randomly connected network where the number of neurons tend to infinity

(central limit theorem).

1.3 Contribution of this Work

The main purpose of this work is to introduce for the first time a multiscale com-

putational model to simulate the effects of NPs, which were applied to few single

neurons at a small scale, on network rhythms, and finally on large scale neural field

potentials.

Applying neuronal circuits that are located deep in the brain makes it impossible

to observe and study those effects in vivo or in vitro. Moreover, as a basic approach

to feed the computational model with data, this work was focused on the following

question: are there instant observable effects in the electrophysiology of excitable

cells when they are exposed to NPs and what kind of interaction mechanisms lead

to such effects?

We have first taken a systems approach to the question what are the effects of NPs

9



1.3 Contribution of this Work

brought into contact to a few cells of a neuronal circuit on network activity of neu-

ronal populations. To do so, patch-clamp recordings in neuroendocrine cells were

carried out and the effects of coated silvernanoparticles (cAg-NPs) on excitability

were examined. An established model of dynamic changes in membrane conduc-

tance was employed to model the observed changes in INa. Based on the fitting

results, the observed changes in INa parameters in individual neurons were com-

putationally reproduced. Later on, the work was focused on transferring the small

scale findings into the next larger scale through testing the effects of the cAg-NPs

induced changes in a neuronal network model. The outcome of this simplified in

silico model served as initial approximation of in vivo neuromodulatory effects of

cAg-NPs in neuronal circuits.

Subsequently the goal was to expand the quantitative model and take another step

in spatial scale by adding the domain of neural field potentials that are generated

by the applied neural circuitry. The model of neural field potentials focuses a very

small cortical patch and includes the implementation of feedback loops from the

largest spatial domain (neural field potentials) back to the smallest spatial scale

(single neuron) in the model. This step also requires the transition from a discrete

to a continuous domain and could be first time realized by the application of the

biophysically most meaningful HH-model as elemental unit. As a consequence, the

influence of the field potentials on single neurons can be adopted by the model in

the best physiological way.

Based on this, the final approach was targeting to link together three computational

models, each at a different spatial scale. Figure 1.2 depicts a schematic description

of the final model’s different scales.

More in detail, the HH-model of Hodgkin and Huxley 1952 describes the ionic

current dynamics temporally in a single cell. The well explored neuronal circuit

of Llinás and Ribary 1993; Llinás et al. 1994, 1998, 2002 is used to estimate the

performance of the thalamocortical activity and finally the neural field model of

Amari 1977 offers the corresponding spatiotemporal dynamics of field potentials.

The field potentials caused by the neuronal generators (cortical pyramidal neurons)

were estimated for the physical spot where every single generator is located and

feed back to those neurons as an inhibitory or excitatory somatic current within

the next time increment. These cortical cells are a part of the elaborate activity of

synchronized thalamocortical columns at the quasi-microscopic level which is based

on the model of Llinás and Ribary 1993; Llinás et al. 1994, 1998, 2002, where the

involved neurons are gathered together in units. Indeed, these coupling are based

10
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Figure 1.2: Schematic representation of the final models different scales: from single

neuron up to the chosen neuronal circuit up to the cortical neural field potentials.
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on a two compartment scheme derived from the Hodgkin-Huxley model. The spa-

tiotemporal field potential is converted into injected current to excite the somatic

compartment of a cell model. After that, the somatic and dendritic activities are

used as inputs for field estimations through the Amari field equation consisting of

two homogenous layers. The resulting field area that reflects the network’s activity

is located within an exeedingly limited local domain.

Organization of the Work:

The information is organized as follows: In Chapter 2 the employed Nanoparticles,

the applied chromaffin cells, as well as the conducted patch clamp measurements

are explained. Also the algorithm for the Hodgkin-Huxley fitting process is pre-

sented here. Moreover, the explanation of thalamocortical interactions, the Llinás

model as basis for the developed thalamocortical circuit, the applied thalamocorti-

cal network and the Amari neural field model are explained in this Chapter as well.

Finally the linking of the Hodgkin-Huxley neural circuit activity to the neural field

potentials as well as the already mentioned cyclical process of closing the feedback

loop between neural field potentials and cortical neurons are described in Chapter

2. Chapter 3 presents then the results of the developed approach. This includes the

NPs induced effects on neuronal cells from the in vitro patch-clamp recordings and

their in silico simulations, the modeled NPs induced effects on the chosen neuronal

feedback circuit and also the modeled effects of NPs on neuronal field oscillations.

Chapter 4 offers a detailed discussion of the reported results. The conclusions as

well as future works that can follow this study are finally proposed in Chapter 5.

12



Chapter 2

Methodologies

The first objective of the thesis was to determine the electrophysiological effects

of cAg-NPs on single excitable cells. For this purpose Ag-NPs with an organic

coating that prevents particle agglomeration and release of free Ag+, which is

suitable for drug delivery were applied. Patch-clamp recordings on chromaffin-cells

were carried out to evaluate the effects of cAg-NPs on the voltage gated sodium

channels (isoform Nav1.7). The Hodgkin-Huxley model of dynamic changes in

membrane conductance was employed (Hodgkin and Huxley 1952) and this model

was computationally fitted to the measured patch-clamp data. The utilization of

the Differential-Evolution-Algorithm (DE) (Price et al. 2005) allowed an efficient

fit of the model to the recorded data. As a consequence, changes in components of

the HH-model were observed which shed light on the NPs-membrane interactions.

The altered parameters were applied to modeled neurons within a neuronal

feedback circuit. Thus the possible effects of those cAg-NPs on network dynamics

were explored in silico, i.e., modeling intrinsic single cell dynamics and network

oscillations in a circuit by reverting to an extended Hodgkin-Huxley-type formalism

and dynamic synaptic coupling based on an example of the thalamocortical model

introduced by Llinàs et al. (Llinás and Ribary 1993; Llinás et al. 1994, 1998,

2002) that served as theoretical fundament for the computational implementation.

Consequently, the neuronal response dynamics of the network neurons assuming

with and without the interference of cAg-NPs in specific and non-specific thalamic

cells (STC/NSTC) and in reticular thalamic cells (RTN)(all of isoform Nav1.2)

could have been compared.
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2.1 Coated Silver-Nanoparticles

2.1 Coated Silver-Nanoparticles

cAg-NPs were prepared by thermal decomposition of silver oleate and stabilized

by oleyamine. These hydrophobic NPs had a mean diameter of 5nm ± 2nm.

The particles were capped with an amphiphilic polymer (Polyethylenglycol) for

transfer in aqueous phase and steric stabilization, see Pellegrino et al. 2004 for

further explanation. Prior to use, particles were suspended in ultrapure water

and then filtered through a sterile 0.22µm membrane. ICP-AES (Horiba Jobin

Yvon GmbH, Munich, Germany) determination found a total silver content of

1.3mMol in the resulting nanoparticle dispersion, including a fraction of 0.4µMol

free Ag+. The concentration and the type of molecules and ions on the particle

surface lead to electrostatic interaction in the dilution medium and this changes

the coated particles’ hydrodynamic diameter to a mean value of 13nm ± 2nm

in pure water, 16nm ± 4nm in Roswell Park Memorial Institute cell culture

medium (Life Technologies, Carlsbad, CA, USA) (RPMI cell culture medium)

and 9nm ± 1nm in 10 x phosphate-buffered saline (PBS buffer solution)(Life

Technologies). A Dyna Pro Titan instrument (Wyatt Technology Europe GmbH,

Dernbach, Germany) was used to perform dynamic light scattering with a laser

wavelength of 831nm. The measured zeta-potential (Zetasizer Nano, Malvern

Instruments, Malvern, UK) of the nanoparticles was ∼ 69mV in pure water (steric

stabilized). Because the solution ingredients bind to the negatively charged particle

surfaces, the zeta-potential was significantly reduced when dispersed in 10 x PBS

buffer (−6mV ) and RPMI medium (−16mV ).

2.2 Chromaffin Cell Model

Chromaffin cells are neuroendocrine cells which are well characterized electrophys-

iologically and are ideally suited for voltage clamp analysis of membrane currents

due to their small size and spherical shape (Fenwick et al. 1982; Kobayashi et al.

2002; Tischler 2002). The study focused on voltage-gated sodium currents which

initiate action potentials and propagation in excitable cells (Goldin et al. 2000).

Xu et al. 2009, Zhao et al. 2009a, and Liu et al. 2009 tested the influences of CuO,

ZnO, and uncoated Ag-NPs on sodium currents in hippocampal neurons (Nav1.2)
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2.3 Patch-Clamp Measurements

by using the patch-clamp method. They found effects of Ag-NPs on the amplitude

and the time course of the sodium current (INa) in their experiments. Since the

author observed similar findings on chromaffin Nav1.7 channels it is likely that this

effect is not Nav isoform specific. This is consistent with the fact that the Nav iso-

forms in hippocampal cells (Nav1.1 & 1.2) and in chromaffin cells (Nav1.7) have an

amino acid sequence similarity of about 95% and show nearly identical electrophys-

iological behavior (Goldin et al. 2000; Catterall et al. 2005; Goldin 2001; Lorincz

and Nusser 2010; Royeck et al. 2008; Toledo-Aral et al. 1997). Those findings on

Nav1.7 channels were employed for the modeling approach, in which the measured

effects of cAg-NPs on chromaffin cell voltage-gated sodium currents were devolved

to voltage-gated sodium channels of thalamic neurons (STC, NSTC, RTN).

For cell preparation, the adrenal glands from 1-3-day-old mice were collected and

digested with 20 units of papain (Worthington Biochemical Corp., Lakewood, NY,

USA) at 37◦C for 25− 30min. After trituration, cells were plated on 25mm cover

glasses and then incubated at 37◦C and 8% CO2. Chromaffin cells were kept in cul-

ture medium (ITS-X, DMEM with GlutaMax and 100 U Penicillin/Streptomycin;

Invitrogen, Life Technologies GmbH, Darmstadt, Germany) prior to recordings

12− 48hrs later.

2.3 Patch-Clamp Measurements

Patch-clamp measurements in the whole-cell configuration were carried out with 3−

6MΩ pipettes using an EPC-9 patch-clamp amplifier controlled by PULSE software

(HEKA Instruments Inc, Lambrecht, Germany). Sodium current measurements

were performed on both cAg-NPs exposed and naive cells at a holding potential of

−70mV at room temperature. The measurement procedure was the following: In

a new dish, 4 control cells were recorded first; each recording comprised around 10

depolarizations to −10mV with the step duration of 30ms. While the last control

cell patch was still active the cAg-NPs dispersion was pipetted into the chamber

and then effects on the patched cell could be measured. Afterwards, the sodium

currents of 3 to 5 more cells from the treated dish were collected. This procedure was

repeated for concentrations of 13µMol, 16µMol, 43µMol, 130µMol and 1.3mMol

respectively. As diluent, the extracellular solution (Hepes buffered saline solution)

was utilized. Altogether, the current traces of 70 control and 45 cAg-NPs exposed
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2.4 HH fitting employing Differential Evolution Algorithm

chromaffin-cells were recorded. The extracellular solution contained 145mM NaCl,

2.4mM KCl, 10mM HEPES, 1.2mM MgCl2, 2.5mM CaCl2, 10mM glucose (pH

7.5). The pipette solution contained 135mM Cs-aspartate, 10mM Cs-HEPES,

5mM Cs-EGTA, 3mM CaCl2, 1mM MgCl2, 2mM Mg-ATP, 0.3mM Na2-GTP,

(pH 7.2).

2.4 HH fitting employing Differential Evolution

Algorithm

The original model of Hodgkin and Huxley 1952 was based on experimental data of

the notorious squid’s giant axon. All the parameters in that model’s equations were

at that time fixed based on this specific type of neurons. Therefore, to gain a HH-

model that is capable to adapt the electrophysiological behavior of chromaffin cells,

it becomes necessary to adjust all the model parameters to be characteristic for

chromaffin cells. A way to adjust these parameters is to fit the HH-model output,

e.g., a particular ion flux, to a measured ion flux by mutating the model’s particular

parameters. A sophisticated algorithm can facilitate this scheme. If this fitting

process is done for the recorded ionic sodium currents before cAg-NPs addition and

the HH-model is capable to exactly simulate those, another fitting procedure for the

INa after cAg-NPs addition makes it is possible to compare the resulting differences

in the particular model parameters. Based on these thoughts, the INa from the

recorded patch clamp data was fitted to the HH-model (Hodgkin and Huxley 1952)

to determine which parameters might be modified under the influence of cAg-NPs.

Those factors directly link to physiological mechanisms involved in action potential

generation. The basic Hodgkin-Huxley equations used (Malmivuo and Plonsey

1995) are given by

GNa = GNamaxm
3h

dm

dt
= αm(1−m)− βmm (2.4.1)

dh

dt
= αh(1− h)− βhh

for the conductance of sodium ions at the experimental conditions of Hodgkin and

Huxley 1952 with a maximum sodium conductance of

GNamax = 120mS/cm2. (2.4.2)
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2.4 HH fitting employing Differential Evolution Algorithm

The corresponding empirical theorems for the transfer rate coefficients are

αm =
2.5− 0.1V ′

e2.5−0.1V ′ − 1

1

ms

βm =
4

eV ′/18

1

ms

αh =
0.07

eV ′/20

1

ms

βh =
1

e30−V ′/10 + 1

1

ms

(2.4.3)

with V ′ = Vm − Vr [mV ] , where Vm is the actual membrane voltage and Vr is the

resting voltage. Using voltage clamp, for a voltage step, the transfer rate coefficients

αm, βm, αh, and βh change instantly to new values (in steady state, Malmivuo and

Plonsey 1995). As in steady state, the transfer rate coefficients in Equation 2.4.3

are constant, so the primary differential equation can be readily solved for m and

h, giving

m(t) = m∞ − (m∞ −m0)e
−t
τm , (2.4.4)

where

m∞ =
αm

αm + βm

(2.4.5)

represents the value of m and

τm =
1

αm + βm

(2.4.6)

defines the time constant in [s] in steady state. The mathematical term of h is

similar to the m in Equation 2.4.4. By applying voltage clamp, a voltage step

initiates an exponential change in m (and h) from its initial value of m0 or h0 (at

t = 0) toward the steady state value of m∞ or h∞ (at t = ∞). Finally, the sodium

current INa that has to be fitted is then given by

INa = GNa(Vm − VNa)
nA

cm2
, (2.4.7)
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2.4 HH fitting employing Differential Evolution Algorithm

where VNa [mV ] expresses the resulting Nernst- or also called reversal-potential

following the equation of Nernst, simplified for this issue to

VNa = φi − φo (2.4.8)

with φi = intracellular and φo = extracellular potential (ion concentration depen-

dent).

Various problems in applied mathematics have target functions that are non-

continuous, non-linear, non-differentiable, noisy, multi-dimensional or have many

local minima, constraints or stochasticity. Fitting the steady-state HH-model

(Equation 2.4.1–2.4.7) to the measured patch-clamp data requires the solution

of a high dimensional multivariate inverse problem: since the essential HH-

model-equations that need to be taken into account for the fitting consist of 13

independent parameters (constants evaluated by Hodgkin & Huxley for the squid

axon) that have to be estimated, this problem cannot be solved analytically.

Approximate solutions can be achieved by the Differential-Evolution (DE) algo-

rithm, a technique that originates from the genetic annealing algorithm, introduced

by Price et al. 2005. This invention offers a global optimization method by

stochastic, population-based optimization. The General problem formulation is:

For an objective function f : X ⊂ R
D −→ R where the feasible region X ̸= 0, the

minimization problem is to find x∗ ∈ X such that f(x∗) ≤ f(x) ∀ x ∈ X .

This methodology can be utilized to optimize real parameters and real valued

functions such as the 13 parameters in the HH-model fitting problem. A detailed

description of the algorithm can be found in Price et al. 2005. In terms of the

introduced fitting problem, the DE-algorithm was implemented to minimize the

distance between the measured sodium current and the one iteratively calculated

by the HH-model. As a consequence, the parameters for the best fit were evaluated.

The 13 parameters, that give the freedom for the curve fitting process, represent all

the empirical coefficients in Equation 2.4.1–2.4.7 that were estimated by Hodgkin

& Huxley in their experiments in 1952 (Hodgkin and Huxley 1952). The following

equations indicate again the applied HH-formulations, but now with the 13 free

parameters expressed by ξ.1− 13 :
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2.5 Thalamocortical Interactions

αh =
ξ.1

eV ′/ξ.2

1

ms

βh =
1

eξ.3−V ′/ξ.4 + ξ.5

1

ms

αm =
ξ.6− ξ.7 · V ′

eξ.6−ξ.7·V ′ − ξ.8

1

ms

βm =
ξ.9

eV ′/ξ.10

1

ms

(2.4.9)

GNa = ξ.11 ·m3h

INa = GNa · (Vm − ξ.12)
(2.4.10)

and lastly the point of time for the start of the depolarization tstim as ξ.13.

2.5 Thalamocortical Interactions

The thalamus provides the major route for afferents to the neocortex and extrasen-

sory regions of the brain. The traditional concept treating the thalamus as the

sensory gateway to the cortex is an oversimplification, because the cerebral cortex

receives input not only from the sense-specific nuclei, but also from the non-specific

thalamic nuclei, which have multimodal connections to the cortex, probably gov-

erning overall arousal (Shepherd 2001).

With respect to the interactions between the specific and non-specific thalamic

loops, Llinás suggested that rather than a gate, the thalamus is a hub from which

any area in the cortex can communicate with any other (Llinás et al. 1998). Bidi-

rectionality is the most remarkable feature of this thalamocortical connectivity.

Thalamic nuclei receive reciprocal connections from the cortical areas that they

project to, though the number of corticothalamic fibres is significantly greater than

the number of thalamocortical axons (Shepherd 2001; Jones 2002). These recip-

rocal thalamocortical connections create bidirectional neuronal loops between the

thalamus and the cortex.

Consequently, distributed neural representations of simultaneous perceptual events

or features could be related to each other within the thalamocortical system. Bind-

ing input from different sensory modalities into a single cognitive event is assumed
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2.6 The Llinás-Model as Basis for the developed Corticothalamic

Network

to be a consequence. The underlying mechanism has been proposed as temporal

binding, a process based on the synchronization of neural signals (Singer 1999).

Different studies have shown that certain types of cognitive functions are intimately

related to synchronized neuronal oscillations at both low (4−7/8−13Hz) and high

(18− 35/30− 70Hz) frequencies (Llinás et al. 2002; Hughes et al. 2008; Gray and

Singer 1989; Ribary et al. 1991b; Singer 1993; Gregoriou et al. 2009). The ac-

tivity patterns of these oscillations are formed within one or more bounded areas

(corresponding to cortical columns)(Llinás et al. 1998, 2002; Ribary et al. 1991a).

A subset of the employed cortical neurons can generate repetitive, high frequency

burst discharges referred to as chattering cells. Those can generate bursts with in-

traburst frequencies of 300− 750Hz and interburst frequencies of 8− 80Hz (Gray

and McCormick 1996; Steriade et al. 1998; Brumberg et al. 2000). We focused on

the thalamocortical activity of those chattering cells since their firing patterns in

burst mode contain more information to evaluate impact of NPs on the circuit’s

activity.

2.6 The Llinás-Model as Basis for the developed

Corticothalamic Network

Rodolfo Llinás and his group suggested a reasonably detailed model of thalamo-

cortical interaction and binding (Llinás and Ribary 1993; Llinás et al. 1994, 1998,

2002), see section before. Its principal finding is that the intrinsic electrical prop-

erties of neurons and the dynamic events resulting from their connectivity cause

global resonant states. Resonant states in the network will change by just small

alterations in the neural signaling characteristics. The Llinás et al. model exposing

the thalamocortical circuit is depicted in Figure 2.1.

For the purpose of this thesis, the focus was on two types of thalamic cells: 1st spe-

cific thalamic cells, also known as thalamic core cells due to their focused projection

to an individual cortical area and 2nd intralaminar non-specific thalamic cells, also

known as thalamic matrix cells as they project across larger neocortical areas in

a more dispersed way (Shepherd 2001). Two thalamocortical resonant loops were

utilized for the model development. The description of neural interactions and dy-

namics can be found in the subsequent section. It was proposed by Llinás et al.
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Network

Figure 2.1: Thalamocortical circuit. The Llinás et al. model (Adopted from Llinás

et al. 1998).

that none of these two systems alone is able to generate cognition, and consistent

with this model, damage to the non-specific thalamus induces deep disturbances of

consciousness while damage to the specific systems causes loss of particular modal-

ity (Llinás et al. 1998). Their statement implies that these two systems can only

generate a cognitive experience synced, based on the summation of non-specific

and specific activity along the dendritic tree of the cortical element, by coincidence

detection at the pyramidal neuron (Llinás et al. 1998, 2002).

To conclude, the system operates on the basis of thalamocortical resonant columns

that can support global cognitive experiences. In this context, the specific system

provides the content that relates to the external world while the non-specific system

would give rise to the temporal conjunction (binding circuit). This well explored

and accepted model served as the theoretical fundament for the investigations on

NPs’ induced signaling modifications in neuronal circuits.
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2.7 The Applied Thalamocortical Network

2.7 The Applied Thalamocortical Network

The simplified in silico model that we used to predict in vivo behavior is based

on the principle of thalamocortical interaction and binding as elucidated before.

The principal result is that the intrinsic electrical properties of neurons and the

dynamic events resulting from their connectivity cause global resonant states. Res-

onant states in the network will change due to small alterations in the neural sig-

naling characteristics. The applied circuit is based on kinetic models of pyramidal

neurons (here: chattering cells, PY) (Wang et al. 1995; Wang 1998; Golomb et al.

1996, 2006), inhibitory cortical interneurons (IN)(Golomb et al. 1996; Wang and

Buzsáki 1996), thalamic cells (TC) including specific thalamic cells (STC) and

non-specific thalamic cells (NSTC)(Destexhe et al. 1996a; Bazhenov et al. 1998;

Golomb and Amitai 1997), and reticular thalamic neurons (RTN)(Wang et al. 1995;

Golomb et al. 1996; Destexhe et al. 1994a, 1996b). Each single neuron model is

considered as one compartment (except PY, modeled as two-compartments) and

is represented by coupled differential equations according to an extended Hodgkin-

Huxley-type scheme (Hodgkin and Huxley 1952). A schematic representation of the

two-compartment model that was put into use for each of the PY-neurons is given

in Figure 2.2. It shows the ionic currents present in each compartment, with the

direction of current represented by an arrow. The two compartments are coupled

through a conductance parameter.

The applied currents (IS, ID) are shown, as well as the synaptic current (ISY N).

The difference in potential across the membrane is denoted by VS and VD for the

somatic and dendritic compartments respectively, and represents the deviation (in

mV ) from the resting membrane potential of −60mV (Ferguson and Campbell

2009). The somatic compartment consists of five ionic current channels: sodium

and calcium are the inward currents (INaS and ICaS respectively), and the outward

currents are the delayed rectifier potassium current (IK−DRS
), long-lasting calcium-

dependent AHP potassium current (IK−AHPS
), which is associated with the slow

after hyperpolarization (AHP) (Herz et al. 2006), and short-duration voltage and

calcium-dependent potassium current(IK−CS
). The dendrite compartment has three

ionic current channels: inward calcium current (ICaD), and the outward IK−AHPD

and IK−CD
whose activation depends on the calcium concentration inside the cell.

Although it isn’t shown in the schematic model, there is a small leak current in both

the soma and dendrite compartments. The membrane capacitance is represented
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2.7 The Applied Thalamocortical Network

Figure 2.2: Scheme of an example two-compartment model showing applied cur-

rents, outward and inward active currents to soma and dendrite compartments

(adopted from Ferguson and Campbell 2009).

by Cm (in units µF/cm2). All currents in this model have the unit µA/cm2 and all

conductances have the unit mS/cm2 (Ferguson and Campbell 2009). After using

Kirchoff’s Law, the current balance equations for the ionic currents for the somatic

and dendritic membrane potentials and voltage change across the membrane of each

compartment are obtained (Ferguson and Campbell 2009).

The scheme of synaptic connectivity in the developed simplified thalamocortical

network model is represented by Figure 2.3. In this model, specific thalamic in-

puts are represented by a thalamic neuron (STC) that projects to both PY neu-

ron and inhibitory IN located in cortical layer IV after sending an axon collateral

to the RTN neuron. A second thalamic neuron (NSTC) represents intralaminar,

non-specific thalamic inputs and projects to neocortical layer I after sending axon

collaterals to the RTN neuron. STC and NSTC neurons generate excitatory postsy-

naptic potentials that are mediated by fast excitatory receptors in the model. RTN

neurons project with inhibitory characteristic to specific and intralaminar nucleus

neurons. Inhibitory fast and slow receptors in the thalamic neurons both mediate

the inhibitory postsynaptic potentials of those cells. The RTN neurons also have

reciprocal inhibitory synaptic connectivity. The corresponding activity is mediated

by fast inhibitory receptors. In the model, the cerebral cortex was considered as

a simple network model of inhibitory IN and excitatory PY neurons (Llinás and

Ribary 1993; Llinás et al. 1994, 1998, 2002). Although this is a highly simplified
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2.7 The Applied Thalamocortical Network

Figure 2.3: Schematic description of synaptic interconnections in the simplified

computational model of the thalamocortical network.
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representation of the neocortex’s multilayered structure, no additional complexity

was required for the theoretical modeling. Consequently, the pyramidal neurons in

the layers IV and V are described by single neurons (Figure 2.3, PY) that receive

inputs and project to both STC and NSTC cells and have axon collaterals to the

RTN neurons. In the model, four PY neurons were included, two of which receive

input from the STC to provide specific sensory input to the cortex. This structure

represents the specific resonant loop as is shown in Figure 2.3 on the left. The right

side of Figure 2.3 indicates the non-specific resonant loop, where three PY neurons

receive their inputs in a more diffuse way from NSTC to provide the multimodal

connectivity to the cortex. The two black spots represent two PY neurons that

receive inputs and project back to the NSTC. In this model, the corticofugal ex-

citation of the PY is mediated by both fast and slow excitatory receptors. In the

circuit, all PY neurons receive axons from the cortical inhibitory IN, in which the

inhibitory postsynaptic potential elicited by this cell is also mediated by both fast

and slow excitatory receptors. Lastly, the essential sensory inputs to activate STC

and NSTC are provided by including two sensory neurons in the present model (see

Figure 2.3). Thus, the synaptic projections from those sensory neurons activate

the fast receptors of the thalamic nuclei. Every neuron of the simplified thalamo-

cortical model receives various synaptic inputs that are modeled as the sum over

all synaptic currents that each cell receives (Destexhe et al. 1998a; Bazhenov et al.

2002). Accordingly, every neuron is described by the generic membrane equation

Cm
dVi

dt
= − gL(Vi − EL)

︸ ︷︷ ︸

leakage term

−
∑

j

I intji −
∑

k

Isynki (2.7.11)

where Cm is the specific membrane capacity and Vi is the postsynaptic membrane

potential. I intji and Isynki signify the intrinsic (ionic) and synaptic currents. The

generic form of the intrinsic currents (generalization of Equation 2.4.7) is repre-

sented by

I intji = gjm
M
j hN

j (Vi − Ej), (2.7.12)

Here, i connotes the postsynaptic neuron and j represents for the specific ionic

type. Further, gj is the maximal conductance, m the time and voltage dependent

activation variable, h is the corresponding (time and voltage dependent) inactivation

variable and finally (Vi - Ej) is the difference between membrane potential and

reversal potential of each ion. The following generic equation represents the synaptic

currents in the system:

Isynki = gkiski(Vi − Eki) (2.7.13)
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2.7 The Applied Thalamocortical Network

Where ki designates the synaptic junction from the presynaptic neuron k to the

postsynaptic neuron i, gki is the maximal conductance of the postsynaptic receptors

and Eki is the reversal potential. The fraction of open receptors is specified by ski

according to the simple two state scheme

(closed) + T (Vk)
α
−→

β
←−

(open), (2.7.14)

For computational efficiency, a reduced transmitter release model is used, assuming

all intervening reactions in the release process are relatively fast and thus, can be

considered in steady state (instantaneous)(Destexhe et al. 1998b). Consequently,

the stationary relationship between the transmitter concentration [T ] and presy-

naptic voltage is described by a simple sigmoidal function (Destexhe et al. 1998b)

[T ](Vpre) =
Tmax

1 + exp(−(Vpre − Vp)/Kp)
(2.7.15)

where Tmax is the maximal concentration of transmitter in the synaptic cleft,

Vpre is the presynaptic voltage, Kp gives the steepness and Vp sets the value at

which the function is half activated. This form, in conjunction with simple kinetic

models of postsynaptic channels, provides a model of synaptic interaction based

on autonomous differential equations with only one or two variables (Wang and

Rinzel 1992; Golomb et al. 1994).

In the model, all initial conditions and set parameters representing a single cell

or synaptic connection originate from electrophysiological measurements on the

specific neurons taken from cited references. Please see Wang et al. 1995; Wang and

Rinzel 1992, Golomb et al. 2006, and Destexhe et al. 1998b, 1994b for a detailed

description of the particular equations and the corresponding cell- and transmitter

specific parameters. According to Destexhe et al. 1998a, different values of Ih and

IKL would cause heterogeneity in the intrinsic properties of the cells. Therefore

the intrinsic conductance of gh and gKL for the STC and the NSTC and gKL for

the RTN neuron models are slightly different in the present model.

To simulate the effects of cAg-NPs in contact with thalamic cells, i.e., STC, NSTC,

and RTN, respectively, the changes of the intrinsic currents that were identified

by fitting the patch-clamp data to the HH-model were applied to those cells.

The kinetics and voltage dependence of the modeled currents are very similar to

the currents measured in patch clamp experiments (see section Chromaffin Cell

Model). MATLAB was used as simulation environment in which the differential

equations were solved by employing a fourth-order Runge-Kutta method.
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The following equations provide a detailed description of each single neuron

model that was developed to be utilized in the applied Llinás circuit that is based

on the generic single-cell membrane equations (see also Vukelic 2010 for a basic

discussion of the model’s equations). The particular parameters for each individual

cell type are originating from patch clamp measurements of cited literature.

Neocortical PY neurons

Current Balance Equations

Cm
dVSi

dt
=+ Iapp − gL(VSi

− EL)− INa(VSi
, h)− IK(VSi

, n)− ICa(VSi
)

− IAHP (VSi
,
[
Ca2+

]

i
)−

gc
p
(VSi

− VDi
) (2.7.16)

Cm
dVDi

dt
=− gL(VDi

− EL)− ICa(VDi
)− IAHP (VDi

,
[
Ca2+

]

i
)

−
gc

1− p
(VDi

− VSi
)− ITCPY

AMPA(VDi
,
{
sTC
AMPA,k

}
)

− IINPY
GABAA

(VDi
,
{
sINGABAA,k

}
)− IINPY

GABAB
(VDi

,
{
sINGABAB ,k

}
) (2.7.17)

where Cm = 1 µF/cm2, gL = 0.1 mS/cm2, EL = - 65 mV Wang 1998.

Intrinsic Currents

The delayed rectifier potassium current IK and the sodium current INa are described

according to Wang 1998.

INa(VSi
, h) = gNam

3
∞
(VSi

)h(VSi
− ENa) (2.7.18)

where the fast activation variable is replaced by its steady state form

m∞(VSi
) = αm(VSi

)/(αm(VSi
) + βm(VSi

)) (2.7.19)

αm(VSi
) =

−0.1(VSi
+ 33)

exp(−0.1(VSi
+ 33))− 1

(2.7.20)

βm(VSi
) = 4 exp(−(VSi

+ 58)/12) (2.7.21)

27



2.7 The Applied Thalamocortical Network

dh

dt
= φh [αh(VSi

)(1− h)− βh(VSi
)h] (2.7.22)

αh(VSi
) = 0.07 exp(−(VSi

+ 50)/10) (2.7.23)

βh(VSi
) =

1

exp(−0.1(VSi
+ 20)) + 1

(2.7.24)

IK(VSi
, n) = gKn

4(VSi
− EK) (2.7.25)

dn

dt
= φn [αn(VSi

)(1− n)− βn(VSi
)n] (2.7.26)

αn(VSi
) =

−0.01(VSi
+ 34)

exp(−0.1(VSi
+ 34))− 1

(2.7.27)

βn(VSi
) = 0.125 exp(−(VSi

+ 44)/25) (2.7.28)

with gNa = 45 mS/cm2, ENa = 55 mV, gK = 18 mS/cm2, EK = -80 mV and φh =

φn = 4 is a temperature factor Wang 1998.

The high-threshold calcium current ICa is defined by Wang 1998

ICa(Vi) = gCam
2
∞
(Vi)(Vi − ECa) (2.7.29)

where m is replaced by its steady state form

m∞(Vi) =
1

1 + exp(−(Vi + 20)/9)
(2.7.30)

where usually gCa = 1 mS/cm2 in the dendritic part and gCa = 0 mS/cm2 in the

somatic part (if not stated otherwise), ECa = 120 mV.

The voltage-independent, calcium-activated potassium current IAHP is defined in

Wang 1998

IAHP (Vi,
[
Ca2+

]

i
) = gAHP

([
Ca2+

]

i
/(
[
Ca2+

]

i
+KD)

)
(Vi − EK) (2.7.31)

where usually gAHP = 5 mS/cm2 in the dendritic part and gAHP = 0 mS/cm2 in

the somatic part (if not stated otherwise) and KD = 30 µM.
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The intracellular calcium dynamics is governed by a leaky-integrator in Wang 1998

d [Ca2+]i,D
dt

= −αDICa,D −
[
Ca2+

]

i,D
/τCa,D (2.7.32)

if the calcium conductances were also included at the soma then an additional

equation for the calcium dynamics is needed

d [Ca2+]i,S
dt

= −αSICa,S −
[
Ca2+

]

i,S
/τCa,S (2.7.33)

where α is proportional to the surface/volume (S/V) ratio, thus it should be much

smaller for the somatic part than for the dendritic part. τCa is a time constant

(decay process) which describes the various extrusion and buffering mechanisms

and it is expected to be increased at the somatic than at the dendritic part Wang

1998.

αD = 0.002 µM (msµA)−1 cm2 and τCa,D = 80 ms are chosen so that the calcium

influx per spike is approximately 200 nM, whereas the values for the somatic part

a the right-hand side of equation 2.7.33 is multiplied by a factor 1/3, so that αS =

0.000667 µM (msµA)−1 cm2 and τCa,S = 240 ms Wang 1998.

Synaptic Currents

The AMPA current ITCPY
AMPA from TC to PY is defined in Golomb et al. 1996

ITCPY
AMPA(VDi

,
{
sTC
AMPA,k

}
) = gAMPAs(VPY,D − EAMPA) (2.7.34)

with EAMPA = 0 mV, the gating variable s depends on VTC , and gAMPA in units

mS/cm2.

The AMPA gating variable s is given as

ds

dt
= kfAX∞(VTC)(1− s)− krAs

X∞(VTC) =
1

1 + exp(−(VTC − θsyn)/σsyn)
(2.7.35)

where kfA = 2.0 ms−1, krA = 0.1 ms−1, θsyn = -40 mV, σsyn = 2 mV Golomb et al.

1996.

The GABAA current IINPY
GABAA

from IN to PY is defined by Golomb et al. 2006

IINPY
GABAA

(VDi
,
{
sINGABAA,k

}
) = gGABAA

s(VPY,D − EGABAA
) (2.7.36)
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with EGABAA
= -70 mV, the gating variable s depends on VIN , and gGABAA

in units

mS/cm2 varies in simulations (see results).

The GABAA gating variable s is given as

ds

dt
= kfGX∞(VIN)(1− s)− krGs

X∞(VIN) =
1

1 + exp(−(VIN − θsyn)/σsyn)
(2.7.37)

where kfG = 1.0 ms−1, krG = 0.1 ms−1, θsyn = -20 mV, σsyn = 2 mV Golomb et al.

2006.

The GABAB current IINPY
GABAB

from IN to PY is given by Wang et al. 1995

IINPY
GABAB

(VDi
,
{
sINGABAB ,k

}
) = gGABAB

sq(VPY,D − EGABAB
) (2.7.38)

with EGABAB
= -100 mV, the gating variable s depends on VIN , q = 4, and gGABAB

in units mS/cm2 varies in simulations (see results). The equations and parameters

for gating variables are

dx

dt
= αxX∞(VIN)(1− x)− βxx

ds

dt
= αsx(1− s)− βss (2.7.39)

X∞(VIN) =
1

1 + exp(−(VIN − θsyn)/σsyn)
(2.7.40)

where θsyn = -45 mV, σsyn = 2 mV Wang et al. 1995.
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Inhibitory neocortical INs

Current Balance Equations

Cm
dVi

dt
=+ Iapp − gL(Vi − EL)− INa(Vi, h)

− IK(Vi, n)− ITCIN
AMPA(Vi,

{
sTC
AMPA,k

}
) (2.7.41)

where Cm = 1 µF/cm2, gL = 0.1 mS/cm2, EL = - 65 mV according to Wang and

Buzsáki 1996.

Intrinsic Currents

The sodium current INa and the delayed rectifier potassium current IK are described

according to Wang and Buzsáki 1996

INa(Vi, h) = gNam
3
∞
(Vi)h(Vi − ENa) (2.7.42)

where the activation variable m is assumed to be fast and substituted by its steady

state form

m∞(Vi) = αm(Vi)/(αm(Vi) + βm(Vi)) (2.7.43)

αm(Vi) =
−0.1(Vi + 35)

exp(−0.1(Vi + 35))− 1
(2.7.44)

βm(Vi) = 4 exp(−(Vi + 60)/18) (2.7.45)

dh

dt
= φh [αh(Vi)(1− h)− βh(Vi)h] (2.7.46)

αh(Vi) = 0.07 exp(−(Vi + 58)/20) (2.7.47)

βh(Vi) =
1

exp(−0.1(Vi + 28)) + 1
(2.7.48)

IK(Vi, n) = gKn
4(Vi − EK) (2.7.49)

dn

dt
= φn [αn(Vi)(1− n)− βn(Vi)n] (2.7.50)
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αn(Vi) =
−0.01(Vi + 34)

exp(−0.1(Vi + 34))− 1
(2.7.51)

βn(Vi) = 0.125 exp(−(Vi + 44)/80) (2.7.52)

with gNa = 35 mS/cm2, ENa = 55 mV, gK = 9 mS/cm2, EK = -90 mV and φh =

φn = 5 is a temperature factor Wang and Buzsáki 1996.

Synaptic Currents

The AMPA current ITCIN
AMPA from TC to IN is Golomb et al. 1996

ITCIN
AMPA(Vi,

{
sTC
AMPA,k

}
) = gAMPAs(VIN − EAMPA) (2.7.53)

with EAMPA = 0 mV, the gating variable s depends on VTC , and gAMPA in units

mS/cm2.

The AMPA gating variable s is defined as

ds

dt
= kfAX∞(VTC)(1− s)− krAs

X∞(VTC) =
1

1 + exp(−(VTC − θsyn)/σsyn)
(2.7.54)

where kfA = 2.0 ms−1, krA = 0.1 ms−1, θsyn = -40 mV, σsyn = 2 mV Golomb et al.

1996.

RTN neurons

Current Balance Equation

Cm
dVi

dt
=+ Iapp − gL(Vi − EL)− INa(Vi,m, h)− IK(Vi, n)

− IT (Vi,m, h,
[
Ca2+

]

i
)− IKL(Vi)− IRTNRTN

GABAA
(Vi,

{
sRTN
GABAA,k

}
)

− ITCRTN
AMPA (Vi,

{
sTC
AMPA,k

}
)− IPY RTN

AMPA (Vi,
{
sPY
AMPA,k

}
)

− IPY RTN
NMDA (Vi,

{
sPY
NMDA,k

}
) (2.7.55)

where Cm = 1 µF/cm2, gL = 0.05 mS/cm2, EL = - 77 mV Destexhe et al. 1994a.
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Intrinsic Currents

The sodium current INa and the delayed rectifier potassium current IK are defined

according to Traub and Miles 1991.

INa(Vi,m, h) = gNam
3h(Vi − ENa) (2.7.56)

dm

dt
= αm(Vi)(1−m)− βm(Vi)m (2.7.57)

dh

dt
= αh(Vi)(1− h)− βh(Vi)h (2.7.58)

αm(Vi) =
0.32(Vi + vtraubrtn− 13)

1− exp(−(Vi + vtraubrtn− 13)/4)
(2.7.59)

βm(Vi) =
0.28(Vi + vtraubrtn− 40)

exp(−(Vi + vtraubrtn− 40)/5)− 1
(2.7.60)

αh(Vi) = 0.128 exp(−(Vi + vtraubrtn− 17)/18) (2.7.61)

βh(Vi) =
4

1 + exp(−(Vi + vtraubrtn− 40)/5)
(2.7.62)

IK(Vi, n) = gKn
4(Vi − EK) (2.7.63)

dn

dt
= αn(Vi)(1− n)− βn(Vi)n (2.7.64)

αn(Vi) =
0.032(Vi + vtraubrtn− 15)

1− exp(−(Vi + vtraubrtn− 15)/5)
(2.7.65)

βn(Vi) = 0.5 exp(−(Vi + vtraubrtn− 10)/40) (2.7.66)

where gNa = 100 mS/cm2, ENa = 50 mV, gK = 10 mS/cm2, EK = -100 mV and

vtraubrtn = 50 mV (gating kinetics adjusted to 36C).
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The low-threshold calcium current IT is defined according to Destexhe et al. 1994a,

Destexhe et al. 1996b, Bazhenov et al. 1998.

IT (Vi,m, h,
[
Ca2+

]

i
) = gTm

2h(Vi − ECa) (2.7.67)

dm

dt
= (m∞(Vi)−m)/τm(Vi) (2.7.68)

dh

dt
= (h∞(Vi)− h)/τh(Vi) (2.7.69)

m∞(Vi) =
1

1 + exp(−(Vi + 52)/7.4)
(2.7.70)

h∞(Vi) =
1

1 + exp(−(Vi + 80)/5)
(2.7.71)

τm(Vi) = 1 +
0.33

exp((Vi + 27)/10) + exp(−(Vi + 102)/15)
(2.7.72)

τh(Vi) = 22.7 +
0.27

exp((Vi + 48)/4) + exp(−(Vi + 407)/50)
(2.7.73)

where gT = 2 mS/cm2 and the reversal potential strongly depends on the intracel-

lular calcium concentration [Ca2+]i and is determined by the Nernst equation

ECa = k
′RT

2F
log

[Ca2+]o
[Ca2+]i

(2.7.74)

where k
′

= 1,000 (constant for unit conversion for ECa in millivolts),

R = 8,31441 mJ/(K·Mol), F = 96,480 coulombs/Mol, T = 309,15K, and[Ca2+]o =

2 mM is the extracellular calcium concentration corresponding to a temperature of

36C and the intracellular calcium dynamic obeys a first order differential equation

d [Ca2+]i
dt

= −AIT −
([
Ca2+

]

i
−

[
Ca2+

]

∞

)
/τ (2.7.75)

where [Ca2+]
∞

= 2.4·10−4 mM denotes the equilibrium calcium concentration, A

= 5.18·10−5 (mM·cm2)/(ms·µA) and τ = 5 ms Bazhenov et al. 1998.

34



2.7 The Applied Thalamocortical Network

The leak potassium current IKL is represented as follows McCormick and Huguenard

1992

IKL = gKL(Vi − EKL) (2.7.76)

gKL = 0.005 mS/cm2 and EKL = -95 mV.

Synaptic Currents

The AMPA current ITCRTN
AMPA from TC to RTN is defined by Golomb et al. 1996

ITCRTN
AMPA (Vi,

{
sTC
AMPA,k

}
) = gAMPAs(VRTN − EAMPA) (2.7.77)

with EAMPA = 0 mV, the gating variable s depends on VTC , and gAMPA in units

mS/cm2.

The AMPA gating variable s obey the same parameters and equations as in Equa-

tion 2.7.35.

The AMPA current IPY RTN
AMPA from PY to RTN is defined by Golomb and Amitai

1997

IPY RTN
AMPA (Vi,

{
sPY
AMPA,k

}
) = gAMPAs(VRTN − EAMPA) (2.7.78)

with EAMPA = 0 mV, the gating variable s depends on VPY , and gAMPA in units

mS/cm2.

The AMPA gating variable s is as follows

ds

dt
= kfAX∞(VPY )(1− s)− krAs

X∞(VPY ) =
1

1 + exp(−(VPY − θsyn)/σsyn)
(2.7.79)

where kfA = 1.0 ms−1, krA = 0.2 ms−1, θsyn = -20 mV, σsyn = 2 mV Golomb and

Amitai 1997.
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The NMDA current IPY RTN
NMDA from PY to RTN is defined by Golomb et al. 2006

IPY RTN
NMDA (Vi,

{
sPY
NMDA,k

}
) = Isyn = gNMDAsf(VRTN)(VRTN − ENMDA) (2.7.80)

with ENMDA = 0 mV, the gating variable s depends on VPY , and gNMDA in units

mS/cm2.

Additional dependence on postsynaptic membrane potential VRTN is given by Dayan

and Abbott 2001

f(VRTN) =
1

1 +
[Mg2+]o
3.57mM

· exp(−VRTN/16.13mV )
(2.7.81)

normal [Mg2+]o concentration is in the range of 1 to 2 mM Dayan and Abbott 2001.

The NMDA gating variables are defined according to the model of Golomb et al.

Golomb et al. 2006

dxNMDA

dt
= kxNX∞(VPY )(1− xNMDA)− [1−X∞(VPY )] xNMDA/τ̃NMDA

sNMDA

dt
= kfNxNMDA(1− sNMDA)− sNMDA/τNMDA (2.7.82)

where X∞(VPY ) is calculated by equation 2.7.79 (same parameters). kxN = 1 ms−1,

τ̃NMDA = 14.3 ms, kfN = 1 ms−1, τNMDA = 100 ms.

The GABAA current IRTNRTN
GABAA

from RTN to RTN is given by Golomb et al. 1996

IRTNRTN
GABAA

(Vi,
{
sRTN
GABAA,k

}
) = gGABAA

s(VRTN − EGABAA
) (2.7.83)

with EGABAA
= -75 mV, the gating variable s depends on VRTN , and gGABAA

in

units mS/cm2.

The GABAA gating variable s is given as

ds

dt
= kfGX∞(VRTN)(1− s)− krGs

X∞(VRTN) =
1

1 + exp(−(VRTN − θsyn)/σsyn)
(2.7.84)

where kfG = 2.0 ms−1, krG = 0.08 ms−1, θsyn = -40 mV, σsyn = 2 mV Golomb

et al. 1996.
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TC neurons

The model of TC neurons include STC and NSTC from the simplified thalamocor-

tical network model in Figure 2.3.

Current Balance Equation

Cm
dVi

dt
=+ Iapp − gL(Vi − EL)− INa(Vi,m, h)− IK(Vi, n)

− IT (Vi,m, h,
[
Ca2+

]

i
)− IA(Vi,m, h)

− Ih(Vi,m,
[
Ca2+

]

i
, P )− IKL(Vi)

− IRTNTC
GABAA

(Vi,
{
sRTN
GABAA,k

}
)− IRTNTC

GABAB
(Vi,

{
sRTN
GABAB ,k

}
)

− IGPiTC
GABAA

(Vi,
{
sGPi
GABAA,k

}
)− IGPiTC

GABAB
(Vi,

{
sGPi
GABAB ,k

}

− ISensTC
AMPA (Vi,

{
sSensAMPA,k

}
)− IPY TC

AMPA(Vi,
{
sPY
AMPA,k

}
)

− IPY TC
NMDA(Vi,

{
sPY
NMDA,k

}
) (2.7.85)

where Cm = 1 µF/cm2, gL = 0.01 mS/cm2, EL = - 70 mV Destexhe et al. 1996a.

Intrinsic Currents

The sodium current INa and the delayed rectifier potassium current IK according

to Traub and Miles 1991, are defined by

INa(Vi,m, h) = gNam
3h(Vi − ENa) (2.7.86)

dm

dt
= αm(Vi)(1−m)− βm(Vi)m (2.7.87)

dh

dt
= αh(Vi)(1− h)− βh(Vi)h (2.7.88)

αm(Vi) =
0.32(Vi + vtraubtc− 13)

1− exp(−(Vi + vtraubtc− 13)/4)
(2.7.89)

βm(Vi) =
0.28(Vi + vtraubtc− 40)

exp(−(Vi + vtraubtc− 40)/5)− 1
(2.7.90)

αh(Vi) = 0.128 exp(−(Vi + vtraubtc− 17)/18) (2.7.91)

βh(Vi) =
4

1 + exp(−(Vi + vtraubtc− 40)/5)
(2.7.92)
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IK(Vi, n) = gKn
4(Vi − EK) (2.7.93)

dn

dt
= αn(Vi)(1− n)− βn(Vi)n (2.7.94)

αn(Vi) =
0.032(Vi + vtraubtc− 15)

1− exp(−(Vi + vtraubtc− 15)/5)
(2.7.95)

βn(Vi) = 0.5 exp(−(Vi + vtraubtc− 10)/40) (2.7.96)

where gNa = 90 mS/cm2, ENa = 50 mV, gK = 10 mS/cm2, EK = -95 mV and

vtraubtc = 30 mV (gating kinetics adjusted to 36C).

The low-threshold calcium current IT according to Destexhe et al. 1996a, Bazhenov

et al. 1998, is defined by

IT (Vi,m, h,
[
Ca2+

]

i
) = gTm

2h(Vi − ECa) (2.7.97)

dm

dt
= (m∞(Vi)−m)/τm(Vi) (2.7.98)

dh

dt
= (h∞(Vi)− h)/τh(Vi) (2.7.99)

m∞(Vi) =
1

1 + exp(−(Vi + 59)/6.2)
(2.7.100)

h∞(Vi) =
1

1 + exp(−(Vi + 83)/4)
(2.7.101)

τm(Vi) = 0.13 +
0.22

exp(−(Vi + 132)/16.7) + exp((Vi + 16.8)/18.2)
(2.7.102)

τh(Vi) = 8.2 +

[

56.6 +
0.27 exp((Vi + 115.2)/5)

1 + exp((Vi + 86)/3.2)

]

(2.7.103)

where gT = 2.2 mS/cm2 and the reversal potential strongly depends on the intra-

cellular calcium concentration [Ca2+]i and is determined by the Nernst equation

ECa = k
′RT

2F
log

[Ca2+]o
[Ca2+]i

(2.7.104)

where k
′

= 1,000 (constant for unit conversion for ECa in millivolts),

R = 8,31441 mJ/(K·Mol), F = 96,480 coulombs/Mol, T = 309,15 K, and[Ca2+]o =

2 mM is the extracellular calcium concentration corresponding to a temperature of

36C and the intracellular calcium dynamic obeys a first order differential equation

d [Ca2+]i
dt

= −AIT −
([
Ca2+

]

i
−

[
Ca2+

]

∞

)
/τ (2.7.105)
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where [Ca2+]
∞

= 2.4·10−4 mM denotes the equilibrium calcium concentration, A

= 5.18·10−5 (mM·cm2)/(ms·µA) and τ = 5 ms Bazhenov et al. 1998.

The transient potassium current IA according to Bazhenov et al. 1998; Huguenard

and McCormick 1992 can be denoted by

IA(Vi,m, h) = gAm
4h(Vi − EK) (2.7.106)

dm

dt
= (m∞(Vi)−m)/τm(Vi) (2.7.107)

dh

dt
= (h∞(Vi)− h)/τh(Vi) (2.7.108)

m∞(Vi) =
1

1 + exp(−(Vi + 60)/8.5)
(2.7.109)

h∞(Vi) =
1

1 + exp(−(Vi + 78)/6)
(2.7.110)

τm(Vi) = 0.1 +
0.27

exp((Vi + 35.8)/19.7) + exp(−(Vi + 79.7)/12.7)

(2.7.111)

if Vi < −63mV

τh(Vi) =
0.27

exp((Vi + 46)/5) + exp(−(Vi + 238)/37.5)
(2.7.112)

if Vi > −63mV

τh = 5.1 (2.7.113)

where gA = 1 mS/cm2 and EK = -95 mV.

The hyperpolarization-activated cation current Ih according to Destexhe et al.

1996a, Bazhenov et al. 1998, Huguenard and McCormick 1992, is defined as

Ih = gh([O] + kh [OL])(Vi − Eh) (2.7.114)

with a maximal conductance of gh = 0.02 mS/cm2 and Eh = -40 mV. Because of

the factor kh = 2, the conductance of the calcium-bound open state is twice that

of the unbound open state Destexhe et al. 1996a.

The full kinetic scheme according toDestexhe et al. 1996a is

C
α(Vi)
−→

β(Vi)
←−

O, (2.7.115)

PO + 2Ca2+
k1
−→

k2
←−

P1, (2.7.116)
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2.7 The Applied Thalamocortical Network

O + P1

k3
−→

k4
←−

OL, (2.7.117)

where k1 = 2.5 × 107 mM−4ms−1, k2 = 4 × 10−4 ms−1 (half-activation of 0.002

mM Ca2+), k3 = 0.1 ms−1, k4 = 0.001 ms−1 are constants and α(Vi) and β(Vi) are

the voltage-dependent transition rates Bazhenov et al. 1998

α(Vi) = m∞(Vi)/τ(Vi) (2.7.118)

β(Vi) = (1−m∞(Vi))/τ(Vi) (2.7.119)

m∞(Vi) =
1

1 + exp(−(Vi + 74)/5.5)
(2.7.120)

τ(Vi) = 5.3 +
267

exp((Vi + 71.5)/14.2) + exp(−(Vi + 89)/11.6)
(2.7.121)

A non-regulated calcium version of Ih (with only voltage dependency) is also incor-

porated where the equations are adopted from Huguenard and McCormick 1992

Ih(Vi,m) = ghm(Vi − Eh) (2.7.122)

dm

dt
= (m∞(Vi)−m)/τm(Vi) (2.7.123)

m∞(Vi) =
1

1 + exp(−(Vi + 75)/5.5)
(2.7.124)

τm(Vi) =
1

exp(−0.086 · Vi − 14.6) + exp(0.07 · Vi − 1.87)
(2.7.125)

with gh = 0.1 mS/cm2 and Eh = -40 mV.

The leak potassium current IKL is represented according to McCormick and

Huguenard 1992 by

IKL = gKL(Vi − EKL) (2.7.126)

gKL = 0.012 mS/cm2 and EKL = -95 mV.

Synaptic Currents

The AMPA current IPY TC
AMPA from PY to TC is defined by Golomb and Amitai 1997

IPY TC
AMPA(Vi,

{
sPY
AMPA,k

}
) = gAMPAs(VTC − EAMPA) (2.7.127)
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with EAMPA = 0 mV, the gating variable s depends on VPY , and gAMPA in units

mS/cm2.

The AMPA gating variable s is given as

ds

dt
= kfAX∞(VPY )(1− s)− krAs

X∞(VPY ) =
1

1 + exp(−(VPY − θsyn)/σsyn)
(2.7.128)

where kfA = 1.0 ms−1, krA = 0.2 ms−1, θsyn = -20 mV, σsyn = 2 mV Golomb and

Amitai 1997. The AMPA current ISensTC
AMPA from sensory neurons to TC is defined as

Golomb and Amitai 1997

ISensTC
AMPA (Vi,

{
sSensAMPA,k

}
) = gAMPAs(VTC − EAMPA) (2.7.129)

with the very same parameters as in 2.7.127 and gating variable s obey the same

equations as Equation 2.7.128.

The NMDA current IPY TC
NMDA from PY to TC is defined by Golomb et al. 2006

IPY TC
NMDA(Vi,

{
sPY
NMDA,k

}
) = Isyn = gNMDAsf(VTC)(VTC − ENMDA) (2.7.130)

with ENMDA = 0 mV, the gating variable s depends on VPY , and gNMDA in units

mS/cm2. Additional dependence on postsynaptic membrane potential f(VTC) are

the same as in Equation 2.7.81.

The NMDA gating variables according to the model according to Golomb et al.

Golomb et al. 2006 are the same as in Equation 2.7.82.

The GABAA current IRTNTC
GABAA

from RTN to TC Golomb et al. 1996 is defined by

IRTNTC
GABAA

(Vi,
{
sRTN
GABAA,k

}
) = gGABAA

s(VTC − EGABAA
) (2.7.131)

with EGABAA
= -85 mV, the gating variable s depends on VRTN , and gGABAA

in

units mS/cm2.

GABAA gating variable s using the same equations and parameters as in Equation

2.7.84.

The GABAA current IGPiTC
GABAA

from GPi to TC is defined by Golomb et al. 1996

IGPiTC
GABAA

(Vi,
{
sGPi
GABAA,k

}
) = gGABAA

s(VTC − EGABAA
) (2.7.132)

with EGABAA
= -85 mV, the gating variable s depends on VGPi, and gGABAA

in

units mS/cm2.

GABAA gating variable s using the same as in Equation 2.7.84.
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The GABAB current IRTNTC
GABAB

from RTN to TC is defined by Wang et al. 1995

IRTNTC
GABAB

(Vi,
{
sRTN
GABAB ,k

}
) = gGABAB

sq(VTC − EGABAB
) (2.7.133)

with EGABAB
= -100 mV, the gating variable s depends on VRTN , q = 4, and gGABAB

in units mS/cm2.

The GABAB gating variables are the same as in Equation 2.7.39 and Equation

2.7.40.

αx = 5.0 ms−1, βx = 0.007 ms−1, αs = 0.03 ms−1, and βs = 0.005 ms−1, parameters

are chosen in the way that the rise time (≈100ms) and decay time (≈200ms) matches

with experimental data Otis et al. 1993.

The GABAB current IGPiTC
GABAB

from GPi to TC Wang et al. 1995

IGPiTC
GABAB

(Vi,
{
sGPi
GABAB ,k

}
) = gGABAB

sq(VTC − EGABAB
) (2.7.134)

Same parameters as in Equation 2.7.38, the gating variable s depends on VGPi and

the parameters and equations for gating variables are the same as in Equation 2.7.39

and Equation 2.7.40.

The sensory neurons in the schematic description of synaptic interconnection

in the simplified thalamocortical network model Figure 2.3 are both modeled as

simple as possible, thereby providing only rhythmic inhibitory and excitatory spike

or burst activity to TC neurons. The current balance equation only considers spike

generating ionic currents.

Current Balance Equations

Cm
dVi

dt
=+ Iapp − gL(Vi − EL)− INa(Vi,m, h)

− IK(Vi, n) (2.7.135)

where Cm = 1 µF/cm2, gL = 0.05 mS/cm2, EL = - 60 mV.

Intrinsic Currents

The sodium current INa and the delayed rectifier potassium current IK are described

according to Hadipour-Niktarash 2006

INa(Vi, h) = gNam
3h(Vi − ENa) (2.7.136)
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dm

dt
= αm(Vi)(1−m)− βm(Vi)m (2.7.137)

dh

dt
= αh(Vi)(1− h)− βh(Vi)h (2.7.138)

αm(Vi) =
0.38(Vi + 29.7)

1− exp(−0.1(Vi + 29.7))
(2.7.139)

αh(Vi) = 0.266 exp(−0.05(Vi + 48)) (2.7.140)

βm(Vi) = 15.2 exp(−0.0556(Vi + 54.7)) (2.7.141)

βh(Vi) =
3.8

1 + exp(−0.1(Vi + 18))
(2.7.142)

IK(Vi, n) = gKn
4(Vi − EK) (2.7.143)

dn

dt
= αn(Vi)(1− n)− βn(Vi)n (2.7.144)

αn(Vi) =
0.02(Vi + 45.7)

1− exp(−0.1(Vi + 45.7))
(2.7.145)

βn(Vi) = 0.25 exp(−0.125(Vi + 55.7)) (2.7.146)

with gNa = 90 mS/cm2, ENa = 50 mV, gK = 10 mS/cm2, EK = -95 mV.
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2.8 The Amari Neural Field Model

2.8 The Amari Neural Field Model

After creating an in silico model considering the cell membrane dynamics based

on an extended Hodgkin and Huxley formalism, the study of neural networks as a

population of a few HH-like cortical neurons becomes extremely interesting. This

domain is directly connected to tissue level models that describe the spatiotemporal

evolution of coarse-grained variables such as synaptic or firing rate activity in pop-

ulations of neurons. These equations are known as neural field equations (Amari

1977).

The first studies about such more macroscopic neural activity were developed by

Beurle 1956 with concentration on networks of excitatory neurons with no refrac-

tory component and then later by Wilson and Cowan 1973 which included both

inhibitory and excitatory neurons. Later in the 1970’s, Amari considered an effec-

tive model for a mixed population of interacting inhibitory and excitatory neurons

with typical cortical connections under natural assumptions on the connectivity

and firing rate function (commonly referred to as Mexican hat connectivity) (Amari

1977). Amari has used mathematical analyses to study the mechanism of formation

and interaction of firing patterns and their response to input stimuli in homogenous

fields. According to his assumptions, a neural oscillation occurs in a system con-

sisting of excitatory and inhibitory neurons. Thus, the study of dynamic pattern

formation related to neural oscillation is possible through a field consisting of at

least two layers (Amari 1977). Amari considered the neural field consisting of m

types of neurons, which can be arranged in m layers, each layer includes one type of

neuron (Figure 2.4). In his model, the neurons are connected in a random manner.

By considering small portions of each layer as homogeneous random subnets, one

can treat the entire field as a net composed of these homogeneous subnets (Amari

1977).

As first approach, the basic 1D Amari model, extended by a secondary inhibitory

layer, was applied for first time coupling the Llinás model of thalamocortical in-

teraction to a model representing the corresponding neural field potentials. This

one dimensional neural field model was then extended to two dimensions: Amari’s

general idea to express and estimate a neural field F which consists of two or more

layers, can be mathematically noted as

τi
∂ui(x, t)

∂t
= −ui +

m∑

j=1

∫

F

wij(x, x
′; t− t′)Zj(x

′, t′)dx′dt′ + hi + si(x, t), (2.8.147)
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2.8 The Amari Neural Field Model

Figure 2.4: The neuron layers of Amari 1977.

where ∂ui(x, t) is the average membrane potential of the neurons located at position

x = (x1, x2) at time t on the ith layer. F = {x ∈ R
2 ∥ x |≤ R}. The average activity,

i.e., the pulse emission rate of the neurons at x and t can be noted as

Zj(x
′, t′) = fi[ui(x

′, t′)], (2.8.148)

where fi is an output function in the form of a non-linear sigmoid function and is

monotonically nondecreasing, saturating to a constant for large ui. The average

intensity of connection from neurons in the jth layer at place y to neurons of the

ith layer at place x is defined by wij(x, y). The function wij(x, y; t) represents the

degree of stimulation of neurons at x in the ith layer by the pulses emitted from

neurons at place y of the jth layer in t time units before.

This function is used when it is necessary to take pulse conduction time and

synaptic delay into consideration. If there is an applied stimulus from outside the

field to the neurons of the ith layer, then its intensity at place x at time t will

be shown by a component, which can be decomposed into s̄i + si(x, t), where s̄i

denotes the average stimulation level at the ith layer and si(x, t) is the deviation

from the average s̄i. The level hi is the difference between s̄i and resting potential

ri (hi = (s̄i−ri)). That means, if there is no deviational input si(x, t), the potential

ui will converge to hi with τi, where τi is the time constant for the dynamics of

the ith type of neuron. The level hi is usually negative, depending on the average

stimulation s̄i. Therefore the value of hi can be controlled from outside the field
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(Amari 1977; Kishimoto and Amari 1979).

2.9 Linking Hodgkin-Huxley Neuronal Circuit

Activity to Neural Field Potentials

The developed neural field model consists of the introduced two-layer architecture:

the excitatory (top) layer represents the mean firing rate of the two compartments of

PY neurons, and the inhibitory (sub-) layer is substituting IN neurons, located over

a wider spatial area possessing unspecific all-to-all connections (lateral inhibition).

According to the Amari field model, a local excitation pattern is elicited by external

time-invariant input stimuli, that is applied to the cortical neurons at position

x. After excitation of the cortical neurons and achieving the action potentials,

the oscillating activity of both, the dendritic tree’s characteristic low-pass activity

and also the somatic spiking activity are taken as mean firing rate inputs to the

neural field model. To do that, it is necessary to map the 1D neuron model firing

output (soma + dendrite) to a 2D Gaussian spatiotemporal signal distribution using

Equation 2.9.149. Because the distribution of average single-cell activity which

naturally arises in a randomly connected network is expected to be Gaussian by

the central limit theorem, which states that, under certain conditions, the mean of a

sufficiently large number of independent random variables, each with a well-defined

mean and well-defined variance, will be approximately normally distributed. The

spatiotemporal signal distribution is defined as

f(x) = a exp

(

−
(x− x0)

2

2σ2

)

, (2.9.149)

where a is the height of the curve’s peak that is substituted by the amplitude of

somatic and dendritic activity calculated. x0 is the location parameter or a mean

value which is replaced by a coordinate of the firing neurons (see Figure 3.10) for

chosen coordinates), and σ2 is the squared scale parameter which corresponds to

the variance of the distribution. It should be noted that the developed 2D field

model requires a two dimensional Gaussian function since the average value which

stands at x = (x0, y0) has two coordinates, so

f(x, y) = a exp

(

−
(x− x0)

2

2σ2
x

+
(y − y0)

2

2σ2
y

)

(2.9.150)
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was applied in the 2D domain. Therefore, each stimulus in this model can be

depicted for the somatic part as

SPYsom
=

1

Cm

(−ḡL(VS − EL)− INa(VS, h)− IK(VS, n)− ICa(VS)− IAHP (VS, [Ca2+]i)

−
gc
p
(VS − VD) + CmVm) exp

(

−
(y − y0)

2

2σ2
y

)

(2.9.151)

and for the dendritic part as

SPYden
=

1

Cm

(−ḡL(VD − EL)− ICa(VD)− IAHP (VD, [Ca2+]i)

−
gc

1− p
(VD − VS) + Isyn) exp

(

−
(y − y0)

2

2σ2
y

) (2.9.152)

After arrival of the rated stimulation in the dynamics pattern as an input, the

transformed current value of the field can be computed through Equation 2.9.153.

As stated, the field is generated by a set of four pyramidal neurons. So eight inputs

must be considered here, four to the dendritic and four to the somatic compart-

ments:

du(x, t)

dt
=
1

τ
(−u(x, t) + hu +

∫

F

wu(x− x′)f [u(x′, t)]dx′ −

∫

F

wv(x− x′)f [v(x′, t)]dx′

+ SPY 1som(x, t) + SPY 2som(x, t) + SPY 3som(x, t) + SPY 4som(x, t)

+ SPY 1den(x, t) + SPY 2den(x, t) + SPY 3den(x, t) + SPY 4den(x, t)

(2.9.153)

Here, du(x,t)
dt

is the rate of each neuron’s change of field activation level across the

spatial dimension x as a function of time t. τ is the time scale of the dynamics and

u(x, t) is defined as the activation in the field at each position x at time t and is the

first factor that advances the rate of change of activation and due to its negative

term, the activation changes towards the activation level hu, that is relevant for the

threshold function f . F = {x ∈ R
2 ∥ x |≤ R}.

Based on the Amari model introduced in 1977, the field in this model also consists

of excitatory and inhibitory layers, in which the inhibitory neurons only target the

excitatory neurons. Moreover, the excitatory neurons have very narrow fan-out

connections to the inhibitory neurons so that the excitatory neurons at place x

excite the inhibitory neurons at place x only (Amari 1977).
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Neurons

This local excitation and lateral inhibition is respectively defined by
∫

F
wu(x− x′)f [u(x′, t)]dx′ and

∫

F
wv(x− x′)f [v(x′, t)]dx′ in Equation 2.9.153.

The intrafield interaction between the neurons of one layer takes the shape of a

convolution over the threshold field f(u) with a homogeneous convolution kernel

wu. The interfield interaction between the neurons placed at two layers follows the

same scheme with the threshold field f(v) and convolution kernel wv.

The threshold function f can either be a step function or have a smoother sigmoidal

pattern such as

f(u) =
1

1 + exp[−β(u− u0)]
. (2.9.154)

This determines that in both cases only the field parts which are sufficiently ac-

tivated are contributing to intrafield interactions. Here, β is determined as the

sigmoidal function’s slope and shows the degree to which neurons close to threshold

contribute to the activation dynamics. u0 is the inflection point, namely threshold

point. Furthermore the connectivity w which is deduced from Gaussian kernel and

is often referred to as lateral inhibition explains excitatory behavior over small dis-

tances, inhibitory over medium distances and either inhibitory or zero over larger

distances (global inhibition). This interaction mode is widely applied in modeling,

known as Mexican hat function:

w(x− x′) = exp

(

−0.5
(x− x′)2

σ2

)

. (2.9.155)

where σ denotes the width of the excitatory part of the kernel.

A detailed description of these functions and their parameters can be found in

Toledo-Aral et al. 1997.

2.10 Backpropergation of the Neural Field Po-

tentials on the Cortical Neurons

This part of the model describes how to incorporate the effect of neural field oscil-

lations at position x and time t calculated by the Amari neural field model on the

membrane potential of neurons by means of the single neuron’s Hodgkin-Huxley

formalism embedded in the neural circuit model of Llinás and his colleagues (Llinás

and Ribary 1993; Llinás et al. 1994, 1998, 2002).
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Neurons

With regard to the Nernst model, the membrane potential Vm defined as the dif-

ference in electrical potential between the intracellular and the surrounding extra-

cellular medium of a neuron is proportional to the current Im passing into the cell

at any given time. This current is determined by the membrane capacitance Cm

as a multiplication factor and can be described via the basic equation for a single

neuron:

Cm · Vm = Im. (2.10.156)

In this way, it is possible to convert the neural field potentials to electric current

at a given spatial point of a modeled neuron and to use that as an additional

feedback input for the thalamocortical circuit in order to calculate the effects of

the generated field potentials back on each pyramidal neuron. Because changes in

the neural signaling properties will change the resonant states in the network, it is

expected that this feedback is mandatory to gain a valid multiscale model.

Since we separated the PY neurons into a dendritic and a somatic compartment,

the potential equations for each part are given by

dVS

dt
=

1

Cm

(−ḡL(VS − EL)− INa(VS, h)− IK(VS, n)

− ICa(VS)− IAHP (VS, [Ca2+]i)−
gc
p
(VS − VD) + Iapp),

(2.10.157)

and

dVD

dt
=

1

Cm

(−ḡL(VD − EL)− ICa(VD)− IAHP (VD, [Ca2+]i)

−
gc

1− p
(VD − VS) + Isyn),

(2.10.158)

where Cm is the membrane capacitance, VS and VD are the membrane potentials of

somatic and dendritic compartment, respectively, and ḡL(VS−EL) and ḡL(VD−EL)

depict the corresponding leakage conductance term for each compartment. The

current flow between the soma and the dendrite is proportional to (VS − VD) in

A/cm2, with coupling conductance gc = 2mS/cm2 and the parameter p = somatic

area/total area = 0.5. The cell can be either excited by an injected current Iapp (in

µA/cm2) to the soma or by synaptic inputs to the dendrite (Wang 1998).

According to recent research in rat cortical pyramidal neuron stimulation, it has

been found that extracellular fields cause changes in the exposed cell’s somatic

membrane potentials (Anastassiou et al. 2011). Therefore, the feedback current
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Neurons

caused by the neural fields is only modeled in the somatic part of the two

compartment model as Iapp.
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Chapter 3

Results

3.1 cAg-NPs Effects on Neuronal Cells in vitro

and in silico

The results of measurements of sodium current amplitudes are shown in Table

3.1. Averages (medians) (x̃) and standard deviations (σ) in INa amplitudes before

and after cAg-NPs addition and differences in median (∆x̃) between controls and

cAg-NPs exposed cells at different concentrations are represented there. Since the

amplitudes of the controls (baseline) vary, the values have been normalized. Table

3.2 indicates the amplitudes of INa before and after cAg-NP addition as total values.

The attenuation of the amplitude occurred rapidly after the application of the cAg-

NPs and was then recorded in another 3 to 5 cells in the treated dish. Suppression

of INa was observed in 43 of 45 experiments. In another group of experiments, cAg-

NPs (16µM) were applied locally via an application pipette to chromaffin cells after

recording of control action potentials. Current voltage relationships were recorded

under control conditions and after application of cAg-NPs. Figure 3.1 and 3.2

show a representative experiment. Figure 3.1 depicts the current-voltage relation

fit and Figure 3.2 shows single depolarizations to −0mV which were applied to track

changes in sodium current amplitude. INa was reduced within seconds of application

with maximal block occurring after about two minutes. In some cases substantial

recovery occurred within 10 minutes of application. There was no significant shift
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3.1 cAg-NPs Effects on Neuronal Cells in vitro and in silico

Table 3.1: Normalized amplitudes of INa before and after cAg-NPs addition

(holding potential −70mV , depolarization potential −20mV ).

cAg-NPs

concentration

x̃a before

cAg-NPs

normalized

x̃ after

cAg-NPs

normalized

σb before

cAg-NPs

normalized

σ after

cAg-NPs

normalized

∆x̃c

normalized

13µMol(1/100) 1 0.91 0.14 0.12 0.09

16µMol(1/80) 1 0.77 0.19 0.11 0.23

43µMol(1/30) 1 0.52 0.18 0.09 0.48

130µMol(1/10) 1 0.47 0.13 0.10 0.53

1.3mMol(1/1) 1 0.31 0.13 0.23 0.69

ax̃ = Normalized average amplitude
bσ = Normalized standard deviation
c∆x̃ = Normalized difference between controls and cAg-NPs exposed cells

Table 3.2: Amplitudes of INa before and after cAg-NPs addition as total values

(holding potential -70 mV, depolarization potential -20 mV).

cAg-NPs

concentration

x̃a before

cAg-NPs

in pA

x̃ after

cAg-NPs

in pA

σb before

cAg-NPs

in pA

σ after

cAg-NPs

in pA

∆x̃c in pA

13µMol(1/100) 634.2 579.3 86 77.5 54.9

16µMol(1/80) 613.4 472.3 116.6 67.5 141.1

43µMol(1/30) 731.9 382.9 129.8 66.6 349

130µMol(1/10) 824.7 384.9 105.6 84.3 439.9

1.3mMol(1/1) 609.3 190.4 81.4 141.3 418.9

ax̃ = Average amplitude expressed as median value in pA
bσ = Standard deviation
c∆x̃ = Difference in median between controls and cAgNP exposed cells.
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3.1 cAg-NPs Effects on Neuronal Cells in vitro and in silico

in the voltage-dependence of the INa (3.1+ 2.6mV , mean + SD) and no significant

shift in the Null potential of INa (4.4 + 4.9mV , mean + SD).

Figure 3.1: Local application of cAg-NPs to chromaffin cells. A representative

IV-curve of a cell before and after application of cAg-NPs (16µMol, grey, and

corresponding control, black).

Five representative sodium current curves taken after the application of cAg-NPs

and their corresponding controls from the 1.3mM dataset have been selected for the

DE-fitting procedure. Before processing, a cubic spline interpolation was employed

to smooth the curves, to reduce noise, and produce consistent vector length. Figure

3.3 shows representative sodium currents as continuous lines: on top (a) is a control

sodium current, the bottom (b) shows the sodium current of the same cell after the

addition of cAg-NPs.

The dashed lines in Figure 3.3 represent the corresponding model fittings to these

curves by the DE-algorithm. The fitting process generated estimates of the 13

free coefficients (ξ) in Equation 2.4.9 and 2.4.10. There were conspicuous changes

53



3.1 cAg-NPs Effects on Neuronal Cells in vitro and in silico

Figure 3.2: Local application of cAg-NPs to chromaffin cells. Records of INa before

and after local application of cAg-NPs after 60s and 120s respectively.

in parameters ξ1, 2, 6, 7, 8, 9, 10 & 12 (Equation 2.4.9 and 2.4.10). By transferring

those findings back into a more macroscopic (transfer rate coefficients) level of the

Hodgkin-Huxley equations, the transfer rate coefficients and the reversal potential

VNa (Equation 2.4.9 and 2.4.10) were found to be potentially modified. Since the

reduction in amplitude of INa occurred without an appreciable shift in either acti-

vation voltage or null potential, it is unlikely that a change in VNa is involved in

the effects of cAg-NPs on INa. Therefore VNa was fixed and the simulation was

ran again. As expected, very good fits could be achieved when only changes in the

transfer rate coefficients αh, αm, βm were allowed. Figure 3.4 shows the changes of

these variables after particle exposition in a normalized bar diagram. Changes in

these parameters were required for a good fit to the cAg-NPs data.

Figure 3.5 shows the output of a representative sodium current fit with the relevant

parameters changes (dashed lines).
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Figure 3.3: Measured sodium current without (a) and with (b) cAg-NPs (solid lines,

holding potential −70mV , depolarization potential −20mV ), and the curve fits by

DE (dashed lines).
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3.2 cAg-NPs Effects on the chosen Neuronal Feedback Circuit

Figure 3.4: Differences of model fitted αh, βh, αm, βm, and GNamax between the

measured sodium current with cAg-NPs in 130µMol concentration and the corre-

sponding controls. ξ.13 (stim-time) is not considered.

3.2 cAg-NPs Effects on the chosen Neuronal

Feedback Circuit

To estimate the impact of cAg-NPs on the activity in a neuronal feedback circuit, the

simulated results of the first model were employed to modify the properties of INa

of thalamic cells in the network model of corticothalamic interactions. The initial

conditions for all gating variables of each neuron model involved were calculated

according to their steady-state functions whereas the membrane potential’s initial

conditions were taken from cited references. To activate the feedback circuit, a single

action potential (AP) was generated in the model sensory neuron which directly

projects to STC by utilizing a brief depolarisation current pulse of Iapp = 6µA/cm2.

This leads to a small depolarization in STC and as a consequence of the specific
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3.2 cAg-NPs Effects on the chosen Neuronal Feedback Circuit

Figure 3.5: DE fittings (dashed lines) utilizing just the 7 identified Hodgkin-Huxley-

Equation parameters (αh, αm, βm) and the corresponding electrophysiologically

measured currents for control (a) and cAg-NPs (130µMol) transfected (b).

57



3.3 cAg-NPs Effects on 2D Neural Field Oscillations

synaptic parameters, all neurons fire in a 6 − 8Hz bursting oscillation mode. The

resulting membrane potentials of the cortical PY neuron 1, 2, 3 & 4 are shown in

Figure 3.6 for a time interval of 4s.

Figure 3.7 illustrates the resulting membrane potentials of the cortical inhibitory

IN, RTN1, RTN2, STC and the NSTC neuron for 4s. The black graphs in both

figures show the behavior of the engaged cells after the initial AP in the sensory

neuron (see Figure 2.3) under normal physiological conditions.

The gray lines show the behavior of the same cells in the network after altering INa of

thalamic cells, i.e., NSTC, STC & RTNs consistent with the changes in INa observed

after cAg-NP application. Variations in the firing patters of all cells embedded

in the simplified network model were apparent after this manipulation. Changes

in activity can be seen in Table 3.2 as mean values including the corresponding

standard deviations (σ) for interburst intervals, the resulting interburst frequencies

and the intraburst frequencies before and after hypothesized cAg-NPs presence in

thalamic cells for 4s (only the bursting neurons were considered for the statistics).

Table 3.2 reveals that the interburst frequencies are slightly increased after

cAg-NPs application in the thalamus core. The intraburst frequencies are found

to be slightly decreased for PY1, PY2 and for IN. In contrast, the intraburst

frequencies for both RTN1 and RTN2 are slightly increased whereas the intraburst

frequency for PY4 is more than doubled after NPs addition.

3.3 cAg-NPs Effects on 2D Neural Field Oscilla-

tions

Before modeling the influences of cAg-NPs on neural field potentials, it was investi-

gated how the neural field potentials influence the spike generation in neurons that

are physically located within such fields. If the feedback changes in the underlying

neuronal signaling within the circuit has the potential to cause observable changes

in the generated field potentials themselves, this enhanced model will be the basis

for the investigation of NPs induced modifications of neural field oscillations.

After initiating an action potential (4µA/cm2) at the left sensory neuron of the
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3.3 cAg-NPs Effects on 2D Neural Field Oscillations

Figure 3.6: Differences in firing patterns of PY1-, PY2-, PY3 and PY4- neuron for

4s before and after cAg-NPs application in thalamic neurons.
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3.3 cAg-NPs Effects on 2D Neural Field Oscillations

Figure 3.7: Differences in firing patterns of IN-, RTN1-, RTN2, STC- and NSTC-

neuron for 4s before and after cAg-NPs application in RTN and STC neurons.
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3.3 cAg-NPs Effects on 2D Neural Field Oscillations

utilized circuit (Figure 2.3, left), STC depolarizes and the thalamocortical network

starts oscillating. To ease the identification and in order to compare the model

output on a larger temporal scale, a likewise synchronized 5 − 12Hz bursting ac-

tivity was again evoked instead of the synchronized 40Hz oscillations. Figure 3.8

shows the somatic firing activity of the involved PY neurons for 3000ms as black

lines. The spiking activity of the thalamic neurons and the IN is depicted as well

as black lines in Figure 3.9. The simulation of the neural field activity generated

Figure 3.8: Comparison of the somatic membrane potentials (in mV ) for all four

PY neurons with and without neural field interactions as a function of time (ms).

Black graphs depict the PY firing without field interactions, the grey graphs include

field interactions.

by the cortical neurons was executed for t = 3s with a resolution of 1ms (= 3000

time steps in the model), resulting in smooth dynamic changes in the top layer u.

Dependent on the spatial and temporal pattern of the field u, the inhibitory layer

demonstrates analog field activity v. Figure 3.10 shows the activity of the field

u (top) and the field v (bottom) for an example point in time. The physical 2D

configuration of the PY neurons that was chosen for all simulations can also be
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3.3 cAg-NPs Effects on 2D Neural Field Oscillations

Figure 3.9: Comparison of the membrane potentials (in mV ) for all involved tha-

lamic neurons, i.e., RTN1, RTN2, STC and NSTC, with and without neural field

interactions as a function of time (ms). Black graphs depict the firing without field

interactions to PYs, grey graphs include field interactions.
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3.3 cAg-NPs Effects on 2D Neural Field Oscillations

derived from this illustration.

After simulating the cortical field potentials emerging from thalamocortical inter-

PY1 PY2 PY3 PY4

Figure 3.10: Example for the field activity of the 1st (excitatory) layer u (top) and

the corresponding activity of the 2nd (inhibitory) layer v (bottom). The physical

configuration of the PY neurons which was chosen for all simulations can also be

derived from this illustration. All field potentials are in 101µV .

actions on a small cortical patch, it was examined how much those field potentials

affect its generating neurons, i.e., how the field potentials feed back in real time to

the two-compartment pyramidal neurons influence the circuit’s signaling behavior.

Thus it could be estimated if this closed loop effects have the potential to produce

diversified neural field activity.

After superimposing the emerging spatiotemporal field potentials on the single neu-

ron models, the simulations were restarted: The grey graphs show the somatic firing

of the four PY neurons including field interactions in Figure 3.9 and the correspond-

ing IN and thalamic neuron potentials in Figure 3.10.

Figure 3.11 is now illustrating the emerging field potentials in 2D of four pyramidal

neurons without (left) and with (middle) the influence of the feedback to pyramidal

neurons for an example time point. The right panel shows the difference of these

two field potentials for the same time point. These results are illustrated again
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3.3 cAg-NPs Effects on 2D Neural Field Oscillations

Figure 3.11: Emerging field potentials in 2D of four pyramidal neurons without

(left) and with (middle) the influence of the feedback to pyramidal neurons and

difference (right) of these two field potentials for the same example time point.

in Figure 3.12. In contrast, this one shows the neural field potentials generated

by the PY neurons for four example points of time as 3D plots. The left column

of Figure 3.12 illustrates the field potential patterns at those time points without

feeding those back to the Hodgkin-Huxley domain and the right column depicts the

corresponding potentials at the same time points including the feedback loop for

comparison issues.

After successfully simulating the cortical field potentials emerging from a small

cortical patch of synchronized Llinás-model based thalamocortical interactions, it

was examined if it is possible to also observe effects in those field potentials engen-

dered by NPs. Therefore, the presence of Ag-NPs in the referred thalamic neurons

was considered and the resulting field activity was simulated again for t=1500s.

Figure 3.3 illustrates finally these neural field potentials including field interactions

(feedback) in the domain of Hodgkin-Huxley and the interaction of cAg-NPs in

thalamic cells for four representative points in time on the right. The right panel

of 3.3 shows the corresponding field potentials without the presence of cAg-NPs in
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Figure 3.12: Comparison of the generated neural field potentials (1st layer) at four

randomly chosen points of time with and without feeding back the field potentials

to the single neuron models. All field potentials are in 101µV .
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the referred thalamic cells.
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Figure 3.13: Comparison of the generated neural field potentials (1st layer) at four

randomly chosen points of time including field potential feedback with and without

the application of Ag-NPs on thalamic neurons. All field potentials are in 101µV .
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3.3 cAg-NPs Effects on 2D Neural Field Oscillations

Table 3.3: Changes in neuronal bursting after cAg-NPs application.

neuron type interburst

interval

(ms)

σa

interburst

interval

(ms)

∼interburst

frequency

(Hz)

intraburst

frequency

(Hz)

σa

intraburst

frequency

(Hz)

PY1 before

cAg-NPs app.

120 19 6.7 291 1

PY1 after

cAg-NPs app.

110 32 7.5 278.5 4.5

PY2 before

cAg-NPs app.

96 33 6.5 271 4

PY2 after

cAg-NPs app.

93 33 7.75 266.5 6.5

PY4 before

cAg-NPs app.

139 56 4.75 296 1

PY4 after

cAg-NPs app.

125 57 6.7 691.5 2.5

IN before

cAg-NPs app.

103 23 7.5 201 15.5

IN after

cAg-NPs app.

89 27 8 139 2.5

RTN1 before

cAg-NPs app.

68 15 7.5 348.5 49.5

RTN1 after

cAg-NPs app.

65 8 7.75 366 72

RTN2 before

cAg-NPs app.

75 15 7.5 293.5 35.5

RTN2 after

cAg-NPs app.

69 12 7.75 332.5 19.5

aσ = standard deviation.
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Chapter 4

Discussion

4.1 cAg-NPs Effects on Neuronal Cells in vitro

and in silico

The patch-clamp measurements show that the application of cAg-NPs to

chromaffin-cells reduces the amplitude of sodium-currents. The changes were rapid,

partially reversible and dose-dependent. Based on the Hodgkin-Huxley-fitting, the

cAg-NPs may affect the electrically charged h-particles by the alteration to the

non-inactivating (towards open) state at changed transfer rate coefficient αh. Ad-

ditionally, the m-particles are influenced by the transition to the open and closed

state as αm plus βm is altered.

However, the lack of a rightward shift of the I-V curves (Figure 3.1) indicate that

any effects on voltage sensors or gating lead to failure to gate or a decreased channel

conductance, which are not overcome by stronger depolarization. A shift in null

potential, which might result from a change in ion selectivity, also cannot explain

the reduced INa. It was not possible to distinguish between these two possibilities

based on the present data. It is possible that cAg-NPs may produce mechanical

effects on the ion-channels leading to lower conductivity or fewer channels which

reach the open state. An interaction of cAg-NPs with the reference-electrode can

be ruled out since the holding current was not affected by cAg-NPs addition.
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4.2 cAg-NPs Effects on the Neuronal Feedback Circuit

4.2 cAg-NPs Effects on the Neuronal Feedback

Circuit

In any case, the net effects of cAg-NPs on neuronal feedback circuits will be reduced

excitability of affected cells and such effects could have been simulated. The simu-

lation indicates that application of cAg-NPs in the thalamus will result in dramatic

changes in thalamocortical activity. This could occur, for instance, if cAg-NPs used

as a drug carrier crossed the round window membrane of the cochlea and were ret-

rograde transported. Praetorius et al. 2007 evaluated the safety and distribution

of Cy3-labeled Silica-NPs in in vivo experiments by placing them on the round

window membrane of adult mice. After 4 days, SiO2-NPs signals could be found

in the superior olivary complex. Their observation proposes a retrograde axonal

transport for the applied NPs. The developed in silico model enables investigation

of potential effects of NPs which enter the CNS.

The simulations committed examine the systemic influences of cAg-NPs in neuronal

systems. Though the computational model of the thalamocortical network is highly

simplified and does not consider inputs or projections to other involved brain re-

gions, it indicates that reduced excitability of a few neurons in such a circuit has

distinct effects on network activity. Such was observable in Figure 3.6, Figure 3.7

and compendious in Table 2. The model is able to predict possible consequences of

cAg-NPs introduction to neuronal feedback circuits.

The in vivo effects of such NPs on any network will likely be complicated by addi-

tional effects of NPs. The author introduced changes in voltage dependent sodium

currents in the developed model. NPs induced changes in mechanisms affecting ex-

citability such as other ion channels were not examined though effects on potassium

channels have been reported (Liu et al. (2011)).

4.3 cAg-NPs Effects on 2D Neural Field Oscilla-

tions

After the membrane potentials of the involved cortical and thalamic neurons could

have been calculated and illustrated as bursting activity over simulation time (Fig-

ure 3.6 and Figure 3.7), the neural field potentials that were generated by the
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4.3 cAg-NPs Effects on 2D Neural Field Oscillations

pyramidal neurons on a very small cortical patch (Figure 3.10) could have been

successfully modeled. Thereafter, the motivation was to employ this model to in-

vestigate how the neural field potentials in turn affect the single neurons’ signaling

behavior (i.e., closing the feedback loop). By first inspection of possible differences

in the modeled firing behavior between ’including field feedback ’ and ’not including

field feedback ’, it can be noted in Figure 3.8 and Figure 3.9 that changes in burst

timing and duration emerged after feeding the field potentials back to the neuron

models. The firing behavior of all PY neurons (Figure 3.8) is found to be changed

after field effect consideration. In some cases the action potential generation was

also found to be weaker in the ’no feedback ’ model (e.g. PY3). A statistical review

(Table 4.3) offers that for the PY neurons the frequency of the oscillating activ-

ity has decreased around 15 − 30Hz for intraburst frequencies and again around

0.7 − 2.0Hz for interburst frequencies. The cortical IN responses behave similar:

Table 4.1: Average intra- & interburst frequency in cortical neurons.

intraburst frequency (Hz) interburst frequency (Hz)

without feedback with feedback without feedback with feedback

PY1 300 270 12 10

PY2 299 270 10 10

PY3 370 298 5 5.3

PY4 295 280 6.33 5.66

IN 237.23 179.8 10.67 10.00

here, the difference in intraburst frequency is ∼ 57Hz and for the interburst fre-

quency only ∼ 0.67Hz. Regarding the thalamic neurons and the cortical IN, it is

observable in Figure 3.9 that the spiking activity is also diversified after field effect

consideration. With respect to the statistical values of Table 4.3, in contrast to cor-

tical neurons, the thalamic interburst frequencies are found to be slightly increased

where the intraburst frequencies remain almost the same.

By comparison of the generated neural field potentials at randomly chosen time

points (Figure 3.11 and Figure 3.12) with and without feeding back the field poten-

tials to the single neuron models, it is clearly observable that the generated neural
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Table 4.2: Average intra- & interburst frequency in thalamic neurons.

intraburst frequency (Hz) interburst frequency (Hz)

without feedback with feedback without feedback with feedback

RTN1 221.7 308.7 10.50 10.33

RTN2 261.3 318.45 10.50 10.33

STC 336.13 404.68 10.30 10.00

NSTC 416 416 3.33 2.60

field potentials are extensive diversified in all chosen example time points. This was

found to be the case for all time-points throughout the whole simulation.

The final task was then to compare the emerging field potentials (including feed-

back) with and without the absence of cAg-NPs. Figure 3.13 reveals that cAg-NPs

brought into contact with thalamic cells of the circuit actually lead to diversified

neuronal field activity of much higher spatial domains. This was also found for all

time-points throughout the whole simulation.

- Compendious, the study was able to expand the model introduced by Llinás et

al. to additionally observe related field potentials that spread over a spatial cortical

patch. Incorporating the idea of NPs acting as neuromodulators to this new model,

the emerging field potentials of the two-dimensional two-layer approach is found to

be extensive diversified after presuming the application of NPs to thalamic neurons.

In a single neuron model study (Busse et al. 2010, 2013), the author was able to

identify the impact of Ag-NPs on the cells ionic currents. This little change was

adopted to model the potential effects of those particles on small sized neuronal

feedback circuits (Busse et al. 2011b, 2013). Even though the observed NPs induced

diversifications in the feedback networks signaling behavior was quite small, when

integrating the thalamocortical model from a functional column into the dynamics

of spatiotemporal neural field potentials (Busse et al. 2011a), entirely altered field

potentials could been observed after particle distribution on few thalamic cells.

NPs in thalamic tissue may cause distortions in cortical field potentials, where

especially the NSTC cause a spread of these modulatory effects over multiple cortical

areas in consequence. This model may subserve as basic approach to estimate the
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spatiotemporal dynamics of cortical field potentials that may be electrophysiological

measurable.

73



Chapter 5

Conclusion

The in vitro measurements that served as basis for this study have shown that the

application of cAg-NP to chromaffin cells reduce the amplitude of sodium currents

without an appreciable shift in either activation voltage or null potential. Those

changes were found to be rapid, partially reversible and dose-dependent. It was not

possible to figure out if cAg-NP may produce mechanical effects on the ion channels

leading to lower conductivity nor if there are fewer channels that reach the open

state. In any case, the net effects of cAg-NP on neuronal feedback circuits will be

reduced excitability of affected cells, and we have simulated these effects.

Transferring those findings to neuronal circuits via modeling of the thalamocortical

network resulted in the possibility to make initial predictions as to what effects

coated silvernanoparticles’ suppression of sodium currents will have on thalamocor-

tical circuits. This model extension predicted that an alteration of the properties of

RTN, STC or NSTC neurons, as they were found by the HH-model fits of INa after

treatment with cAg-NPs, end in large alterations of network signalling behavior. It

can be expected that NPs brought into contact with few cells of a neuronal feedback

circuit will extensively alter network rhythms of large neuronal populations in vivo.

Next, the in silico thalamocortical circuit model was additionally expanded to ob-

serve related field potentials spreading over a spatial cortical patch. Incorporating

the idea of back propagating the field potentials effecting single neuron activity to

this new model, the emerging field potentials of a basic two-dimensional two-layer

approach was also found to be widely diversified after assuming cAg-NP presence in

network thalamic neurons. The field potentials seem to have strong effects on the

action potential generation of neurons that are exposed to those fields as well. The
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results presume that as a consequence of cAg-NPs affected thalamocortical network

cells, the emerging in vivo neural field potentials will be found to be extensively

diversified. This model may also subserve as basic approach to estimate the spa-

tiotemporal dynamics of cortical field potentials on a very small cortical patch that

may be electrophysiologically measurable.

In future, two-dimensional multi-electrode array as well as voltage sensitive dye

measurements with high spatiotemporal resolution will be carried out on rat audi-

tory cortex. The experimental data will be applied to validate and also to extend

the model with the focus on underlying neuronal mechanisms. Besides, cAg-NPs

effects on other aspects of membrane excitability will be investigated and these

findings will be included into the model. The experimental data will be applied to

compare and also to extend the model with the focus on recovering estimates of the

underlying mechanisms by means of excitable cells exposed to NPs. Furthermore,

different NPs types, sizes, as well as their coatings’ material and surface structure

will be investigated in respect of their stability and impact on neuronal cells and

tissues.
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