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Abstract. We describe the application of a popular and 

widely available electrical circuit simulation program 

called SPICE to modeling the electrical behavior of 

neurons with passive membrane properties and arbi- 

trarily complex dendritic trees. Transient responses 

may be calculated at any location in the cell model 

following current, voltage or conductance perturba- 

tions at any point. A numbering method is described 

for binary trees which is helpful in transforming 

complex dendritic structures into a coded list of short 

cylindrical dendritic segments suitable for input to 

SPICE. Individual segments are modeled as isopoten- 

tial compartments comprised of a parallel resistor and 

capacitor, representing the transmembrane imped- 

ance, in series with one or two core resistors. Synaptic 

current is modeled by a current source controlled by 

the local membrane potential and an "alpha-shaped" 

voltage, thus simulating a conductance change in series 

with a driving potential. Extensively branched test cell 

circuits were constructed which satisfied the equivalent 

cylinder constraints (Rall 1959). These model neurons 

were perturbed by independent current sources and by 

synaptic currents. Responses calculated by SPICE are 

compared with analytical results. With appropriately 

chosen model parameters, extremely accurate transi- 

ent calculations may be obtained. Details of the SPICE 

circuit elements are presented, along with illustrative 

examples sufficient to allow implementation of passive 

nerve cell models on a number of common computers. 

Methods for modeling excitable membrane are present- 

ed in the companion paper (Bunow et al. 1985). 
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1 Introduction 

The role of dendritic geometry in the integrative 

function of nerve cells has been studied extensively 

over the last three decades, both analytically and 

through the use of computational models (see Rall 

1977, for review). These studies have created the 

conceptual and mathematical tools needed to answer 

precise questions about the connection between neuro- 

nal form and function. Recent advances in cell staining 

techniques, most notably the introduction of horserad- 

ish peroxidase (e.g. Cullheim and Kellerth 1976; 

Jankowska et al. 1976), have enabled physiological 

study of neurons which may subsequently be visual- 

ized in exquisite morphological detail. If physiological 

and anatomical measurements are made on the same 

cell, then quantitative computer models may reveal 

how the physiological domain is mapped onto the 

morphological domain. 

To study the mechanisms by which a neuron 

processes its synaptic inputs, the cable properties of the 

postsynaptic neuron as well as the anatomical and 

physiological characteristics of the synaptic inputs 

must be known. Rall (1959, 1960, 1962, 1967, 1969) has 

developed a theoretical basis to derive these properties 

using data obtained from intracellular recording, 

Other analytical models of nerve cells have been 

developed by Jack and Redman (1971); Barrett and 

Crill (1974); Butz and Cowan (1974); Poggio and Torre 

(1977) and Horwitz (1981). 

These analytical approaches assumed passive 

membrane properties and were limited by practical 

computational concerns to very small numbers of 

synaptic inputs. If one is interested in morphologi- 

cally complex cells and in nonlinear membrane events, 

such as synaptic conductance changes, rectification or 

spike generation, a compartmental model is appro- 

priate, and, for certain problems, mandatory (Rall 

1964). In the compartmental approach, the neuron is 
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disassembled into regions or compartments of mem- 

brane small enough to be considered isopotential 

which, therefore, may be represented by a membrane 

capacitance in parallel with a membrane resistance. 

Series resistors connect adjacent compartments (Rall 

1964; Perkel and Mulloney 1978a, b). The continuous 

cable equation, a second order, partial differential 

equation, is thus approximated by a system of ordinary 

differential equations. The advantage of this approach 

is that it places no restrictions on the membrane 

properties of each compartment (e.g. compartments 

may be passive or excitable) or on the geometry of the 

neuron. 

Several groups have used compartmental ap- 

proaches to simulate the electrical behavior of neurons 

(passive models, e.g. Rall 1964; Rallet al. 1967; Brown 

et al. 1981; Edwards and Mulloney 1984; active 

models, e.g. Cooley and Dodge, 1966; Rall and Shep- 

herd 1968; Khodorov 1974; Goldstein and Rall 

1974; Moore et al. 1975; Traub and Llinas 1979; 

Parnas and Segev 1979). However these compart- 

mental models did not approach the anatomical and 

physiological complexity of real nerve cells. For 

example, cat c~-motoneurons may have a dozen or 

more dendrites, which may bifurcate as many as ten 

times before terminating (Ulfhake and Kellerth 1981; 

Cullheim et al. 1985). Realistic representation of such 

cells may require thousands of compartments (Flesh- 

man et al., in preparation; Shelton 1985) and, therefore, 

the simultaneous solution of thousands of differential 

equations. 

Fortunately for those of us who would model nerve 

cells, electrical network analysis programs exist which 

are capable of handling circuits of this complexity, as 

first suggested by Shepherd and Brayton (1979). One 

such program is called SPICE, a general purpose 

circuit simulation program developed in the Depart- 

ment of Electrical Engineering and Computer Sciences 

at the University of California, at Berkeley (Vladimi- 

rescu et al. 1981). SPICE is an inexpensive FORTRAN 

program which can be run on several widely available 

computers, from the CDC Cyber to the 

DEC VAX 11/750 to the IBM PC-XT (see Bunow et al. 

1985; upon request, the authors will provide informa- 

tion about how to obtain copies of SPICE). As we will 

show in this paper, SPICE is readily applied to study 

the behavior of passive, arbitrarily complex neurons in 

response to current pulses and synaptic currents. 

Modeling nonlinear and excitable membrane pro- 

perties is the subject of the following paper. 

The plan of this paper is as follows: Section 2 

discusses the representation of a dendritic neuron as a 
spherical soma and a coded collection of short cylindri- 

cal segments. The basic approach employed in SPICE 

to describe electrical circuits is described. Then circuit 

analogues are developed for the cell soma, dendritic 

segments, independent current and voltage sources 

and synapses using the SPICE format. In Sect. 3, 

idealized test cells are constructed and the performance 

of the computer models is compared against analytical 

results. Some numerical and related convergence pro- 

blems are considered. 

2 Model Formulation 

2.1 Reduction of Complex Dendritic Trees 

to Simple Units 

The transformation of a complex dendritic neuron into 

an equivalent network of discrete electrical compo- 

nents may be accomplished by "disassembling" the cell 

into a spherical soma and a set of interconnected 

cylindrical dendritic segments of known length and 

diameter (Ral11959; Barrett and Crill 1974). In dealing 

with the large ~-motoneurons of the cat spinal cord 

(Cullheim et al. 1985; Fleshman et al., in preparation) 

we have found it useful to devise a system of nomencla- 

ture which uniquely describes the position of every 

segment in the dendritic arborization. 

The naming system, illustrated in Fig. 1A, is based 

on a symmetrically branched binary tree. The figure 

shows a hypothetical dendrite (solid lines) superim- 

posed on a fully branched tree (dotted lines). The stem 

dendrite, defined as branch order zero, bifurcates into 2 

frst order daughter branches, which bifurcate into 4 

second order daughter branches. Of the second order 

branches, branches 1, 3 and 4 continue to bifurcate, but 

branch 2 terminates. Note that the numbering of third 

order branches of the hypothetical dendrite is the same 

as for the fully branched tree, even though the third 

order branches numbered 3 and 4 are missing. Thus, in 

this system, the order of daughter branches is one 

greater than the parent's, the branch number of the 

right-hand daughter is twice the parent's branch 

number and the number of the left hand daughter is 

one less than the right. 

Figure 1B, C shows the application of this naming 

system to a dendrite from an HRP-filled motoneuron. 

The anatomical dendrite in B is represented in C as an 

appropriately scaled binary dendrogram. The names 

of all of the dendritic branches from the stem, branch 

0001, to terminal branch 6011, are also shown. In 

Fig. 1C arrow heads indicate points at which dendritic 

branches are subdivided into shorter cylindrical 

segments. 
The diameters of real dendrites are not necessarily 

uniform between branch points (Barrett and Crill 

1974; Cullheim et al. 1985). We applied a sampling rule 

whereby branches less than 500 gm long were divided 

in half and branches longer than 500 gm were divided 
into 200 ~tm long segments beginning at the proximal 
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Fig. 1A-C. A system of nomenclature for binary dendritic branching. A Archetypal dendritic tree symmetrically branched to the fourth 

order (dotted), with an asymmetrical dendrite superimposed (solid line). Note that "missing" branch numbers are still counted. B 

Reconstruction of an HRP-filled c~-motoneuron dendrite, with branch names along the path from soma to sixth order terminal branch 

011. C Dendrogram of dendrite in B, showing initial anatomical branch segmentation (filled arrows) and subsequent electrotonic 
segmentation (empty arrows)for Rm = 7000 f~cm 2 and Ri = 70 ~crn 

branch point. Diameter measurements were made at 

the midpoint of each segment (see Cullheim et al. 1985 

for details of anatomical methods). This initial seg- 

mentation is shown in Fig. 1C by the filled arrow 

heads. 

The electrical length of a dendritic cylinder de- 

pends on the anatomical length and diameter of the 

segment, as well as the specific membrane (Rm) and 

cytoplasmic (Ri) resistivities. As discussed below, the 

accuracy of an electrical circuit model depends, in part, 

on the electrical length of individual segments. In order 

to keep the electrical length of all segments less than a 

criterion value (0.22) for a particular choice of Rm and 

Ri, it was necessary to further divide some of the 

segments, as shown by the empty arrows in Fig. 1C. 

Segments were numbered, beginning with zero, and 

this number completed the segment name. For 

example, if the dendrite shown in Fig. 1 is dendrite 4, 

the complete name of the segment marked by the 

asterisk in C would be 4601103. 

2.2 Basic Circuit Elements 

Here we describe some basi c techniques for modeling 

passive nerve cells with SPICE. The information 

presented here is not intended to supplant the SPICE 

manual, but rather may serve as a neuron-specific 

addendum to it. 

SPICE input takes the form of a "wiring list", in 

which each element of the network is connected to two 

or more nodes, just as one would solder a real element 

onto a circuit board. The usual elements of electrical 

networks are provided in SPICE: resistors, capacitors, 

voltage and current sources, and even semiconductor 

elements such as diodes and transistors. Each element 

in the circuit must have a unique name, the first 

character of which defines the element type. For the 

purposes of this paper, only resistors (R), capacitors (C), 

independent current (I) and voltage (V) sources and 

voltage-controlled current sources (G) are needed. The 

remaining characters of the name (up to eight total) are 

numbers or letters. Following the name are the integer 

numbers of the nodes to which the element is attached. 

Node 0 has a special meaning in SPICE, representing 

system ground. Lastly, the special characteristics of the 

element are indicated, such as the resistance of a 

particular resistor. For example an R-C block to 

ground could be written as 

R1 1 0 1MEG 

C1 1 0 1PFI 
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In addition to describing circuit topology, the user may 

specify one of several analysis modes, such as AC small 

signal, DC or transient analyses. 

2.2.1 Passive Isopotential Compartment. Three basic 

neuronal components may be represented in SPICE as 

passive isopotential compartments: the soma, the 

nonterminal dendritic segment and the terminal den- 

dritic segment. In Fig. 2A, a schematic representation 

(left column) and the equivalent electrical circuit 

(middle column) for the soma is shown. Here RM and 

CM are the membrane resistance and membrane 

capcitance. These values are related to the specific Rm 

and C,, values as follows 

RM = R,./(rcd~), (1) 

CM = CmrM 2 , (2) 

where d~ is the diameter of the soma. 

In the right column of Fig. 2A, SPICE input data 

representing a soma compartment is shown. The 

values of the soma resistance and capacitance were 

calculated from Eqs. (1) and (2) assuming Rm 

= 10,000 ~ cm 2, Cm = 1 ~tF/cm 2 and d s = 50 ~tm. TO 

inject a current pulse into the soma, an " I"  element 

may also be added, as shown in the third line of the 

SPICE input data of Fig. 2A. In this way, a depolariz- 

ing pulse of 1 nA and a duration of 0.5 ms is applied 

intracellularly. Current onset is delayed 0.1 ms from 

the first time point at which membrane potential is 

computed. 

A dendritic segment may be represented by three 

circuit elements (Fig. 2B, middle column) or four 

(Fig. 2C, middle column). In both cases the membrane 

capacitance and the membrane resistance of the whole 

segment are lumped as single RM and CM values. In 

the 3-element model, the axial resistance (RI) of the 

entire segment is placed on one (left) side of the 

R M - C M  elements. In the 4-element representation, 

the axial resistance is split in half (RI1 = RI2 = RI/2) 

and the membrane elements are placed at the midpoint 

of the segment. For a cylindrical segment with a 

diameter of dcm and a length of Axcm, the RM, CM 

and RI values are calculated as follows (Rail 1977) 

RM = R,./(~dAx), (3) 

RI=4R,Ax/(~d2). (4) 

CM = CmndAx. (5) 

SPICE input data for the 3-element and the 

4-element representations of a dendritic segment are 

shown in the right column of Fig. 2B, C. The values of 

RM, RI, and CM were calculated using Eqs. (3)-(5) for 

d = 2.5 gm, Ax = 100 gm and Ri = 70 ~ cm, with R,, and 

Cm as above. For these parameters the length constant 

(k= 1/2(dR,JR3 t/2) is 945 pm and thus the electrical 

length (AX= Ax/k) of the segment is 0.106. As shown 

below, the 3-element model is somewhat less accurate 

in predicting the electrical behavior of model neurons, 

but is more efficient in its use of computer resources. A 

dendritic terminal is always represented using the 

3-element model (Fig. 2B, bottom cylinder on the left 
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Fig. 2A-D. Transformation from anatomical entities 
(soma, dendritic segments, synapse; left column) to 
equivalent circuits (middle column) to SPICE input 
code (right column) 



column). Individual dendritic branches are represented 

by a straight chain of dendritic segments. Branch 

points are represented by three dendritic segments 

connected to a common node. 

2.2.2 Synaptic Input Circuit. Synaptic input is com- 

monly modeled as a time varying ("alpha function") 

conductance change, 9s(t), in series with a synaptic 

battery, V~ (Rall 1967). Although SPICE does not 

contain time-varying conductance elements, one may 

use the elements available in SPICE to design circuits 

with the desired behavior. The approach used in this 

paper and the next (Bunow et al. 1985) consists of two 

steps. First, following a suggestion from Rall, we find a 

differential equation whose solution is a function with 

the desired shape. In devising a synapse circuit, the 

desired shape is the alpha function. Second, an electri- 

cal circuit is designed which implements the equation 

(i.e. the voltage or current output of.the circuit has the 

intended shape). To model a synapse, the synaptic 

current source is controlled by the alpha function 

voltage and by the potential at the synapse. 

The first step is to write a differential equation 

whose solution is an alpha function of the form 

V(t) = At exp( - t/Tp), (6) 

where Tp is the time to peak of V(t) and A has units of 

V/s.  

This equation is the solution of the differential 

equation 

dV 
dt = ( -  1/Tv)V + A exp ( -  t/Tv), (7) 

with V(0) = 0. 

The SPICE library contains an exponential inde- 

pendent current source which is composed of the sum 

of two exponentials and is represented as 

IEXN1N2 N2 EXP(I1 12 AT1 T1 AT2 T2), 

where N1 and N2 are the connecting nodes and I1, 

A T1, T1, I2, A T2, T2 are the values, delays and time 

constants of the first and the second exponents, 

respectively. By setting I1 = 0, T1 = 0 and A T2 = 0, an 

exponentially decaying current with a delay of A T1, a 

decay time constant of T2 and an initial value of 12 is 

applied between nodes N1 and N2. 

The first three lines in the SPICE input format of 

Fig. 2D (right) create a circuit model which implements 

Eq. (7). The current between node 5 and ground in this 

figure obeys the following equation: 

dV - V  
C1 dt - R~ +I2exp(- t / r2) ,  (8) 

where A of Eq. (7) corresponds to I2/C1. 
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Note that in order to obtain a correct "alpha 

function" (Eq. (6)) from this circuit, care must be taken 

that Tp=C1R1 = T2. In the example of Fig. 2D, a 

voltage, V(t), with an "alpha function" shape and a 

time to peak of 0.04 ms is produced at node 5. Note also 

from Eq. (6) that the voltage peak V(Tv)= ATJexp(1). 
Substituting T2 for Tp and I2/C1, for A, we obtain 

V(Tp) = I2R1/exp(1) (9) 

Hence, in the example of Fig. 2D, the alpha function 

peak amplitude at node 5 is 1.47E4 V. 

The second step in modeling a synapse is to use a 

voltage dependent current source element ("G") in 

order to produce a synaptic current, Is(t), of the form 

I~(t) = gs(t)  ( v ~ ( t )  - v~) ,  (10) 

where V~ is the synaptic equilibrium potential and 

V~(t) is the membrane potential at the synapse. The 

representation of the G element in SPICE is 

GIS N1 N2 POLY(2) N3 N4 N5 N6po P l P2... 

where N1 and N2 are the output nodes; POLY(2) 

indicates a polynomial in two variables (i.e. two pairs 

of controlling nodes, N3-N3 and N5-N6); and Po, 

Pl .... are the coefficients of the polynomial. For the 

GIS element above, the current output between node 

N1 and N2 is 

GIS(N1, N2) = Po + PlV(N3, N4) + p2V(N5, N6) 

+p3V2(N3, N4) 

+ p4V(N3, n4) V(N5, N6). 

If N1 is the same node as N3 and N2 is the same as N4, 

a nonlinear resistor is simulated. If the membrane 

impedance is connected between N3 and ground and 

the synaptic battery is connected between N4 and 

ground, then the controlling voltage V(N3, N4) is 

equivalent to the V~(t)-V~ term of Eq. (i0). If the 

alpha function appears between controlling nodes N5 
and N6 and if P4 is the only non-zero coefficient in the 

polynomial, then the current which flows through this 

nonlinear resistor has the characteristics of the synap- 

tic current described by Eq. (10). 

For the GIS element described by the SPICE data 

in Fig. 2D (right), the P4 coefficient is 0.34E-9. There- 

fore the "synaptic current" is the product of the 

synaptic conductance change, 0.34E-9[V(5,0)] Sie- 

mens, and the driving potential, V(4,6). For the 

parameters of Fig. 2 the peak conductance is approxi- 

mately 5 ~tS. This maximum occurs at Tp = 0.04 ms. If 

this synaptic compartment is connected to a segment 

with a time constant of 1 ms, it produces a conductance 

change with a=25  (see Rall 1967; Jack and Redman 
1971). 
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3 Model Performance 

The critical test of a computer model is to simulate 

idealized cases for which analytical solutions exist. For  

example, Rail (1959) defined a class of dendritic 

structures which are electrically equivalent to a single 

cylinder. For  such "equivalent cylinder neurons", two 

types of analytical solutions of the one dimensional 

cable equation were derived: 1) the voltage change, 

measured at the soma, produced by a brief current 

injection in the soma (Rall 1959, 1960, 1969) and 2) the 

voltage response anywhere in the dendritic tree to 

current injection from an independent source (Rail and 

Rinzel 1973; Rinzel and Rall 1974; see also Butz and 

Cowan 1974; Horwitz 1981, 1983) or from a synapse 

(Rinzel and Rall 1974; Poggio and Torre 1977) at a 

point in the tree. In the following sections we compare 

SPICE calculations to the analytical solutions of these 

two cases. 

3.1 Independent Current Sources 

3.1.1 Looking from the Soma. The passive decay of 

potential, V(t), which results from current injection at 

the soma of a dendritic structure is a sum of exponen- 

tical decays such that 

V(t) = ~ Ci e x p ( -  t/zi), (11) 
i = 0  

where Zo equals the membrane time constant, %. When 

the dendritic structure may be reduced into a single 

cylinder with an electrical length, L, and sealed ends, 

then (from Rall 1969) 

7~ 

L =  
(ZO/Z 1 -- 1)1/2" 

By plotting logV(t) vs t it is possible to obtain % and "el, 

and thus L, graphically by using Rail's "peeling" 

method. 

Our approach to obtain To and L from the voltage transient 
calculated by SPICE was to fit the data with h function which is a 
sum of four decaying exponents (four time constants and the 
corresponding coefficients, a total of eight free parameters). For 
this purpose we used a curve-fining program called MLAB, 
developed for the DEC System 10 facility at the NIH, which 
implements a Marquardt-Levenberg curve fitting algorithm 
(Knott 1979). This method was very satisfactory in obtaining the 
correct Zo and L values from artificial data calculated using the 
function in Eq. (11) and values for the coefficients and time 
constants derived analytically for L between 0.5 and 3 (Rall 1969; 
de Jongh and Kernell 1982). We found that in order to fit the 8 
parameters of the function with less than 1% error in ~o and L, a 
total number of 500 equally spaced time points with a total 
duration of 5% is needed. To measure the input resistance at any 
point in the dendritic structure, we used either a long (steady- 
state) current pulse or an AC analysis procedure available in 
SPICE. The latter procedure gives the input impedance at a 

circuit node for a specified frequency, in this case a frequency so 
low (0.1 Hz) that AC impedance approaches DC resistance. 

To evaluate the accuracy of transients calculated 

by SPICE against analytical results, we constructed a 

test cell similar to a cat spinal c~-motoneuron in terms 

of input resistance (RN), electrical length, time constant 

and physical dimensions (test-cell 1). This cell was 

composed of ten identical dendrites, all connected to a 

common node (the "soma"). Each dendrite formed a 

binary tree of the fourth order (Fig. 1A) and obeyed the 

3/2 power rule at every branch point (Rall 1959). Each 

dendritic stem (0 order branch) was i0 pm in diameter 

and 150 gm long. The lengths of the first through fourth 

order branches were 150, 250, 300, and 450ktm, 

respectively. Thus the total length of each dendritic 

path (from soma to terminal) was 1200 gin. We as- 

sumed a specific membrane resistance of 7000 t) cm 2, a 

specific axoplasmic resistance of 70 f~ cm and a specific 

capacitance of 1 pF/cm 2. Such a dendrite is electrically 

equivalent to a single cylinder with a diameter of 

10gin, length of 2311gm, time constant of 7ms, 

electrical length of 1.462, and an input resistance of 

15.7Mfl. With a negligibly small soma, the whole 

"cell" therefore had an input  resistance of 1.57 Mf~. 

Test-cell 1 was transformed into SPICE input data, 

using the procedures described above, with a max- 

imum electrical length criterion for each compartment 

of 0.22. This resulted in a total of 1190 compartments. 

Throughout  this study, the SPICE program (version 

2G0) was run on a VAX-11/750, operating under VMS, 

with Floating Point Accelerator hardware and 

3.5 Mbytes of memory. 

Table 1 compares analytical results with the tran- 

sients computed using 3-element and 4-element models 

(Fig. 2). It can be seen that the 4-element model, with 

AX < 0.2, gives very accurate results while the 3-ele- 

ment model is correct within 6% (it is noteworthy that 

z,~ is well fit with both models, even with longer AX 

criteria). However, the 3-elemdnt model used about 

half as much CPU time. For  some of the cat spinal 

e-motoneurons we have modeled (Fleshman et al., in 

Table 1. Comparison between analytical results and SPICE 
results for test-cell 1 using 3- and 4-element representations of 
dendritic segments a 

Parameter R N z m L CPU time 
(M~) (ms) (min) 

Analytical 1.57 7.00 1.46 
3-Element 1.67 (+ 6) 6.99 (0) 1.39 ( -  5) 20 
4-Element 1.57 (0) 6.99 (0) 1.43 (-2) 43 

a Numbers in parentheses are percent errors relative to 
analytical results 
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preparation) the differences in CPU time required by 

the two models were much more pronounced, while the 

differences between the derived parameters Rn, rm and 

L were generally less than 5%. In one extreme case, 

computing a voltage transient at 500 time points with 

the 4-element model took 30 h of CPU time, while the 

same cell required only 16min with the 3-element 

model. 

Figure 3 shows a 500 point transient calculated by 

SPICE for a 0.5 ms, 100 nA current pulse injected at the 

soma of the 4-element representation of test-cell 1. The 

left ordinate is linear and the right one is logarithmic. 

The dashed line on the logarithmically scaled transient 

shows the slowest exponential decay found by the 

fitting procedure described above. A simple exponen- 

tial decay, indicating uniform membrane polarization, 

was reached after about 10ms ( ~  1.5%). The fitted Co 

corresponds very closely to the analytical one, as does 

the fitted zl (and thus L) value (Table 1). The transient 

produced by SPICE for the 3-element model was 

superimposable, within the thickness of the plotter's 

pen, on the 4-element transient. 

The resistances and capacitance of each compart- 

ment are calculated from the length, diameter and 

specific membrane properties of the corresponding 

dendritic segment, and there is no a priori requirement 

that those properties be constant from one compart- 

ment to the next. Indeed, in modeling cat spinal 

e-motoneurons we have found that R,, is not uniform, 

but increases with distance from the soma. Test-cell 1 

was used to test the performance of the SPICE 

program in one such case. Specific membrane re- 

sistance was assumed to increase in a sigmoidal fashion 

from 250 ~ cmz at the point soma to 40,500 ~)cm 2 at 

the most distal segments. Within a segment, of course, 

R m is constant (Fig. 4). 

The electrical length of an equivalent cylinder 

dendrite may be measured by adding the electrical 

lengths of the segments between the "soma" and the 

dendritic terminals. For  the distribution of R,, used 

here, L = 1.02. The calculated transient yielded an L of 

1.07 using the 3- and 4-element models. Input re- 

sistance may be calculated from the dimensions and 

specific resistances of the test cell using the method of 

Rall (1959). This analytical R N was 1.46 M~), while 

SPICE calculated an RN of 1.47 Mfl  for the 4-element 

model and 1.51 Mf~ for the 3-element model. The time 

constants of such a non-uniform system are not known 

analytically. 

The fidelity with which transients are calculated 

depends on the frequency response of the system 

comprised by the SPICE program and the input data. 

Figure 5 (solid line) shows the frequency response, 

calculated analytically, of a finite cable with an electri- 

cal length of 1.46 and a time constant of 7 ms (see Rall 
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Fig. 3. Voltage transient produced by injecting a brief current 
pulse in the soma of test-cell 1. The transient is shown on linear 
(lower solid curve) and semilogarithmic (upper solid curve) 
scales. The dotted line was fit to the latter part of the transient 
which showed a single exponential time course of decay. The 
slope of the dotted line is the time constant, %; L was obtained 
using Rall's (1969)"peeling" method 
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Fig. 4. Assignment of Rm values to dendritic segments of test-cell 
1, assuming that R,, increases as a sigmoidal function of distance 
(dashed curve) along dendritic paths from the soma to individual 
segments. For example, all dendritic segments between 600 and 
750gm from the soma were assigned Rm values of about 
25,000 ~ cm 2 

1964; Rinzel and Rall 1974; Rall and Segev 1985), 

Superimposed are Bode plots of test-cell 1 (uniform Rm 

= 7 0 0 0 ~ c m  2, other parameters as above) for the 

3-element (dotted-dashed line) and 4-element (dashed 

line) models. These data were obtained using an AC 
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Fig. 5. Frequency response of 3- and 4-element models of test-cell 
1, measured at the soma. Note that the 3-element model (long and 
short dashes) departs from the analytical curve (solid) at a much 
lower frequency than the 4-element model (short dashes) 

analysis mode in SPICE which calculates the response 

to sinusoidal stimuli over a specified frequency range. 

In this case, current injection and voltage measure- 

ments were done at the "soma" node. The frequency 

response of the 4-element model is very accurate up to 

about 10kHz, while the 3-element model deviates 

noticeably from the analytical curve at frequencies as 

low as 100Hz. 

3.1.2 Looking from the Dendrites. As in the case of 

somatic current injection, when the current source is at 

a point in the dendritic tree the decay of voltage 

transients anywhere in the arborization is a sum of 

infinitely many exponential decays. However, in the 

latter case, additional fast equalizing time constants, 

representing the rates at which the current spreads 

from the point of injection to other branches, appear in 

the sum. A current transient injected at a terminal 

produces a local potential that is briefer than the local 

potential produced by somatic injection of the same 

current (Rinzel and Rall 1974). Hence, the convergence 

of the numerical (finite difference) solution to the 

analytical solution in one case, does not guarantee 

convergence in the other. 

A general analytical result for the case where 

current in injected at one point in the dendritic tree was 

derived by Rall and Rinzel (1973; Rinzel and Rall 

1974). Parameters of physiological interest, such as 

input resistance at the current injection site, peak time 

and peak amplitude of the voltage transient, as well as 

the transient and steady-state attenuation factors at 

different locations were tabulated for a specific 

example (Rinzel and Rail 1974, their Table 1). These 

parameters were compared to SPICE computations 

for the same dendritic structure (our test-cell 2) using 3- 

and 4-element models (Fig. 6 and Table 2). In addition 

A B , 

 001 B, I lAB, B,, Bs 
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Fig. 6A and B. Response of test-cell 2 (from Rinzel and Rail 1974) to alpha-shaped current injection at dendritic terminal BI (insets). 
Shaded transient shows the time course of the current. Solid and dashed curves show responses of 4- and 3-element models, respectively. 
A Transients recorded at branch points between BI and the soma~ B Transients recorded at dendritic terminals 



Table 2. Comparison between analytical results and SPICE results for 3- and 4-element models of test-cell 2 

A. Current injection at a single terminal branch, BI a 

35 

Location BI P GP GGP SOMA BS BC-1 BC-2 OT 

Peak time q/%) 

Analytical 0.040 0.085 0.135 0.210 0.350 0.120 0.270 0.460 0.840 
3-element 0.042(+5) 0.092(+8) 0.160(+18) 0.226(+8) 0.356(+2) 0.146(+22) 0.310(+15) 0.510(+11) 0.850(+1) 
4-element 0.042(+5) 0.082(-4) 0.136(+1) 0.202(-4) 0.356(+2) 0.122(+2) 0.272(+1) 0.470(+2) 0.836(0) 
Peak value (mV) 
Analytical 64.8 14.5 3.75 1.05 0.276 12.8 2.54 0.557 0.135 
3-element 56.3(-13) 12.6(-13) 3.33(-11) 0.960(-9) 0.280(+1) 10.4(-19) 2.10(-17) 0.485(-13) 0.128(-5) 
4-element 64.9(0)  14.9(+3) 3.81(+2) 1.06(+1) 0.279(+1) 12.5(-2) 2.51(-1) 0 .555(0)  0.136(+1) 
Transient attenuation factor 
Analytical 1.0 4.5 17.3 62 235 5.1 25 116 
3-element 1.0 4.5 (0) 16.9 ( -  2) 59 ( -  5) 208 ( -  11 ) 5.4 (+ 6) 27 (+ 8) 116 (0) 
4-element 1.0 4.4(-2) 17.0(-2) 61(-2) 233(-1) 5.2(+2) 26(+4) 117(+1) 
Steady state attenuation factor 
Analytical 1.0 2.3 5.3 12.0 23.9 2.4 6.0 15.5 
3-element 1.0 2.3 (0) 5.4 (+ 2) 12.0 (0) 23.2 ( -  3) 2.4 (0) 6.3 (+ 5) 16.2 (+ 5) 
4-element 1.0 2.3 (0) 5.3 (0) 12.0 (0) 23.8 (0) 2.4 (0) 6.04 (+ 1) 15.6 (+ 1) 

479 
440 ( -  8) 
477(0) 

34.0 
37.4 (+ 10) 
37.0(+9) 

B. Input resistance, electrical length and time constant 

RN at soma (Mf~) Rr~ at terminal (Mfl) L value Normalized ~m value 

Analytical 1.00 15.5 1.00 1.00 
3-element 1.05 15.1 0.99 1.00 
4-element 1.00 15.5 1.00 1.00 

a Numbers in parentheses are percent errors relative to analytical results 

the analytical RN, L and ~,, values were also compared 

to values derived from SPICE. 

Test-cell 2 was composed of six electrically equivalent 
dendrites, each with an L of 1.0, originating from a point "soma". 
The input resistance at the soma was 1 M~. One dendrite 
branched symmetrically every 0.252 out to 3 rd order terminal 
branches. The remaining five dendrites were unbranched (Rall 
and Rinze11973; Rinzel and Rail 1974). Since the electrical length 
criterion was AX < 0.2, each of the unbranched dendrites were 
divided into segments of 0.1252. The branched dendrite was 
similarly subdivided. In addition, since the analytical results were 
obtained for a point current source, the terminal segment, in 
which current was injected (B1 of Fig. 6), was subdivided into still 
smaller compartments (AX--0.04; see Discussion). The injected 
current had an "alpha function" shape with a peak of 10 - s A and 

= 50, as in Rinzel and Rall (1974). 

Figure 6 shows the potential recorded from branch- 

points (Fig. 6A) and terminals (Fig. 6B) after injec- 

tion of an alpha-shaped current at terminal BI.  The 

solid curves are from a 4-element model of test-cell 2, 

and are virtually superimposable on the analytical 

curves of Rinzel and Rall (Table 2A). For  steady-state 

calculations the 3-element model is also quite good (see 

Perkel and Mulloney 1978a), while for fast current 

transients (c~ = 50) significant errors may occur at some 

locations in the dendritic tree (dashed lines in Fig. 6). 

Note  that test-cell 2 presents a severe test since the 

current is very brief and the injection site is at the 

extreme tip of a terminal branch. If  the current 

duration were longer and if it were injected at a more 

proximal location (as in many  realistic cases), the 

differences between the two models should be smaller 

(see Discussion). 

3.2 Synaptic Currents 

Synaptic input is more accurately represented as an 

ionic battery acting through a brief synaptic conduc- 

tance (Eq. (10)), rather than as an independent current 

source. True synaptic current is not a linear function of 

the conductance change, due to the dependence of the 

driving potential on the size of the local membrane  

potential (V,,(t) - V ~  in Eq. (10)), nor  is synaptic current 

proport ional  to the input resistance at the synapse 

(Rall 1967). Nonlinear effects also occur when two or 

more  different inputs interact (e.g. Rall 1962, 1964; 

Burke 1967; Barrett and Crill 1974; Segev and Parnas  

1983). It  has been suggested that this nonlinearity may  

be the basis for some integrative processes performed 

by neurons (Rall 1964; Erulkar  et al. 1968; Torre  and 

Poggio 1978; Koch et al. 1983). 

Rinzel and Rall (1974) obtained numerical so- 

lutions for an analytically derived expression, a linear 

Volterra integral, which described the voltage pro- 
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Fig. 7A-D. Comparison of potentials (A, C) and currents (B, D) generated in test-cell 2 by a synapse (solid curves) or by an independent 

current source (dotted curves), both with ~ = 50. A, B Recording from soma, with input at soma and terminal. C, D Recording from 

terminal with input at terminal 

duced by a synaptic input in an idealized neuron (our 

test-cell 2; see complete derivation in Poggio and Torre 

1977). Rinzel and Rail computed the EPSP which 

resulted from a brief (~ = 50) conductance change with 

a peak amplitude of 0.1 gS. Cases where a synapse was 

located at a dendritic tip or at the soma were compared 

to "reference" cases where the driving potential was 

independent of the membrane potential, in other 

words, setting V,,(t)=0 in Eq. (10). This was accom- 

plished by connecting controlling node 4 in Fig. 2D to 

ground. To test the nonlinearity inherent in synapses, 

we have simulated these cases in SPICE and compared 

them to the analytical results of Rinzel and Rall (1974). 

The results obtained from SPICE for the 4-element 

model are shown in Fig. 7. In all cases the synaptic 

battery, Vs, is 70 mY. When the synapse is on the soma 

(Fig. 7A, upper pair of curves) the EPSP amplitude is 

0.99 mV, compared to t.00 mV in the reference case. 

The corresponding values obtained by Rinzel and Rall 

where 0.97 and 0.98 mV, respectively. The peak synap- 

tic current calculated by SPICE was 6.91 nA (Fig. 7B). 

As expected for such a small change in the driving 

potential, the difference between the synaptic potential 

and the reference potential is negligible. 

With the same input at terminal B1, large dif- 

ferences between the two cases were observed. The 
EPSP amplitude at the synapse was 29.5 mV (com- 
pared to 28.8 mV calculated by Rinzel and Rall). The 

value in the reference case is 46.6 mV (Fig. 7C, con- 

tinuous line vs dashed line). The associated peak 

currents are 4.68 nA and 7.00 nA respectively (Fig. 7D; 

compare with a peak synaptic current of 4.77nA 

expected analytically). These differences result from the 

large local EPSP and the consequent reduction in 

synaptic driving potential. The somatic voltage tran- 

sient produced by synaptic current and the independent 

"reference" current injected at terminal BI are shown 

in Fig. 7A (lower pair of curves). A somatic peak 

amplitude of 0.133 mV was generated by the synapse 

(continuous line; compare with the analytical value of 

0.129 mV) and a 0.2 mV potential was produced by the 

independent current source (dashed line). This 33.5% 

decline in peak somatic EPSP amplitude relative to the 

reference potential may be compared with a value of 

32.8% obtained by Rinzel and Rall. These results 

confirm that the model for a synaptic input as shown in 

Fig. 2D is accurate and that the SPICE solution 

converges to the correct solution when a comp!ex 

dendritic system is perturbed by a brief conductance 

change. 

4 Discussion 

The advantage of compartmental models of neurons 

over analytical ones is that they may handle situations 

too complex to be solved exactly. In principle, analyt- 
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ical solutions to the cable equations can be obtained 

for neurons with arbitrarily complex dendritic struc- 

ture, provided the membrane is passive. For this 

purpose, Rall's algorithm (1959) can be used (Barrett 

and Crill 1974; Turner 1984), as well as the algorithm 

of Butz and Cowan (1974; see also Horwitz 1981, 

1983; Koch and Poggio 1983; for a different analytical 

approach see Poggio and Torre 1977). However, when 

such a passive system is perturbed by a large number 

of synaptic inputs the analytical solution becomes 

impractical. If the system includes compartments with 

excitable membrane, analytical solutions do not exist. 

For these cases a compartmental model is a necessary 

tool for a correct interpretation and understanding of 

the neuron's electrical behavior (Rall 1964). 

It should be remembered that a compartmental 

model approximates the continuous (analytical) pro- 

blem by finite, discrete, isopotential compartments. In 

mathematical terms, the continuous cable equation is 

discretized into a set of finite difference equations. The 

number of compartments necessary to obtain a satis- 

factory approximation to the continuous case is deter- 

mined both by the demands of the specific anatomy as 

well as by numerical considerations (see below). For 

example, the morphology of the six motoneurons 

analyzed in the study of Fleshman et al. (in prepar- 

ation) was adequately represented by 500.800 seg- 

ments. Additional subdivision of segments necessi- 

tated by the maximum electrical length criterion 

typically resulted in a total of 800-1200 compartments 

for each cell. 

4.1 Anatomical Considerations 

The nomenclature system described in the model 

formulation section embodies an algorithm which has 

proven useful in uniquely naming and correctly con- 

necting large numbers of dendritic segments. The 

simple expedient of numbering branches of asymmet- 

rical dendrites as though they were fully symmetrical 

(i.e. reserving the numbers of "missing" branches) 

allows one to encode the precise location of a segment 

within a complex arborization. From the name of a 

segment it is easy to deduce the names of its parent and 

grandparent branches all the way back to the soma 

and the names of all possible daughter branches. We 

have used this algorithm in a computer program which 

takes as input the name, length and diameter of an 

anatomical segment, and the chosen R,,, Ri, and C,, 

values, and outputs appropriately formatted SPICE 
code representing the segment. The program also 

divides and renames the dendritic compartments ac- 
cording to a AX criterion. 

In practice this method may be used to represent 

branching structures which are not strictly binary. For 

instance, infrequent trifurcations may be approxi- 

mated by two very close bifurcations. A dendritic spine 

may be modelled as a short branch with one or more 

compartments representing its neck and another, a 

simple R-C compartment, representing the head. For 

branching patterns that are intrinsically not binary, a 

different naming scheme would be more useful. 

An important question in constructing models of 

real neurons is: how faithfully must be anatomical 

structure be approximated by a compartmental 

model? This question arises when the morphology 

being simulated is very irregular, for example, where 

dendrites are varicose or laden with spines. In these 

cases, accurate representation of the anatomy may 

require a huge number of compartments. Usually such 

a refinement of the compartmental model has a very 

small effect on measurements of the neuron's electrical 

properties as seen from the soma. However, if local 

interactions in the dendrites are of interest (between 

two adjacent synapses for example), a more detailed 

representation of the region of interest may be very 

important. Similar reasoning led us to make additional 

subdivisions in the tip-most compartment of test-cell 2, 

in order to more accurately simulate a point current 

source. 

4.2 Numerical Considerations 

In general, a compartmental model converges to the 

analytical solution as the number of compartments 

increases. This in turn will rapidly increase the demand 

for computer storage space and computation time. The 

accuracy of the computation depends on the param- 

eter of interest and on the circuit chosen to represent 

single compartments. 

As we have illustrated, the distributed resistances 

and capacitance of an anatomical segment may be 

lumped to form a single compartment in two different 

ways (Fig. 2B, C). When anatomical segments are 

represented by either a 3- or 4-element compartment, 

differences in model behavior occur in steady state and 

transient calculations even though the actual values of 

CM, RM and total RI for each compartment are the 

same in both cases (see Table 2). 

The 4-element model requires four connecting 

nodes while the 3-element model uses only three 

(Fig. 2B, C). This difference results in a matrix of first 

order differential equations for the 3-element model 

that has one third fewer rows than the 4-element 

model. These differential equations have to be solved 

for each time step, and as noted above, for complex 

structures SPICE may converge much faster with the 

3-element representation than with the 4 element 

representation. 

A necessary step to assess the accuracy of these two 

compartmental models is to compare their behavior to 
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analytical results. A thorough comparison of this kind 

was done for the 3-element compartment by Perkel 

and Multoney (1978a). They found that the steady- 

state attenuation factor between the ends of a compart- 

mentally modeled cable, with L =  1.5 and AX=0.2 is 

about 10% less than the analytical value (their 

Table 1). This is also the case in our computations 

using the 3-element model (Table 2, between BI and 

OT). For an intermediate point, such as the soma, we 

found smaller deviations from the analytical solution. 

The computations of Perkel and Mulloney for tran- 

sients resulting from instantaneous current injection 

yielded shape parameters compatible with our 3-ele- 

ment model for the case of AX=0.2 (Table 2). 

Intracellular recordings from cat spinal 

a-motoneurons most likely result from microelectrode 

penetration in the soma or in a thick dendritic trunk 

that is electrically very close to the soma (Burke and 

Rudomin 1977). With a bridge circuit it is possible to 

inject current through the somatic electrode and 

measure the resulting potential. Transients resulting 

from a brief somatic current pulse should contain at 

least the two slowest analytical time constants, z o and 

zl; zoiS a direct measure of the membrane time 

constant and the electrical length may be obtained 

from their ratio (Rail 1969). With a long current pulse, 

the ratio of the steady state potential to the current 

magnitude is a measure of input resistance. 

Therefore, for the case of somatic stimulation and 

recording, a compartmental model may be considered 

accurate if the correct membrane time constant, electri- 

cal length and input resistance, are obtained. Den- 

drites as complicated as those of e-motoneurons may 

affect the accuracy of the SPICE computation, as well 

as increasing the requirements for CPU time. From 

our studies using test-cell 1, a model with almost 1200 

compartments, we may conclude that the 3-element 

model, with AX<0.2, is a reasonable model. For six 

e-motoneurons we have simulated in a separate study, 

the 3-element model with AT=O.Olzm and a total 

analysis duration of 5Zm (i.e. 500 points) yielded 

somatic transients after 10 min to 2 h of CPU time. The 

same transients produced using the 4-element model 

required 2-30 h of CPU time, while differences between 

the models in z,,, L and RN were less than 5%. 

To study the characteristics of synaptic input it is 

essential to obtain the correct shape parameters of the 

voltage perturbation recorded at the soma. Unlike the 

steady-state case, these parameters are very dependent 

on the way in which the lumped membrane impedance 

is distributed in the 3- and 4-element models. 

The peak voltage produced at the soma by injec- 

tion of an alpha-shaped current at a dendritic terminal 

is very similar in both models and accurate within 2% 
of the analytical results for AX<0.2 (Table 2, peak 

value at soma). However, the 3-element model signifi- 

cantly underestimates (11%) the attenuation factor by 

which the voltage transient amplitude is reduced by 

electrotonic spread from the terminal to the soma. This 

discrepancy is greatly reduced when the location of the 

synapse is more proximal or when the current duration 

is increased. With increased current duration, the 

behavior of the system becomes more like the steady- 

state case. We conclude that the 3-element model, with 

AX < 0.2, is a reasonable representation when the final 

amplitude at the soma is the parameter of interest. The 

situation may be quite different, however, if one is 

interested in the degree of attenuation between the 

synapse and the soma or in the potential amplitude at 

other locations in the dendritic tree. 

For example, using the 3-element model, injecting 

the alpha current at terminal segment BI of test-cell 2 

(Table 2) produces a transient in the soma only 1% 

larger than the analytical result. However, the tran- 

sient recorded at terminal segment BS, adjacent to BI, is 

19% smaller than the analytical result. The size and 

shape of the transient at different locations in a 

dendritic tree are crucial when nonlinear interactions 

may occur, as with multiple synapses or repetitive 

activation of single synapses. In these situations, even 

small errors in the calculation of individual EPSPs 

may lead to serious errors in the overall response (Rall 

1964; Koch et al. 1983; Segev and Parnas 1983). 

Therefore, in studies of interactions between dendritic 

synapses, the 4-element model is the most appropriate. 

4.3 Further Possibilities 

SPICE may be used to simulate nonlinear membrane 

properties using methods similar in principle to those 

described for modeling synaptic input. The following 

paper (Bunow et al. 1985) presents detailed techniques 

for implementing Hodgkin-Huxley-like active conduc- 

tances in SPICE. 
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