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Model ing the errors of 
multi-axis machines: 
a general methodology 

J. A. Soons, F. C. Theuws, and P. H. Schellekens 
Eindhoven University of Technology, Eindhoven, The Netherlands 

A methodology is presented to obtain a generalized error model for multi-axis 
machines of arbitrary configuration. The model accounts for errors due to 
inaccuracies in the geometry, finite stiffness, and thermal deformation of the 
machine "s components. Special statistical techniques are applied to the calibration 
data to obtain an empirical model for each of the errors. In a feedback loop, the 
identified significant parameters in these models are used for the computer-aided 
optimization of artefact-based test procedures. Results are shown for a five-axis 
milling machine and a three-axis coordinate measuring machine. 

Keywords: multi-axis machines; volumetric accuracy; nonrigid body effects; 
least squares estimation; calibration; performance test 

Introduction 

Characterization and improvement of a machine 
tool's performance in terms of accuracy have become 
increasingly important in modern manufacturing. This 
is mainly due to the increased dimensional accuracy 
requirements of parts to be produced and a tendency 
toward small batch sizes of relatively expensive 
products, with associated high costs for trial runs to 
establish correct manufacturing parameters. Also the 
increased automation in all stages of manufacturing 
has contributed to this effect. The latter trend is 
accompanied by a tremendous growth in the application 
of numerically controlled multi-axis machines like 
metal cutting machine tools, industrial robots, and 
coordinate measuring machines (CMMs).  

The accuracy of multi-axis machines is to a large 
extent determined by systematic errors in the relative 
location (i.e., position and orientation) of the tool 
(e.g., probe, cutter, robot end effector) for any two 
positions of the machine's carriages. Many studies 
have assessed the problem of describing this relation- 
ship. 1-9 The methods used range from correlation 
models to trigonometric analysis to "error matrix" 
representations. In recent reports, the use of rigid body 
kinematics is prominent. It results for a three-axis 
machine in a linear dependency of 21 measurable 
errors, which describe the difference between the 
actual and nominal relative location of two adjacent 
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bodies as a function of the intermediate carriage 
position. 

Besides including revolute joints (e.g., turntables), 
machine tools wi th more than three axes and 
nonrigid body effects, this paper describes a general 
methodology to generate a model that relates the 
various errors to the status of the machine and its 
environment. By reducing these models to significant 
terms, a powerful tool is obtained for 

• identification and analysis of major machine tool 
errors, 

• software error compensation, 
• evaluation and optimization of a calibration 

method's efficiency. 

Design of the model 

The proposed design procedure constitutes an integral 
part of the machine tool's quality control system with 
respect to its (quasi) static errors (Figure 1 ). The core 
of this system, and subject of this paper, is the so-called 
individual model. This model describes the error 
structure of an individual machine tool at a certain 
time and place. With the model, the machine's accuracy 
can be unambiguously assessed and, if desired, 
improved by software error correction. In the system, 
this model is preceded by two intermediate models: 
the general and type-dependent models. The general 
model relates errors in the relative location between 
tool and workpiece to errors in the relative location of 
coordinate frames attached to succeeding components 
of the machine. In order to reduce the calibration effort 
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Figure 1 A machine tool's quality control system 
with respect to its (quasi) static errors 

possible detection of new errors. A method is presented 
to use components of the various models to evaluate 
and optimize the performance evaluation or calibration. 

The general  model  

The general model can be applied to multi-axis 
machines composed of revolute and prismatic joints 
in an arbitrary serial configuration. It relates errors 
between the actual and nominal location of the tool 

with respect to the workpiece to errors in the relative 
location of coordinate frames attached to succeeding 
components of the machine. Such errors describe the 
difference between the nominal and actual geometry 
of machine parts enclosed by two frames. In association 
with the complexity and efficiency of the final model 
and the effort needed to estimate it, the number 
and position of the coordinate frames are determined 
by the way in which errors introduced by the machine's 
components vary differently with respect to the status 
of the machine and its environment. Accuracy variations 
due to machine usage and between machine tools of 
the same factory type are generally caused by errors 
introduced in the machine's carriages. Since the 
position of these carriages also represents an important 
component of the machine's status, the number and 
position of the coordinate systems are chosen such 
that there is one kinematic element between every two 
frames. 

Starting with the global coordinate system 0 
attached to the machine tool's foundation, these 
orthogonal frames are successively numbered. As 
depicted in Figure 2, a prefix is added to this number 
in order to identify the corresponding frame as being 
part of kinematic chain a from foundation to tool or 

necessary for the estimation of the latter errors, a 
type-dependent model is developed. Optimal efficiency 

is achieved when the type-dependent model contains 
the common properties of the error structures belonging 
to machine tools of the same factory type (e.g., 
deformation due to the finite static stiffness of the 
machine's components and their thermal expansion ). 

The selection of significant parameters that 
describe the machine's errors constitutes an essential 
component of the proposed modeling procedure. In 
addition to an improvement of the individual model's 
quality in describing the machine tool's error structure, 
identification of these parameters greatly enhances its 
diagnostic potential. This information can be used to 
update the type-dependent model (e.g., to reduce 
the number of temperature sensors used for thermal 
compensation). 

Due to the inherent sensitivity of multi-axis 
machine tools, the validity of the individual model is 
restricted to a limited time domain that has to be 
expanded by periodic performance evaluations. In 
these tests, a compromise has to be engineered between 
the efficiency in verifying characteristic errors and the 

I Frame tl 

I Drive al 

I Drive an 

Tool 

I l l l l l  l l l l l l  
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 IIII lJllll 
Body al !~ [ Body bl 

I Frame al 

IFr .ame 0 l 

Nachine Foundation 
( Body 0 ) 

/ / / / I / / / I / / / / / / / / / / I / / / / / / / / / / / / / / I / / / / / / / / / /  
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Figure 2 Nomenclature of the coordinate frames 
attached to a multi-axis machine with n + m kinematic 
elements 
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chain b from foundation to workpiece. Two additional 
frames, wp and tl, are introduced, which are attached 
to workpiece and tool, respectively. The nominal 
relation between the homogeneous coordinates kP 
and/P of a point p in frames k and/, respectively, can be 
described by a 4 x 4 transformation matrix kT~: 1° 

kP = kT/ /p  (1) 

where 

[ k R i  l t , l  (2)  
k T l = o 0  0 

kP = [kPx kPy" kPz 1 ] T (3) 

In this transformation, the 3 x 3 matrix kR/descr ibes  

the orientation of frame / with respect to frame k. The 
3 x 1 vector kt/contains the coordinates of the origin 
of frame / in frame k. 

The inverse transformation/Tk can be expressed as 

IP = ITk kP (4)  

where 

I T k = o 0  0 

For a multi-axis machine composed of n kinematic 
elements in chain a and m elements in chain b, 
successive application of these transformations yields 
the following expression for the nominal location wp Ttl 

of the tool coordinate system t l  in the workpiece 
coordinate system wp. 

wp Ttl = wp To o Ttl (6)  
1 

= wp Tbm ]-[ (bk Tbk --1 ) f i  (ak --1 m,k) 
k = m  k = l  

a n T i /  ( 7 )  

In the actual machine tool, errors can be identified in 
the relative location of subsequent frames as well as 
the location of the tool with respect to the last frame 
an of the kinematic chain. Because none of the 
contemporary multi-axis machines shows an absence 
of Abbe offsets, the relevant errors in the relative 
location of two subsequent frames are not limited to 
those in the moving direction of the enclosed kinematic 
element. Consequently, the following errors are to be 
considered in the location of frame k with respect to 
frame k - 1 : 

• translational errors k - 1 ekx, k -- 1 eky, and k - -  1 ekz 
along the X, Y, and Z axes of frame k, respectively. 

• angular errors k - -  1 ~kx, k -- 1 ~ky, and k - -  1Skz  about 
the X, Y, and Z axes of frame k, respectively. 

In the analysis of the effect of angular errors on the 
machine tool's accuracy, a first-order approximation 
is used. Application of this approximation yields additive 
and commutative properties for the various errors. This 
results in the following relationship between the actual 

transformation k - 1 Tak and its nominal k - 1 Tk: 

k - 1 Tak = k -- 1 Tk Trans rx, k - I ekx] " 

Trans [y, k - 1 eky] " 

Trans [z, k -- 1 ekz] " 

Rot [x, k - 1 ~kx] " 

Rot[Y,k_lSky] " 

Rot [z, k -- 1Skz] 

= k -  l Tk( l  + k - 1 3 T k )  

where 

k _ 1 6 T k  = 

0 - - k - -  lSkz k - -  1Sky 

k -- 1 Skz 0 - - k  -- 1 E'kx 

- -  k -- 1Sky k - -  l Skx 0 

0 0 0 

and 1:4 x 4 identity matrix 

k -- 1 ekx 1 

k -- 1 eky I 
k -- 1 ekz I 

0 J 

(8) 

(9) 

(10) 

The transformations T rans [ x , k_ lekx ]  and Rot 
r x ,  k - 1 ~kx] represent, respectively, a translation along 
the local X-axis by a distance k -  1 ekx and a rotation 

about the same axis by an angle k - 1 ~kx. Similarly, the 
actual location wpTatl of the tool coordinate system 
with respect to the workpiece coordinate system can 
be expressed as 

wpTat /=  wpTt/( I  + wp~Tt/) (11) 

(12) 

where 

0 

wpStlz 
vvp~Tt l  = 

- -  wp st i r  

0 

- -  wp~tlz wpStly wpet lx  - 

0 - -  wp~tlx wpet ly  

w p S tlx 0 wp e tlz 

0 0 0 

Here transformation wp~Ttl contains the errors in the 
location of the tool coordinate frame with respect to 
the workpiece. It consists of translational errors wpetl = 

[wpet lx wpetly wpet/z] T defined along the X, Y, and Z axes 
of the nominal toolframe t /and angular errors wpeU = 

[ w p ~ t l  x wp~t ly  wpStlz ] T about these axes. Successive 
application of relation 9 yields the following expression 
for the actual location wpTau of the tool coordinate 
system with respect to the workpiece coordinate 

system: 

wp Tat1 = wp rbm ~ (bk Tabk _ 1 ) 
k = m  k = l  

an Tat /  

(ak -- 1 T a a k )  

(13) 

1 
- - - -wpTbm ] - [  

k = m  
[ ( / - -  bk - -  l ( ~ T b k )  b k T b k - -  1 ]  

f i  [ a k - 1 T a k  ( I  -}- ak-- l (~Tak) ] " 
k = l  

an T t l (  I -}- an~ Ttl  ) ( 1 4 )  
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Transformation a,,&Tt/contains the errors in the location 
of the tool with respect to the last frame an of 
the kinematic chain. In case of CMMs, these errors 
(essentially the position of the measured point with 
respect to the ram) are generally related to the probe 
system and probe strategy used. 11,1 2 For metal-cutting 
machine tools, errors such as spindle-induced errors, 
tool misalignment, tool wear, and thermal tool expan- 
sion can be included in this transformation. ~3 Note 
that the transformation from frame bm to the workpiece 
frame wp is included in relation 14 as a nominal 
transformation. This implies that only errors introduced 
by the machine are taken into account. Errors in 
the location of the workpiece with respect to the 
machine (i.e., bm&T,,p) are not considered. 

In the elaboration of relation 14, an approximation 
will be made by ignoring higher order effects consisting 
of the product of a matrix &T with one or more 
similar matrices. This approximation is valid since the 
difference between the actual and nominal machine 
structure usually does not significantly change the 
active arm of angular errors and the direction in which 
the various errors act. Combining relation 11 with 
relation 14 now yields the following expression for the 
error wp(~Ttl in the relative location between tool and 
workpiece: 

1 
wp(~Ttl-~ - -  t lTbm ~,  (bmTbk b k -  l a T b k b k T a n ) a n T t l  

k = m  

+ tl To ~, (o Tak ak -- 1 (5 Tak ok Tan ) an Tt/ 
k=l  

+ an~Tt /  (15) 

A more convenient description, which also provides 
more intuitive insight in the basic error relationships, 
can be obtained by decomposing the error transforma- 
tions of relation 15 into their basic errors s and e. This 
procedure requires some vector algebra ~,,14 after 
which the angular and translational errors between 
tool and workpiece, contained in the 6 x 1 vector wp Et~ 
can be expressed as similarly denoted errors in the 
relative location between succeeding frames: 

tlFk-~ItlRk O 1(6 x 6) matrix 
( t l t k  X t lRk )  t/ k 

(19) 

In relation 16 the 6 x 6 matrices tiF, describe how 
errors k-1Ek in the relative location between two 
succeeding frames affect the errors ,,p Et/in the relative 
location between tool and workpiece. In these matrices, 
t/tk X tlRk denotes a 3 x 3 matrix whose columns 
contain the vector product of vector t/tk with the 
respective columns of matrix uRk. Thus, errors w p e t / i n  

the relative position of the frames attached to tool and 
workpiece are expressed as a linear combination of 
the errors k - l e k  in the relative position of two 
subsequent frames, and the effect of related angular 
errors k - 1 £k with active arm k t t l .  As with errors wp£tl 
in the relative orientation between tool and workpiece, 
each component k in this sum is transformed to the 
tool coordinate frame by a rotation tiRk. Finally error 
a n E t / i n  the relative location of the tool with respect to 
the last frame an of the kinematic chain is added. Note 
that the errors wpEt/are defined in the nominal tool 
coordinate system. For some applications it is necessary 
to transform these errors to the workpiece coordinate 
system. This can be implemented in relation 16 by 
premultiplying each of the 3 x 3 submatrices of tiFk 
with the appropriate orientation transformation wpRt l .  

As already discussed, the chosen nominal location 
of the various frames seriously affects the efficiency 
of the final model. A generally useful model can be 
obtained by placing the frames in the centroid of the 
various kinematic elements, with one axis aligned with 
the respective axis of movement. Consistent application 
of this rule requires a distinction between kinematic 
elements whose corresponding frame moves with the 
carriage and those where this frame is fixed relative to 
the guide (Figure 3). This can be incorporated into 
the model by introducing so-called shape and joint 
transformations. The shape transformation k - l S k  
describes the relative nominal location between frames 
k - 1 and k, in case their respective kinematic elements 
are at home position. Joint transformation Jk describes 
the nominal angular or translational movement of 
kinematic element k. In accordance with these 
characteristics of the respective kinematic elements, 

wp Etl = - ~,  
k= l  

k = l  

( tIFbk bk - 1 Ebk) 

( t/Fak ak -- 1 Ea,) + a,, Et/ 

(16 )  

where 

wp Eu = [wp~;t/x ' wp~;t/y ' wp ~;t/z' wpet/x ' wpet/y ' wpet/z ] T 

(17) 

k_lEk = 
[ k  -- 1 8kx, k -- 1 Sky, k -- 1 ~:kz, k -- 1 ekx, k -- 1 ekv, k -- 1 ekz]  T 

(18) 

qk ~Yk D 

Fixed f rame ~ ~  J 1 x k J  k 

~ I vk-lqk-1 ~ll ~ k-lsk Moving frame 

f . 

77777 ~ J.-~ 

Figure 3 Connection between two kinematic ele- 
ments with a fixed and moving coordinate frame 
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L.. 

Chain a / 

Frame 0 

Chain a' J - - J  

J 

) 
Figure 4 Dual CMM configuration with associated 
kinematic chains 

As stated in the introduction of this section, the 
derived general model can be applied to multi-axis 
machines composed of revolute and prismatic joints 
in an arbitrary serial configuration. There exists however 
a class of CMMs where two machines are used 
simultaneously to inspect a part (Figure 4). Yet the 
position of a certain point on the workpiece's surface 
can be measured by only one machine at a time. 
Therefore, the modeling technique presented in this 
section can be applied to these CM Ms by constructing 
an a-type kinematic chain for each of the two machines. 
In accordance with the measuring strategy used, the 
error structure of only one of these chains is active 
when measuring a certain point. 

application of these transformations yields the following 

expression for the relative nominal location k-1Tk 
between two succeeding coordinate frames: 

• M o v i n g - - ~ m o v i n g : k _ l T k = k _ l S k J  k (20) 

• Moving - ,  fixed : k_ lTk=k_ lSk  (21) 

• Fixed --, moving : k - 1 Tk = J k  - 1 k -- 1 S k J k  

(22) 

• Fixed --, fixed :k -- 1 Tk = Jk - 1 k - 1 S k  

(23) 

Example 1 

As an example, the methodology described is applied 
to the five-axis milling machine depicted in Figure 5. 
This machine tool consists of one horizontal prismatic 
element in chain a from foundation to tool. Chain b 
from foundation to workpiece consists of two prismatic 
elements, one vertical and one horizontal, and two 
revolute joints with, respectively, a horizontal and a 
vertical axis. In the first stage of the modeling process, 
coordinate frames are located in the workpiece, the 
tool, and the centroid of each joint. 

Yb4 
qb4~ 

Xb4 ~E'-~ 
Yb3 

qb3 

Xb3 ~ 

330 

Y=I 

xo t  L ~ Z a l  660 

~qol/111111 

yfl, Zf l~/ ,  , / ' /  1060 

,, T 
/ 

Ybll Z~l 
300 xb, 1' ,q 

7fZb3 b2A -- lll~" i~qbl / 
I Xb2 . ~  Zb2 I 140 

/ I 1oo 
350 

Figure 5 Five-axis milling machine with its kinematic 
representation 
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• Frame al :fixed 

The nominal coordinate 
succeeding frames can be 

The frames located in the various kinematic 
elements can be characterized as 

• Frame b4 : fixed 
• Frame b3 : fixed 
• Frame b2:moving 
• Frame bl :moving 

transformations between 
expressed as 

al Ttl = J~l al St/ = liooo I 0 0 

0 I qal 

0 0 0 1 

I i  0 0 0 
1 0 0 

0 1 - 8 1 0  

0 0 0 1 

(24) 

0 Tal "~ oSal 

1 

0 

0 

0 

0 0 350"~ 

1 0 800 /  

0,810j 
0 0 

(25) 

-1 0 0 

0 1 0 
o Tbl = oSol Jbl = 

0 0 1 

-0  0 0 

350 1 

- 360 / 

?oj 

I 0 0 0 

0 I 0 qm 

0 0 1 0 

0 0 0 1 

(26) 

I 
'1 0 0 0 

0 1 0 0 

bl mb2 = blSb2Jb2 ---- 0 0 1 --140 

.0 0 0 1 

1 0 0 qb27 
/ 0 o!j 

0 0 1 

0 0 0 

(27) 

(28) b2 Tb3 "~ b2Sb3 Ii °° ° 1 
1 0 330 

0 1 - 5 4 0  

0 0 0 1 

b3 Tb4 = Jb3 b3Sb4 

b4 Twp = Jb4 b4Swp ~- 

0 

0 

1 

1 0 0 

0 Cqb3 - -  Sqb3 

Sqb3 Cqb3 

0 0 

0 0 0 ] 

1 0 300 

0 1 0 

0 0 1 

Cqb4 0 Sqb 4 

0 1 0 

- -  Sqb 4 0 Cqb 4 

0 0 0 

(29) 

1 b4 Swp 

(30) 

Where cq and sq, respectively, represent cos(q) 
and sin(q). Appropriate multiplication of the above 
transformations results in 

t lRal ~- t lRbl  = tlRb2 = t/Rb3 = I (3 × 3) (31) 

[ l ° °  1 uRb4= 0 Cqb3 --sqo3 (32) 

0 Sqb3 cqb3 J 

uta~ = [0, O, -qal  + 810] T (33) 

utbl = [0, qbl -- 1,160, --q.1 + 680] T (34) 

Utb2 = [qb2, qbl -- 1.160, --q~l + 540] T (35) 

tltb3 = [ qb2 ,  qb l  - -  830, - - q a l  ] T (36) 

tltb4 -~ 
[ q b 2 ,  qb l  + 3 0 0 '  Cqb3 - -  8 3 0 ,  - - q a l  Jr 3 0 0  "Sqb3 ]  T 

(37) 

Application of relation 16 yields the following expres- 
sion for the errors wp~tl and wpet / in  the orientation and 
position of the tool coordinate frame with respect to 
the workpiece coordinate frame: 

wp£tl ~ al£tl 4- 08al - -  0£bl - -  b1862 - -  b28b3 

1 0 0 ] 

- -  0 Cqb 3 - -  Sqb3 b3~,b4 

0 Sqb 3 cqb  3 

wpetl = al etl Jr 

(38) 

I 0 q o l - 8 1 0  0 1 0 0 7 

--qal + 810 0 0 0 1 0 10Eal - 

0 0 O O 0 1  

I 0 q,1 -- 680 qbl -- 1,160 1 0 0-] 

J -qol +680  0 0 0 1 0 

--qbl +1,160 0 0 0 0 1 

0 Ebl  - -  
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0 

- - q a l  -I- 5 4 0  0 

- - q b l  -I- 1,160 qb2 

bl Eb2 --  

I 0 qa l  

- qal 0 

qb l  -I- 830 qb2 

[ O 
- q a l  + 3 0 0 '  Sqba 

qal  - -  5 4 0  061_1,16010il 
- - q b 2  0 1 

0 0 0 

q b l - - 8 3 0  1 0 ! 1  

--qb2 0 1 b2 Eb3 -- 

0 0 0 

qal ' Cqb3 -1- (qbl  -- 830)  " Sqb3 

--qb2" Sqb3 

qb2' Cqb3 - -qb l  -- 300" Cqb3 -t- 830 

- qal "Sqb3 + (qbl  -- 830) • Cqb 3 -t- 300 1 0 0 "] 

J qb2' Cqb3 0 Cqb3 --Sqb3 

--qb2" Sqb3 0 Sqb 3 Cqb3 

b3 Eb4 ( 39 ) 

T h e  t y p e - d e p e n d e n t  m o d e l  

In the former section, a so-called general model has 
been derived that relates errors in the actual relative 

location of frames attached to tool and workpiece to 
errors in the relative location of frames attached to 
succeeding components of the multi-axis machine. To 
construct the individual model, which describes the 
accuracy of a certain machine at a certain time and 
place, it is necessary to obtain a relation between 
the latter errors and the status of the machine and 
its environment. This usually requires an extensive 
calibration of the machine tool. In order to increase 

the efficiency of such a procedure, a type-dependent 
model is developed by implementing into the general 
model the common properties of error structures 
belonging to the same factory type of machine tools. 
Generally, these properties do not only comprise 
fully modeled errors but also qualitative information, 

such as an error's possible independent variables and 
an assembly of suitable function types to be used in 
its model. It should be noted that the ratio of type- 
dependent errors in the total error structure of the 
machine can be significantly improved by suitable 
design and assembly rules. The major type-dependent 
(quasi) static errors in the relative location of frames 
k - 1 and k can be affiliated with 

• the finite stiffness of the machine tool's com- 

ponents (k - ~Ek), 
• the expansion coefficient of the machine tool's 

components (k - t Ek ), 
• properties of the machine tool's slideways, joints, 

and measuring systems (k - ~nEk)" 

In the analysis of these errors, we assume that 
deviations in the relative orientation of subsequent 
frames are small to such an extent that their effect on 
the direction of mass forces acting on the various 

components does not affect the total accuracy of the 
machine. This allows for an independent treatment and 
analysis of the various errors. Thus, the errors k -  1 Ek 

in the relative location of frames k - 1 and k can be 
formally expanded to 

r 'E ~ Ek k _  l Ek -~ k _  ~ Ek -I- k _  ~ E k -J- k _  l k "Jr k - 

(40) 

Where k - ~ Ek describes the components that vary from 
machine to machine, which might include some 
thermal and finite stiffness-related errors. Note that 
this expansion is only required when subassemblies 
of the various components (e.g., temperature and 
finite stiffness effects) are analyzed or estimated 
independently of the other errors. 

Due to the finite stiffness of the machine's 
components, errors in the relative location of succeeding 
frames are not only related to the machine tool's 
environment, internal heat sources, and the position of 
the enclosed kinematic element. 5'~2 Assuming small 

angular errors, as is the case with most contemporary 
machine tools, their relation with the position of other 
kinematic elements can, in the unloaded case, usually 

be summarized as: 

• errors in the location of subsequent frames are 
not affected by the position of a revolute joint 
with vertical axis or a prismatic joint with an 
arbitrary axis, provided that they are lower in the 
kinematic chain that provides the connection with 
the machine tool's foundation. 

• The position of a prismatic joint with vertical axis 
of movement only affects errors in the relative 
location of frames directly connected to it. 

Example 2 

As an example, we consider the gantry style coordinate 
measuring machine depicted in Figure 6. The machine's 
chain a from foundation to probe consists of three 

Frame a3 Frame a2 

ol  Frame 

0 < qal < 550 mm 
0 < qa2 < 900 mm 
0 < qa5 < 450 mm 

/ 

Figure 6 Gantry style CMM 
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prismatic elements, two with horizontal and one with 
vertical movement. Using the preceding rules, the finite 
stiffness-related errors in the location of succeeding 
frames can formally be expanded to 

~Eal = ~)Eal [qal, qa2] (41) 

a~ Ea2 = a~" Ea2 r qa2 ] ( 42 ) 

a~Ea3 = a~zEa3 [qa3] (43) 

Due to the special air-bearing configuration in the first 
kinematic element, we expected a linear dependency 
of ~E,1 on the second kinematic element's position 
qa2. This hypothesis was confirmed to a high level 
of confidence by the significant parameter analysis 
explained in the next section ( F i g u r e  7). 

The position, magnitude, and direction of the 
forces exerted by workpiece and fixturing, in general 
only affect errors in the kinematic chain from workpiece 
to foundation. In contrast, forces exerted by the 
machining process can cause deformation of the 
total machine structure. However, in most finishing 
operations the effect of these forces is small due to 
the relative high stiffness of the machine's components. 
Usually their strong periodically variable components 
require the use of rather complex techniques to model 
the related variable tool deflection and its imprint on 
the machined surface. 15 

Although static finite stiffness-related errors intro- 
duced by the machine tool's bearings can be approxi- 
mated analytically, 14 similar analysis of the deformation 

of the connection elements between the various 
carriages is difficult. This is due to the multiple use 
of complex three-dimensional construction elements. 
Numerical methods, either finite elements or finite 
differences, provide an efficient tool for the computer- 
aided modeling of these deformations. However, at 
this moment, the application of such models is generally 
limited to qualitative analysis in the design stage of 
the machine tool. Therefore, we prefer the empirical 
method outlined in the next section to model the finite 
stiffness-related errors of the machine tool. 

Internal heat sources and changes in the environ- 
mental temperature and thermal gradients cause 

alterations in the temperature profile of the machine 
tool. The associated time-dependent errors in the 
location of two succeeding frames are usually related 

Rotalioe atcse¢ ) 

-2.5 

2.0 

15 1 

~1 ( tara I ' ~  qa2 ( tara / 

0 

F i g u r e  7 Angular error o~ol. (qal,  qa2) in the location 
of frame ol with respect  to frame 0. Note the linear 

dependency on qa2 

to the temperature profile k - 1THk of the components 
enclosed by the frames and the intermediate carriage 
position qk : 

k -- ~ Ek = k - ~ E k ( q k ,  k -- 1THk) (44) 

Information about the temperature profile can be 
obtained at three levels: 

• the temperature profile of the relevant machine 
tool's components using suitably placed tem- 
perature sensors, 

• the heat f low from the various internal and 
external sources, in combination with an analytical 
or empirical model of the machine tool's thermo- 
dynamic behavior, 

• process parameters, like spindle speed, gear ratio, 
and slide speed, in combination with models for 
their influence on the heat flow from the machine's 
internal heat sources. 

By far, monitoring of temperature elevation is the 
easiest of all the means. The change of ambient 
temperature and all internal heat sources are put under 
full consideration, without using complex models for 
the machine's thermodynamic behavior with associated 
errors. Moreover, there is an almost nonexistent time 
lag between thermal displacements and temperature 

elevations. It must be noted, however, that there is a 
tendency to confuse the ability to correlate temperature 
measurements and deflections under steady-state 
conditions with an ability to predict deflections under 
dynamic or transient conditions. 16 The latter case 
requires either the use of many temperature sensors to 
assess the nonlinear temperature field under dynamic 
conditions or models that relate the shape of the 
temperatu re field to changes of the process parameters, 
heat sources, and/or sensor readings in time. Errors 
associated with a nonuniformly distributed temperature 
(or the use of components with different expansion 
coefficients) are difficult to assess analytically (a 
temperature distribution having constant gradients is 
the main exception). Again an empirical estimation 
procedure is preferred. Recently, a research program, 
funded by the European Community, has been initiated 
between our university and other European companies 
and institutions to investigate methods for the software 
error compensation of metal-cutting machine tools, 
including the effects of their thermal behavior. 17 

In general, certain components of an error in the 
location of two succeeding frames can be related to 
the manufacturing process of the intermediate kinematic 
element, the used measuring scale, and the positions 
of the bearings. The values of these components are 
related to the position of the relevant kinematic 
element: 

m E m k 1 k = k - -  1 E k ( q k )  (45) 

Identification and estimation of these errors generally 
requires correlation analysis among errors reported for 
machines of the same factory type. In some cases, also, 
a correlation between a kinematic element's angular 
and straightness errors can be identified. 8"14 
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M o d e l i n g  t h e  e r r o r s  by least squares f i t t i n g  

In the individual model, each not analytically modeled 
error in the relative location of two subsequent 
frames is described as a least squares estimated linear 
combination of known functions, defined on the 
position of the kinematic elements and other relevant 
quantif ied variables. The data necessary for this 
estimation are acquired and updated through calibra- 
tions of the machine tool. As indicated in the 
introduction, this study views the modeling of the 
various errors from a slightly different perspective than 
previously used. In addition to the use of the different 
functions as an approximation tool, i.e., a curve-fitting 
tool, also statistical testing procedures are applied to 
investigate points of structural change. 

Although most mathematical functions can be 
used to describe the general trend of an error, their 
application is limited to model the frequently disjointed 
or disassociated nature of the remainder, i.e., its 
behavior in a region of the domain may be totally 
unrelated to the behavior in another region. Polynomials 
along with most other mathematical functions have 
just the opposite property. Namely their behavior in a 
small region determines their behavior everywhere. 
Application of the individual model for high-accuracy 
software error compensation required the use of a 
special family of functions that possesses this property 
to a lesser extent, the so-called piecewise polynomials. 
Piecewise polynomials can be described as a set of 
polynomials defined on limited continuous parts of the 
domain. The various pieces join in the so-called knots, 
obeying continuity restrictions with respect to the 
function value itself and an arbitrary number of 
derivatives. The number and degrees of the polynomial 
pieces, the nature of the continuity restrictions, and 
the number and positions of the knots may vary 
in different situations, which gives piecewise poly- 
nomials the desired flexibility. 

A straightforward mathematical implementation 
of the continuity restrictions can be obtained by the 
use of truncated polynomials or " + ' "  functions as 
basic elements in the piecewise polynomial models. 
Although not as computationally efficient as for 
example B-splines, their use allows the performance 
evaluation data to be fitted by ordinary least squares 
while still permitting tests of hypotheses concerning 
areas of structural change to be easily made. The 
" + "  function is defined as 

• u + = u i f u > O  • u + = 0 i f u ~ < 0  (46) 

In general, with k knots tl . . . . .  tk and k + 1 polynomial 
pieces each of degree n, the truncated power repre- 
sentation of an error E/dependent on one variable q 
with no continuity restrictions, can be written as 

E,(q)  = ~, •oiq i + ~, /~ii(q - ti)i+ (47) 
j = O  i = l j = O  

Note that the presence of a term / Y # ( q - t i ) ~ ,  a 
discontinuity allows at ti in thej th derivative of E/(q). 

Thus, different continuity restrictions can be imposed 
at different knots simply by deleting the appropriate 
terms. For example, if the software error compensation 
is actively used in controlling the position of the tool, 
these restrictions must be applied to ensure that there 
is no discontinuity in the force applied to the drives. 
Normally, however, it is sufficient to ensure that each 
model is continuous with respect to the function value 
and its first derivative. 

An inherent problem in constructing the individual 
model is the unknown nature of the errors to be 
described. The model's potential to accommodate 
irregular errors is to an extensive degree determined 
by the number and position of the knots. If the position 
of these knots is considered variable, i.e., parameters 
to be estimated, they enter into the regression problem 
in a nonlinear fashion, and all the problems arising in 
nonlinear regression are present. The use of variable 
knot positions also carries the practical danger of 
overfitting the data and makes testing of hypotheses 
considering areas of structural change virtually 
impossible. Unless prior information is available, we 
use a basic model that contains enough polynomial 
pieces with a fixed length and a specified maximum 
al lowable degree to accommodate the most complex 
error expected. The respective knots are usually 
spaced at equidistant intervals along the domain of 
the error's independent variable(s).  For relatively 
complex errors, adequate models have been obtained 
using quadratic piecewise polynomials with five knots, 
which allow a discontinuity only in the function's 
second derivative (seven unknown parameters). The 
smooth character of many observed errors allows them 
to be accurately described by similar models having 
only one or two knots (three to four unknown 
parameters). In the parameter estimation process, a 
stepwise regression procedure is implemented to 
remove statistically insignificant parameters from the 
model. The reason for this removal is twofold: 

• Including insignificant parameters hardly improves 
the model's quality of fit but increases the variance 
of the estimated parameters and response. 

• Identification of structural parameters enhances 
the diagnostic properties of the individual model 
and can be used in the design of the (periodic) 
performance evaluation. 

In assessing the individual model's validity, the detec- 
tion and analysis of outliers in the calibration data 
plays an important role: 

• Due to the inherent flexibility of the proposed 
model, in combination with the nature of the least 
squares estimation process, outliers have a large 
potential influence on the estimated model. 

• Outliers can indicate areas in which the proposed 
model is inadequate to describe a particular error 
or in which the nature of the random error in the 
various observations is incompatible with the use 
of the least squares estimation method. 
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Figure 8 Measured scale error and its model (the 
identified outliers are represented by the symbol ©) 

Observations are detected as possible outliers, in case 
their removal from the performance evaluation's data 
results in a significant reduction of the residual sum 
of squares. As an example, the measured scale error 
of a CMM at our laboratory is presented in Figure 8. 
The cluster of identified outliers at positions 1 00, 260, 
and 420 indicate areas in which the proposed model 
is inadequate to describe the measured errors. Further 
analysis showed that this effect was caused by a 
repeatable loss of counts every 160 mm. 

The efficiency of procedures to calibrate 
machine tools 

In this section an attempt is made to use the functions 
associated with the parameters to be estimated in the 

machine tool's error model to evaluate and optimize 
the efficiency of the calibration or performance evalua- 
tion. The efficiency of such a procedure, with respect 
to the choice of the points measured, can be assessed 
by two criteria: 

• the assembly of parameters that can be estimated 
from the calibration's observations, 

• the accuracy of these estimators, given a certain 
repeatability of the calibration's observations. 

The proposed model for the machine tool 's 
systematic errors affects these criteria in a structural 
manner. Hence, every calibration is a compromise 
between its efficiency in the estimation of modeled 
errors and its ability to detect errors not implemented 
in the proposed model. As an example of this concept, 
consider the problem of estimating the relation between 
an independent variable x and a dependent variable 
y. Suppose the experimentist is allowed to take ten 
observations of y at certain discrete values of x 
(assumed to be achieved without errors). If the relation 
between x and y is known to be exactly linear, an 
experimental design of five observations at Xmin and 
five observations at Xma x will result in the most accurate 
estimation of this relation, given a certain constant 
variance in the observations of y. Note, however, that 
a departure of the actual relation between x and y from 
the proposed model cannot be detected from these 
observations. In case there is no a priori information 

available about the possible relation between x and y, 
an experimental setup with the ten observations 
uniformly distributed over the domain of x is preferred. 
However, such a design has a low efficiency in the 
estimation of this relation, if it is indeed linear, 

With respect to the calibration of machine tools, 
there is a priori information available regarding the 
machine's general model. Also the machine's type- 
dependent model usually provides information con- 
cerning an error's independent variables and, in some 
cases, a class of suitable functions to be used in its 
model. Further specification of the proposed model for 
each error in the general model is dependent on the 
goal of the performance evaluation or calibration. For 
example, if an error's value has to be determined at 
certain discrete points, as is the case with most current 
performance evaluations, a first-order piecewise poly- 
nomial might be chosen with knots at these points. 
An impression of the various errors can be obtained 
when using low order piecewise polynomials whose 
complexity, i.e., the number of unknown parameters 
~, is restricted by the allowed performance evaluation's 
effort. In order to check the estimated software error 
correction, the model can be chosen in accordance 
with the functions associated with the identified 
significant parameters in the various models. 

Application of a calibration to estimate the machine 
tool's error structure is founded on the comparison of 
the measured artefact's features with their respective 
nominal (calibrated) values. The chosen approach 8"18 

to this estimation is essentially different from the usual 
direct trigonometric calculation. As discussed, a model 
is built of the machine's error structure, including a 
suitable description of the component errors k -1Ek  
identified in the machine's general model. According 
to the nature of the measured feature(s), an algebraic 
relationship is next established between the observed 
errors in their measurement and the unknown parame- 
ters ~, which describe the machine's component errors. 
Finally, these parameters are estimated by standard 
regression techniques, such that the residual sum of 
squares between the modeled and observed errors in 
the measured feature(s) is minimized. 

Since the proposed model for the machine tool's 
error structure is linear in the unknown parameters/~, 
the relation between these parameters and the observed 
errors in the artefact's measurement can usually be 
described or approximated by a linear model: 

Yi = fm(xi) j  ~ + ~ti i = 1, 2 . . . . .  n (48) 

which we express in matrix notation as 

y = X~ + y (49) 

The n x 1 vector y contains the difference between 
the measured and nominal features of the artefact at 
different locations. The p x 1 vectors p and f are the 
(significant) parameters that describe the machine 
tool 's error structure and the associated known 
functions that describe their effect on the measured 
artefact's feature. The q x 1 vector xi contains the 
variables that describe the status of the machine tool 
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and its envi ronment  dur ing the i t h  observat ion 
(e.g., the posi t ion of the machine's axes when 
measuring the artefact). X is an n x p matrix, wi th row 
i containing fT (x i ) .  7 is the vector of random errors, 
assumed to be independent and identically distributed 
with mean zero and variance 0 .2 . In the case of 
calibrations that use artefacts wi th unknown constant 
dimensions, the vector j~ wi th unknown parameters has 
to be expanded to include these dimensions. The least 
squares estimates of the parameters j~ are given by 19 

/~= (xTx)-1XTy (50)  

The calibration's potential to estimate the unknown 
parameters ,6 can be assessed by the fo l lowing rule I 9: 

• a linear combination zTp of the parameters # can 
be estimated from the calibration's observations 
if ~,T is part of the vectorspace spanned by the 
rows of X. 

In case all the parameters /~ can be estimated, the 
calibration's efficiency can be further assessed by 

• The variance-covariance matrix of the estimated 
parameters ~: 

var (/~) = ~2(XTX)-1 (51)  

• The variance of the predicted machine tool 's error 
9, when measuring an artefacrs feature: 

var(91x = x/) = G2fT(xi)(xTx)-lf(xi) (52)  

Both Equations 51 and 52 depend on the design 
of the calibration only through the p x p matrix 

(xTx) -1, and suggest that a good experimental design 
wil l  be one that makes this matrix small in some sense. 
Since there is no unique size ordering o fp  x p matrices, 
various real-valued funct ions have been suggested as 
measures of "smal lness." Such criteria 2° either assess 
the qual i ty of the parameters to be estimated 
(minimization of the determinant, trace, or maximum 
eigenvalue of (xTx) -1 ) or the quali ty of the estimated 
model's response surface for the errors in the artefact's 
measurements (minimizat ion maximum or average 
variance-predicted errors). 

As an example, we consider minimizing the 
determinant of (X'X) -1. One of the attractive features 
of this so-called D-criterion is that designs that are 
optimal wi th respect to it are invariably " g o o d "  in 
many respects (e.g., low variances for the parameters, 
low correlations among the parameters, low maximum 
variance in the predicted errors). Essentially the criterion 
tries to minimize the contents of the p-dimensional 
conf idence region associated wi th  the estimated 
parameters. A l though the comparison of exist ing 
cal ibrat ions using this or other criteria is quite 
straightforward, optimization is a very complicated 
process. The most frequently encountered diff iculties 
are 

• the large number of parameters that must be 
handled and the associated large size of the matrix 
xTx, 
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• the complex nature of object funct ion det(XTX), 
especially the existence of several local minima, 

• the large number of design variables that describe 
the configuration of the artefact (s ) 's  measurable 
points, its locat ion(s)  in the machine tool 's 
workspace, and the probe extension (s) used to 
measure it, 

• the complex boundaries of the design space and 
the often discrete character of certain design 
variables (e.g., available probe extensions and 
artefacts). 

Here attention is restricted to the optimization of 
the location (s) of existing artefact ( s ). As a n example, 
we confine the assembly of possible artefacts to gauge 
blocks (or calibrated ball bars) wi th different lengths. 
In the chosen approach 21 to the optimization problem, 
a discrete design space X is defined of r so-called 
candidates Xl . . . . .  xr. Each candidate represents a 
gauge block at a certain location in the machine tool 's 
workspace. The design problem can now be defined 
as the choice of n not necessarily distinct observations 
X(1 ) . . . . .  X(n ) from X. The adapted (exchange) algorithm 
commences with an initial random design of n points 
(observations) and makes a number of excursions 
whereby the design is improved until no further progress 
can be made. Each excursion is a series of addit ions 
or subtractions of one or more candidates to the current 
collection of design points, eventually returning to a 
possibly new and better n-point  design. 

Example 3 
As an example of this procedure we consider the 
simplified 2D coordinate measuring machine depicted 
in Figure 9. Its errors are limited to linear scale errors 
in the position of both axes and a constant squareness 
error in their respective orientation. Disregarding the 
probe offset, errors in the measured position can be 
expressed as 

 2,2 
q2 /~3 

(53)  

(54)  

where 

oelx Scale error axis 1 
le2y Scale error axis 2 
OSlz Squareness error 

between axes 1 and 2 
Parameters to be estimated 

(0elx = ~1ql )  
( le2v = #2q2) 

(O~lz = 83) 

The difference AL between the measured and nominal 
length L of a ball bar, whose orientation is determined 
by the angle ¢ wi th the machine's first axis, can be 
approximated as a linear combination of the unknown 
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Y 

500 

x 

q2 

500 

Figure 9 

q l  

2D CMM 

parameters ~: 

AL "~ [cos cz sin a] 

0 L sin a 0 f12 

% 

+7 

(55) 

=L[cos2¢,s in2~,  - c o s ~ s i n ¢ ] # + 7  (56) 

Note that this error is unrelated to the ball bar's position 
in the machine's workspace. In this analysis, the set 
of candidates is confined to ball bars with a length of 
400 mm. Their position and orientation are separated 
by intervals of 50 mm and 15 °, respectively. As an 
example, the number of ball bar measurements to 
calibrate the machine is limited to six. In the computer 
output presented in Table 1, the properties of the 
proposed experimental designs 1,2, and the calculated 
D-optimal design 3 (Figure 10) are shown. 

Note that the calculated D-optimal design is 
superior to the proposed designs with respect to all 
criteria mentioned. In order to analyze this difference, 
the variance-covariance matrices of designs 1 and 3 
are calculated: 

L 000 1.00] 
Design 1 :var(j~) 0"2 / = - -  L -2 1.00 1.00 

2 
6.00 

(57) 

L -o. a o.oo] 
Design 3 :var(p) a2 / = - -  L -2 1.00 0 . 0 0  

2 
2 . 6 7  

(58) 

Although the first design exhibits no covariance 
between the scale parameters ,~1 and f12 (matrix 

element [1 ,2 ] ) ,  the variance of its squareness 
parameter f13 is quite high (matrix element [3,3])  
and shows significant covariance with both scale 
parameters (matrix elements [1,3] and [2,3]) .  This 
explains the higher efficiency of the calculated D- 
optimal design. The D-optimality of this design was 
proved by evaluating all possible designs based on 
six ball bar measurements whose orientation is limited 
to the previously mentioned discrete angles. In Figure 
11 values of the inverted optimality criterion (i.e., 
det (xTx)) are shown for a subset of these designs. 

('1 

/ 
DesTgn 1 

2 /2 
2 

u 

2 

1 

Design 2 

2 
D 

2 2 

Design 3 

Figure 10 Proposed experimental designs 1, 2, and 
the calculated D-optimal design 3 

"~ 100 / '  

oI.i~ii. ; . . . . . .  , . 
/J  

0 20 40 60 80 100 120 140 160 180 

Angle of ball bars 3 and 4 ( deg ) 

Figure 11 Contour lines of constant det(XTX) of 
experimental designs having two ball bars at a 45 ° 
angle with the machine's X-axis. The numerical values 
for this inverted optimality criterion are scaled for the 
number of parameters (three) and observations (six). 
The calculated D-optimal design is represented by the 
symbol + 
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Table 1 Properties proposed experimental designs 1, 2, and the calculated D-optimal design 3 

Design 1 : design points 

Coordinates first sphere 
Length 

Point Replications X Y Z A-angle B-angle ball bar 

1 2 50.0 250.0 0.0 0.0 0.0 400.0 
2 2 250.0 50.0 0.0 90.0 0.0 400.0 
3 2 100.0 100.0 0.0 45.0 0.0 400.0 

Design 2: design points 

Coordinates first sphere 
Length 

Point Replications X Y Z A-angle B-angle ball bar 

1 2 50.0 250.0 0.0 0.0 0.0 400.0 
2 2 250.0 50.0 0.0 90.0 0.0 400.0 
3 1 1 00.0 100.0 0.0 45.0 0.0 400.0 
4 1 1 00.0 400.0 0.0 31 5.0 0.0 400.0 

Design 3: design points 

Coordinates first sphere 
Length 

Point Replications X Y Z A-angle B-angle ball bar 

41 2 50.0 150.0 0.0 45.0 0.0 400.0 
97 2 450.0 50.0 0.0 105.0 0.0 400.0 
101 2 450.0 50.0 0.0 165.0 0.0 400.0 

Design properties 

Det ̂  ( 1 / 3 ) Max E-val Trace 
covariance covariance covariance Average Maximum 

Design Iterations matrix matrix matrix variance variance 

1 1 2.9764 E-5 1.1948 E-4 1.5000 E-4 4.3540 9.0000 
2 1 2.6001 E-5 7.5000 E-5 1.0625 E-4 3.1974 4.0000 
3 31 2.5000 E-5 5.0000 E-5 8.7500 E-5 3.0000 3.0000 

All results scaled for number of observations and error variance. 

Example  4 

In order to evaluate the proposed artefact-based 
calibration and the associated optimization of its 
efficiency, the thus estimated error structure of the 
CMM depicted in Figure 6 is compared with results 
obtained using conventional laserinterferometer-based 
techniques. As an example, we restricted the problem 
to the estimation of those errors that mainly determine 
the CMM's accuracy in its upper X-Y plane. Again we 
chose not to optimize the artefact(s) used but tried 
to define an efficient experimental design using existing 
artefact(s), in this case calibrated ball bars of 300, 
400, 500, and 600 mm length. Since we only wish to 

determine the trend of the various errors, low order 
piecewise polynomials were used in their proposed 
model: 

• O~alz = ~1 Jr ~2qal Jr ,/~3q21 Jr , 8 4 ( q a l  - -  225) 2 

(59) 

• oealx = ~ 5 ( ~ - 5 5 0 2  - -  5 5 0 q a  1 Jr q21 (60) 

• oe, l~ = ~6qal + f17q21 + f ls(qal - 225) 2 (61) 

• al ea2x = ~9qa2 +/~1oq22 +/Yll (qa2 - 450) 2 

(62) 

• al ea2~ =/Y12(~9002 - 900qa2 + q22 (63) 
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In order to estimate the total of 1 2 unknown parameters 

in the previous models, an optimal experimental design 
was calculated using 18 observations (Figure 12). In 
the actual calibration, five measurements of the ball 

bar's length were taken at each of these observations. 

In Figures 13 and 14 the thus estimated scale error 

al ea2x and straightness error oealx are compared with 

h qal (ram) 

~ .  (ram) 

o L; ~o 4~o ~ 75o ~0 

Figure 12 Calculated optimal experimental design 
in the CMM's upper X-Y plane 

the associated laser measurements. The difference 

between the straightness results from the ball bar 
measurements and laser measurements is mainly due 

to the fact that the laser measurements cannot be 
accurately modeled using the second-order polynomial 

proposed. 

Although evaluation and especially optimization 

of a calibration's efficiency using the method presented 
in this section is not wi thout problems, the first results 

look promising. Further research is required on the 

fol lowing topics: 

• evaluation and optimization of calibrations to 
estimate subsets of parameters, 

• methods for the sequential update of calibrations 
using calibration data already obtained (e.g., in 

order to find artefact location (s) where maximum 

errors are obtained), and 

• planning and evaluation of experiments in the 
face of model uncertainty (model-robust designs 

that yield reasonable results for the model proposed 
even though it is known to be inexact, and 

model-sensitive designs that highlight suspected 

inadequacies). 
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C o n c l u s i o n s  

Applicable to multi-axis machines of arbitrary con- 
figuration, a general methodology has been developed 

to obtain a model that relates quasistatic errors in the 

relative location between tool and workpiece to the 

machine's status and relevant quantified environmental 
conditions. A so-called type-dependent model is 

developed that contains the common properties of 

error structures belonging to machines of the same 
factory type. The use of piecewise polynomials in 

combination with the selection of significant parame- 

ters in the least squares estimation procedure results in 
a powerful model for each of the errors between 

succeeding frames. Finally, a method has been 

presented to use components in the various models 
to evaluate and optimize the calibration's efficiency. 
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