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Abstract

We describe here a rigorous and accurate model for the simulation of three-dimensional deformable
particles (DPs). The method is very versatile, easily simulating various types of deformable particles
such as vesicles, capsules, and biological cells. Each DP is resolved explicitly and advects within the
surrounding Newtonian fluid. The DPs have a preferred rest shape (e.g., spherical for vesicles, or
biconcave for red blood cells). The model uses a classic hybrid system: an Eulerian approach is used
for the Navier-Stokes solver (the lattice Boltzmann method) and a Lagrangian approach for the
evolution of the DP mesh. Coupling is accomplished through the lattice Boltzmann velocity field,
which transmits force to the membranes of the DPs. The novelty of this method resides in its ability
(by design) to simulate a large number of DPs within the bounds of current computational limitations:
our simple and efficient approach is to (i) use the lattice Boltzmann method because of its
acknowledged efficiency at low Reynolds number and its ease of parallelization, and (ii) model the
DP dynamics using a coarse mesh (approximately 500 nodes) and a spring model constraining (if
necessary) local area, total area, cell volume, local curvature, and local primary stresses. We show
that this approach is comparable to the more common—yet numerically expensive—approach of
membrane potential function, through a series of quantitative comparisons. To demonstrate the
capabilities of the model, we simulate the flow of 200 densely packed red blood cells—a
computationally challenging task. The model is very efficient, requiring of the order of minutes for
a single DP in a 50 μm×40 μm×40 μm simulation domain and only hours for 200 DPs in 80 μm×30
μm×30 μm. Moreover, the model is highly scalable and efficient compared to other models of blood
cells in flow, making it an ideal and unique tool for studying blood flow in microvessels or vesicle
or capsule flow (or a mixture of different particles). In addition to directly predicting fluid dynamics
in complex suspension in any geometry, the model allows determination of accurate, empirical rules
which may improve existing macroscopic, continuum models.
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I. INTRODUCTION

A. General observation

The flow of dense particle suspensions has been studied extensively experimentally. Two major
areas of research have emerged naturally: solid particle suspensions such as colloids, which
are relevant in shallow water sediment resuspension, river bed dynamics, etc., and deformable
particle suspensions, which are important in the petroleum industry, pharmaceutical
production, blood flow, emulsions, etc.

Within these two categories, models and experiments can address various length scales,
namely, mesoscopic which focuses on length scales comparable to the size of the particles, and
macroscopic which includes length scales at least two orders of magnitude larger than the size
of the particles. Numerous computational models now exist for simulating the flow of solid
particle suspensions, both at the mesoscopic and macroscopic levels.

The current paradigm is that, while many models can accurately approximate macroscopic
flow of solid and deformable particles, mesoscopic simulation of deformable particles (DPs)
remains a challenge. It is the latter domain, which contains complex and interesting fluid
dynamics, in which particle size is similar to the conduit size, that we have focused our model
of deformable particle. The flow of blood through microvessels is an important example.

Decades of experimental observations have shown that the two phase nature of blood is
responsible for the flow anomalies observed in microvessels (i.e., the Fahraeus effect,
Fahraeus-Lindqvist effect, and blood cells interactions; see [1-5], for example), and several
computational approaches have led to major advances in the simulation of these systems.
However, most of these models either simulate acute deformation of a single red blood cell
(e.g. [6-10]), or model multiple red blood cells (RBCs), but with significant restrictions on, for
example, deformability and shape (e.g., [11,12]) or the number of spatial dimensions (e.g.,
[11,13]). Other than these examples, numerical studies generally ignore the particulate nature
of blood, and models of mesoscale blood dynamics which explicitly account for blood cells
are lagging far behind the experimental data.

From the discussions above, we suggest that a useful, relevant DP model must (i) contain a
physiologically relevant number of three-dimensional, deformable, and interacting RBCs as
possible, all of which advect in flow, deform in a physically correct way, and exert a reciprocal
effect on the flow (i.e., exhibit two-way coupling) and (ii) facilitate adaptable and efficient
computation, so that results are obtained in a reasonable amount of time.

B. Rational

To date, no model has been reported with the ability to model O(102) three-dimensional
deformable particles. The limitation has been due to a lack of sufficient CPU capacity and
memory to reproduce physically correct flow. For any model to be useful it must be designed
around the current hardware limitations. Computational efficiency is therefore crucial; it may
be attained through prudent choice of model assumptions, which must, however, be validated
through rigorous testing. This paper demonstrates our model's efficiency and accuracy,
validating our simplifying assumptions. The model was designed to run in parallel using
multiple processors and to require a reasonable computational power and time. We define a
model as reasonable if a simulation is complete within approximately 10 hours on 10 to 30
CPU's.
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II. METHOD OVERVIEW

A. A brief overview of current DP models

The majority of current models for deformable cells are designated front-tracking (FT); i.e.,
the manifold surface of the cell is represented by a set of points embedded in the membrane,
forming a boundary mesh which is superimposed over the separate, Eulerian lattice of the fluid
domain (if the fluid is actually represented explicitly). FT methods are generally categorized
as Lagrangian and provide very narrow interfaces. Alternatively, in the front capturing (FC)
approach one can define a scalar field, χ, everywhere over the Eulerian mesh of the fluid. The
χ field as a whole then carries information about the membrane location; a closed contour of
a particular value of χ represents the position of the interface.

While FC interfaces suffer from being broader, they are usually preferred in the simulation of
fluid interfaces as FT methods do not handle large interface distortions and interface breakup
easily. The broader interface of the FC method is generally due to numerical diffusion and
typically has a width of three to five times the underlying lattice spacing.

In the majority of the models incorporating flow effects, the governing equations for the fluid
flow are determined by an Eulerian Navier-Stokes (NS) solver, a notable exception being low
Reynolds Number (Re) so-called Stokesian dynamics solvers (e.g., [14]), or models limited to
a fixed, simple geometry, where the flow perturbation of the cell can be added to the known
viscous flow through the condition of Stokes regime (e.g., [15]).

1. Existing approaches—Sun et al. [16] simulated O(102) solid RBCs in two dimensions
and were able to recover the Fahraeus and Fahraeus-Lindqvist effects. Dao et al. ([17]) used
a finite-element modeling (FEM) model to simulate the deformation of a single RBC stretched
due to shear flow. The same authors also published a meshless representation of the membrane
[9]. This model is, however, too computationally expensive to be applied to our goal of O
(102) RBC's. Dzwinel et al. developed a dissipative particle dynamics (DPD)-like method for
both the RBC as a whole (inner skeleton and membrane) and the plasma [12]. As a consequence
of modeling assumptions, the membrane shape was too rough to be considered in this approach.
Nogushi et al. showed impressive tank treading behavior with their model [10]. However this
method was, again, not designed to handle many RBC's. We finally note that Buxton et al.

[18] have developed a model of three-dimensional deformable capsules using a Lagrangian
and/or lattice Boltzmann method sightly different which we describe in the remainder of this
section, and very recently, Alexeev et al. [19] used this approach to model two capsules in
flow. This method would not be practical or sufficiently efficient to simulate the thin membrane
of RBC's. Finally, following the work of Peskin on the immersed boundary method (IBM) for
deformable boundaries (see, e.g., [20]), Feng and Michaelides ([21]) combined lattice
Boltzman (LB) and IBM to simulate very stiff solid particle in flow. This approach could be
applied to the current application, but computational efficiency is likely to be a limiting factor.

2. Our approach—Our model is based on a “bottom-up” approach, with the following
assumptions: (i) the macroscopic deformation of each cell can be obtained by averaging the
microscopic and/or molecular deformations over the cell surface, with different types of
particles having different sets of microscopic and/or molecular parameters, and (ii) recovering
the overall deformation of individual particles accurately will ensure correct simulation of flow
containing many particles. It is assumed that the hydrodynamics provided by the LB method
support the correct fluid-particle interactions.

In order to model a sufficient number of three dimensional DPs [O(2)] to recover the required
flow regimes, we (i) model the DP shape with a relatively coarse mesh, (ii) simulate the elastic
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properties of the DP membrane as a network of springs, without reference to a membrane
potential function or its spatial gradients, and (iii) use an efficient fluid solver.

B. Fluid dynamics: lattice Boltzmann (LB)

1. Why lattice Boltzmann?—Clearly, the simulation of complex flows containing
advected, Lagrangian particles is of interest in a variety of very important applications.
However, for many, such simulations have been prohibitively demanding, from both
computational and algorithmic points of view. The advent of the lattice Boltzmann (LB)
method has improved matters [22].

In fact, LB has well-recognized efficiency and algorithmic advantages over conventional
computational fluid dynamics methods only for certain applications: canonically complex,
time-dependent, multicomponent, and particulate flows. However, in these applications (which
are highly relevant to the current work), LB methods can (i) achieve efficiency improvements
approaching two orders of magnitude under the right circumstances and (ii) facilitate intuitive
manipulation of the underlying flow physics. In this work advantage (i) underpins our central
motivation—namely the provision of an accessible, ambitiously upscalable method.
Advantage (ii) is manifest in the direct methods we use explicitly to couple advected red blood
cells to flow modes; it arises as follows.

A LB flow solver works essentially at the kinetic equation scale [22], at which scale it is possible
to incorporate the important interactions with Lagrangian particles (DPs). For this reason and
also for simplicity of coding, adaptability, and parallelizability, we chose to use LB as a full
Navier-Stokes solver. We note that LB may be adapted to Stokes flow, in which the fluid inertia
is ignored in a regime of very small Re [15], but its simplest and most effective form lies in
approximating the full Navier-Stokes equations. LB has previously been used to simulate blood
flow (i) at the macroscopic, arterial level [23-25], (ii) at the microscopic level [16,26], and (iii)
to simulate many deformable droplets in flow [27].

2. Description of lattice Boltzmann—For a detailed derivation of this and related lattice
Boltzmann (LB) models, we refer the reader to Hou et al. [28]; for wider background details
to Succi's review [22] and more recently, Sukop and Thorne's book [29].

The primary quantity in any LB method is a single particle distribution function, known as the
momentum distribution function, fi, which may be thought of as the mesoscopic density of
molecules flowing in the direction of the velocity vector ci. We chose to use the three-
dimensional lattice with 19 allowed velocities, designated D3Q19 originally developed by Qian
and d'Humières [30]. Each node is organized on a regular cubic lattice and connects to its
nearest and next-nearest neighbors (a total of 18, see [22] for more details and illustration).
The corresponding velocity vectors ci's are defined as follows: c0=(0,0,0), c1,2=(±1,0,0),
c3,4=(0, ±1,0), c5,6=(0,0, ±1), c7,10=(±1, ±1,0), c11,14=(0, ±1, ±1), c15,18=(±1,0, ±1).

The LB method is a kinetic equation method. Equations such as Eq. (1)(below) govern the
evolution of the single-particle distribution function, and continuum length scale observables
emerge from appropriate moments of the fis. Thus, LB is not a discretization of the Navier-
Stokes and continuity equations. The efficiency of the LB method comes from its “local” nature
and its natural kinetic length scale. The LB method actually yields a weakly compressible form
of the incompressible Navier-Stokes equations; the compressibility error is, however, very
small at low Re.

For the work presented in this paper, we adopt a lattice Boltzmann Bhatnagar-Gross-Crook
(LBGK) [31] scheme with a source term added to account for the systematic influence of body
forces on the fluid:

Dupin et al. Page 4

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2009 September 28.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



( 1 )

The parameter τ determines the relaxation rate to a local equilibrium distribution function

(ρ, v), and τ may be related to the fluid kinematic viscosity ν through the equation

( 2 )

where cs is the speed of sound. This result [Eq. (2)] can be recovered by a Chapman Enskog
expansion similar to that used in kinetic theory [32].

The first and second discrete c moments of the fi's provide the hydrodynamic, continuum length
scale, observables of density ρ(x,t), and momentum ρ(x,t)v(x,t):

( 3 )

The relationship between the source term, ϕi, and the target fluid body force is strictly given
by Eq. (20) of Ref. [33]; in the rest of the present article we shall, for simplicity and to make
best use of physical insight, concentrate on this macroscopic body force (total force applied to
produce the RBC reciprocal fluid motion and interactions).

The equilibrium distribution function  is determined solely by these observables and takes
the form of a truncated, low velocity expansion of a translating Maxwell-Boltzmann
distribution,

( 4 )

where the ti's are constants, termed weights, depending only on the velocity index i and the
geometry of the lattice [28,30]. For the D3Q19 lattice used in this work, the weights are given
by t0=1/3, t1...6=1/18, t7...18=1/36. The results in Eqs. (3) and (4) are similar to those obtained
in classical kinetic theory, as explained in Ref. [32].

The term ϕi in Eq. (3) is a source term to impress force on the lattice fluid at the macroscopic,
Navier-Stokes level. Using methods directly adapted from kinetic theory [22,32], it can be
shown ([33,34]) that Eq. (1) leads to the following weakly compressible, forced Navier-Stokes
evolution:

( 5 )

which includes the source forcing term explicitly. Here cs is the speed of sound ( ) and
Sαβ=1/2(∂αvβ+∂βvα) is the macroscopic, continuum scale rate of strain tensor.
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3. Lattice Boltzmann boundary conditions—Solutions of the incompressible Navier-
Stokes and continuity equations for the velocity and pressure, {v(r,t), P(r,t)}, are most
straightforwardly closed by Dirichlet boundary conditions on fluid velocity (only):

( 6 )

where x′ denotes a position on the boundary of the flow domain and u0(x′,t) is a specified
boundary velocity distribution. The special case in which the fluid adjacent to the boundary is
at rest, u0=0, is referred to as the no-slip condition.

Several simple and efficient techniques for imposing the no-slip condition exist for LB
simulation. We use the popular midlink bounceback method which has been carefully
evaluated by a number of workers (e.g., [35-37]). The fi's on a boundary node at position xw

are subject to a specular reflection, taken to occur at the midpoint  of the appropriate
lattice link ci,

( 7 )

This simple rule was generalized by Ladd [38] to moving boundaries with velocity u0 by
replacing the evolution expressed in Eq. (1) with

( 8 )

Moving walls are implemented using this approach.

Inlet and outlet fluxes and an outlet pressure (density) distribution are specified at every time

step, using an appropriate equilibrium (ρ,u)[22]. The inlet pressure distribution is allowed
to develop, while the outlet flux is taken to be a square profile matching the inlet flux. In this
way, the unknown inlet density develops to a “fully developed,” uniform pressure gradient
condition [26,39].

C. Deformable particle dynamics

1. Different types of deformable particles—We consider in this manuscript three
categories of DPs: capsules, vesicles, and red blood cells.

We define capsules as spheroids filled with liquid, with an unbreakable, Hermetic membrane
of finite thickness (approximately 1/10th to 1/5th of their radius). This membrane provides
resistance to shear and change of volume but allows relatively small perturbations in surface
area.

We define vesicles as spheroids filled with liquid, with a membrane that is unbreakable,
hermetic, and very thin compared to their radius, typically 1/1000th. Vesicles exhibit a strong
resistance to any volume and total surface area change, but are insensitive to strain and only
weakly sensitive to local bending change.

Red blood cells (RBCs) are biconcave disks with a rest shape conferred by two structural
membrane components: the plasma membrane and the cytoskeleton (see Fig. 1). The plasma
membrane is similar to the vesicle membrane, and is therefore responsible for a resistance to
surface area dilatation. The cytoskeleton, on the other hand, is a triangular protein network,
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that acts like a triangular network of springs, providing viscoelastic resistance to bending of
the membrane (similarly to capsules, see [40-42]). Similar to capsules and vesicles, red blood
cells strongly resist changes in volume. Fortunately for our modeling efforts, experimental and
theoretical studies by a number of authors have analyzed RBC membrane dynamics in detail;
Mukhopadhyay et al. [6], Kuzman et al. [7], Pozrikidis [8], Li et al. [9], and Noguchi et al.

[10].

2. The importance of different constraints in a DP—There are four parameters that
affect the mechanical energy, and therefore shape, of these particles: (1) inner volume, (2)
surface area, (3) hydrodynamic shear, and (4) membrane bending.

Capsules are only subject to two constraints: volume and strain. Their volume is most often
modeled as constant and their stretching dependence varies with their capsule chemistry and
composition [18].

Vesicles have three constraints: strong resistance to changes in volume and surface area, and
a weaker resistance to bending, which is essentially the only remaining free parameter [15].

The case of RBCs is more complicated. The characteristic biconcave shape arises because the
plasma membrane does not allow expansion or contraction of the membrane (just like any other
vesicle) and the cytoskeleton restricts its strain and bending, through the three-dimensional
mesh it forms. We note that buckling is believed to be restricted by the plasma bilayer [7].
These properties are biologically crucial, for they allow RBCs to squeeze through narrow
capillaries and to withstand large shear forces in the blood stream.

The RBC elastic modulus for volume compressibility KV is of the order of 0.033 μN s cm−1,
the elastic modulus for area compressibility KA is of the order of 5×105 pN μm−1, the elastic
modulus for shear KS is of the order 5 pN μm−1, and the bending elastic modulus KB is of the
order of 10−1 pN μm (parameters from Dao et al. [17] and Bagchi et al. [13]). Ghosh et al.

[43] noted that, in the range of displacements we are modeling (a few micrometers), the elastic
energies of bending, shearing, and dilatation are in the ratios 1:50:106; therefore we can write

( 9 )

These values reflect the energy cost of certain mechanical deformations about a preferred value
which constrains the DP dynamics. To model vesicles, we use similar volume, bending and
area constraints (see the quantitative measures by Kroll et al., for example). Capsules are taken
to have, quantitatively, the same bending modulus and volume constraints as RBCs, but a strain
constraint which can vary significantly.

3. A coarser mesh for essential gains in efficiency—Our compromise is to use a coarse
mesh of approximately 400 nodes for the RBC surface, defining approximately 800 triangular
faces, compared to O(104) nodes usually involved in comparable models (e.g., in [44], [8],
[45], or [9]). Each vertex is defined (on average) by six faces, also referred to as an order 6

mesh; see Fig. 2. This resolution was arbitrarily chosen to fit both the spatial DP constraint
(expressing smooth biconcavity in the case of a RBC), and computational constraints (not too
fine a mesh). Once the resolution was chosen, we obtained the mesh by triangular tessellation
from the equation of a sphere in the case of vesicles and, in the case of RBCs, from the empirical
solution of Evans and Fung [46],
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We find that this approximation allows up scaling to hundreds of DPs, while maintaining
correct membrane dynamics for accurate emergent blood rheology.

4. Definition of notation—Referring to Fig. 3, we now introduce the following quantities
and notations:

Ψ is the index of the face.

r(Ψ) is the position of the face Ψ, taken to be its center of gravity.

Ψ1, Ψ2, Ψ3 is the nodes defining the face Ψ.

r(Ψ1), r(Ψ2), r(Ψ3) is the position of nodes Ψ1, Ψ2, Ψ3.

N(Ψ) is the normal to the face Ψ, pointing outside the enclosed volume of the DP.

A(Ψ) is the area of the face Ψ.

L12(Ψ), L13(Ψ), L23(Ψ) is the length between r(Ψ1) and r(Ψ2), r(Ψ1) and r(Ψ3), and r
(Ψ2) and r(Ψ3), respectively (note that Lαβ=Lβα).

θαβ(r) is the angle between face Ψ and the face that has node Ψα and Ψβ in common (with
{α, β} in {{1,2},{1,3},{2,3}}).

 is the node of face Ψ other than Ψα and Ψβ.

wα is the vector from centroid of face to node Ψα [wα=r(Ψα)−r(Ψ)].

5. Constant particle volume constraint—The inner volume of the DPs is held essentially
constant at all times:

( 10 )

The incompressible fluid encapsulated within the DP maintains a uniform internal (hydraulic)
fluid pressure on the inner membrane surface (see, e.g., Dao et al. [17]); there is therefore no
fluid pressure drop across the membrane:

( 11 )

Consequently, we use a very stiff Hookean “spring” approach to describe how a DP reacts to
a change of inner volume. Each of its faces, Ψ, is subjected to the force FV(Ψ) as follows:

( 12 )

where we compute the inner volume by
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( 1 3 )

where h(Ψ) is the vector from the center of the face r(Ψ) to any plane which does not cross
the cell (we chose to use the x-y plane). The force FV(Ψ) is distributed equally onto each of
Ψ's nodes, Ψα (α=1...3),

( 14 )

We chose to add area dependence to Eq. (13) in order to account for possible local variation
of area. We found that this restrains the inner volume to within ±2%.

6. Particle membrane area constraint—We impose the area constraint through the force

( 15 )

where KA is the elastic modulus of area dilatation, ΔA(Ψ) is the change in area of face Ψ, and
 is the unit vector from the centroid of the face r(Ψ) to the node Ψα (α={1,2,3}). This force

has the effect of (homocentrically) shrinking or expanding the face.

In the case of a phospholipid plasma membrane of the RBC or the envelope of a vesicle, only
a relatively small amount of energy is required to reorganize the molecular distribution locally
to accommodate a local change of area. This provides a certain “fluidity” to the membrane,
which is constantly undergoing changes in shape. Local stresses resulting in a change of local
area are easily accommodated by a fluid reorganization of the membrane [47]. This fluidity is
modeled by modifying Eq. (15) to conserve global area strongly, but local area only weakly,

( 16 )

where the subscript L denotes local and T the total area and . We note that more
complicated fluidization methods do exist (see Kroll [47], for example). We also note that
Eggleton et al. report that the common Evans and Skalak membrane model used for RBCs
([41]) has a very high dilatation modulus, giving rise to instability in their model [45]. The
same authors showed that a much lower dilatation modulus was equally valid, provided that
total membrane area is conserved to within ±1% [45]. We calibrated our dilatation coefficient
in a similar way: the local area of our DP was found to vary by less than 10% under normal
conditions, and the total area varied by only 2% under the most severe conditions.

7. Particle surface strain constraint—The stretching force between nodes Ψα and Ψβ, at
positions r(Ψα) and r(Ψβ), respectively, can be written

( 17 )
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where KS is the in-plane shear modulus [see Eq. (19)],  is the unit vector from r(Ψα) to r
(Ψβ), and λαβ is the stretch value between Ψα and Ψβ defined by

( 18 )

It is should be noted that the stretching force due to the spring does not depend directly on the
distance between the nodes. KS has units of N/m (recalling that the membrane is considered to
have no thickness, this length dependency accounts for the amount of material on the ring
perpendicular to the direction of stretching, see Sec. III A). The neo-Hookean (hyperelastic)
behavior of the RBCs membrane is imposed through the spring constant KS following Evans
and Skalak [17,41]:

( 19 )

Our model does not allow rupture of the membrane. Ultimately, this results in a lack of stability
for extremely high membrane stresses.

8. Local curvature constraint: Bending—We imposed bending moments proportional
in magnitude to the departure from preferred local curvature, but obtained unphysical cell
behavior at high shear: the RBC buckled and folded when the radii of curvature became small,
leading to instability. Eggleton et al. reported precisely the same limitation [45] using their
similar approach. We therefore choose to impose a preferred angle between faces. This
provides more spatial information for the (on average) six faces at typical vertices, especially
on a coarse mesh. We compute the departure from rest angles θ0 between faces from

( 20 )

where KB is the coefficient of bending stiffness. See Sec. II C 4 for a definition of the other
symbols. An equal and opposite force is distributed to two nodes α and β,

( 21 )

This force ensures that the local and total stress on the membrane are unchanged by the
constraint of bending, while permitting a local net rotation.

D. Coupling of DP and fluid dynamics

A range of strategies have been used to couple the Eulerian fluid mesh (position x) and the
Lagrangian particle mesh (position r). Jadhav et al. [48] weight the Eulerian lattice fluid
velocities by the function δh(r–x), aiming to cut off the part of the fluid which is too distant to
interact (typically more than two Eulerian lattice spacings) and provide a distance weight of
cosine type. Our recurrent motive of simplicity favors the choice of a simple weighted average
for the interpolation between the Lagrangian, DP surface nodes (r, at position r) and the
Eulerian, LB, fluid nodes (x at position x). Essentially, each velocity and/or force component
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has a weight inversely proportional to the cuboidal volume defined by its position and the LB
node to which it is closest,

( 22 )

where (see Fig. 4) x̄ represents the diagonally opposite vertex to x, Γ(r,x) is the volume of the
cube defined by x and r which has all its segments parallel to an axis of the geometry, Ξ(r)
represents the vicinity of DP mesh node r, defined as the LB cube which contains it (see Fig.
4), and v(x) is the LB velocity at x, defined by Eq. (3). It should be noted that we have the
following relationship:

( 23 )

see Fig. 4.

Similarly, the force on a fluid node is given by

( 24 )

where F(r) is the total force acting on the node (after computing the membrane stresses) and
δ(r,x) is the function cutting off nodes too distant from r to be included in a computation of
the average:

where Ξ(x) is the cube comprising the eight cubes which have x as a summit (see Fig. 5).

Viscoelastic properties of the DP membrane are not included in this implementation of the
model because no models against which we benchtest our method account for it. Viscoelasticity
may, however, be easily incorporated, following Bagchi's simple and elegant approach [13],
by adding

( 25 )

to the total force on the DP membrane.

III. MODEL VALIDATION

As discussed in Sec. II C 5 and II C 6, our model conserves both total DP surface area and
volume to a good approximation. Thus, the remainder of this section deals with the validation
of the two remaining DP constraints, namely stretching and bending.
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A. Validation of stretching properties

Landau and Lifshitz [49] showed that, for a spherical shell with two opposite forces applied at
its poles, the stress distribution is unchanged along any latitude and is given by

(26)

where R(x) is the transverse radius of curvature at the longitudinal coordinate x (x=0 chosen
to be the center of the spheroid) and F is the force applied to the sphere to stretch it.

We stretched the spherical mesh (see Fig. 2) by applying an equal and opposite force at each
of its poles. The maximum strain was 120%, in order to remain in Landau and Lifshitz's small
deformation regime. Longitudinal stress T(x) was measured at steady state. It is important to
note that the strain forces were the only forces applied to the membrane for this particular

experiment; that is, . This represents a capsule with no bending
dependence.

Figure 6 shows the expected inverse relationship between the local longitudinal stress Tx and
the local circumference, 2πR(x), as shown experimentally by Hénon et al. [50] and studied
analytically by Landau and Lifshitz [49]. The simulation size was 50×20×20 lattice nodes, the
LB relaxation parameter was equal to 1, the sphere had an initial radius of 4 lattice units and
was stretched (in the x direction) at a rate of 0.05% per time step to limit viscous interactions.
In this paper, all simulations ran in parallel on a Hewlett-Packard (HP) cluster DL145, running
AMD-Opteron 32−64 bit processors with 4 GB random access memory (RAM) each. This
particular simulation ran on 5 CPUs and required only one minute to reach equilibrium
(approximately 1000 time steps). Tx in Fig. 6 has been normalized by F and R(x) by 2π. This
validates the stretching behavior of our DP membrane.

B. Validation of bending properties

This section deals with the dynamics of a vesicle. Kraus et al. [15] showed analytically and

computationally that the stationary state of a vesicle ( ) in a linear
shear flow is characterized by (i) its finite inclination angle, θ, subtended at the longest axis of
inertia of the vesicle and the flow direction, and (ii) the revolution frequency, ω, of the “tank-
treading” tangential motion of the membrane around the vesicle; see Fig. 7.

Both θ and ω depend strongly on the reduced volume  of the vesicle, where V

is the enclosed volume and R0 is determined by . Interestingly, θ and ω do not

depend on the reduced shear rate . The vesicle mesh (Fig. 1) was inflated to an
ellipsoidal shape with parameters {a,b,c} (lengths of the three major axes of the ellipsoid). We
found that interchanging a, b, and c did not affect θ or ω. Table I gives the sets of {a,b,c} to
control v in the range 0.7...1, with an incremental step of 0.05.

The simulation size was 50×30×30 lattice nodes, the fluid relaxation parameter was τ=1, the
vesicle's parameters were taken from Table I, and the top and bottom shear velocities were 0.1
(shear rate of 0.003 lattice units). The simulation ran on 5 CPU's and required only 4 minutes
to reach steady tank-treading equilibrium (approximately 2000 time steps). We obtained the
steady state elliptical profiles predicted by Kraus et al. [15], see Fig. 8. The corresponding
angle of inclination, θ, was calculated from an ellipsoidal fit on a profile crossing the ellipse
at its center (observable on Fig. 8), parallel to the direction of the shear. It was found that θ
follows the theoretical predictions given in [15], see Fig. 9. Finally, the revolution frequency
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ω of the sheared vesicle, defined by the average angular velocity of each node, follows the
theoretical prediction given in [15], see Fig. 10.

Kraus et al. [15] reported good agreement with analytical predictions using a finite element
model of a vesicle in shear flow, having only area and bending constraints. We obtained
accuracy similar to that theoretical model with our simple method, validating the bending
property of our membrane.

IV. MODEL CALIBRATION AND RBC BEHAVIOR

A. Calibration

We adopt the following notation:

( 27 )

where ξ represents the physical parameter of interest in Systéme International (SI),  is the

conversion factor in SI units per lattice unit, and  represents the physical parameter of interest
in lattice units.

The calibration of lattice Boltzmann starts with the calibration of length ([26,51]). Both a
typical length of interest and the number of regularly spaced grid points allocated to represent
it must be known (we take RBC dimensions). Therefore, x̄=x/x̂. Time calibration is derived

from the (fixed) viscosity of the suspending fluid: , where (2τ–1) [see

Eq. (2)]. Similarly, mass is derived from the density of the fluid: .

In the particular spatial resolution of the application of this paper (1 lattice spacing per μm,
ρ=1000 kg/m3, and ν=10−6 m2/s), we have

where ls is the lattice spacing, lt is the lattice unit of time, and lm is the lattice unit of mass.
Note that we used the RBC stretching configuration of the next section to calibrate the force
with the quantity ϕi of Eq. (1).

B. RBC deformation

Sections III A and III B showed a validation of the mechanics of a capsule and of a vesicle
respectively; this section demonstrates a combination of the two: a RBC for which all four
constraints apply.

Dao et al. [17] compared real RBC stretching experiments with a high resolution deformation
model. The setup was to stretch a RBC by fixing two diametrally opposed clamps and measure
the force required as a function of the stretch. Their strain-energy potential model involves a
fine grid with an impressive mesh size comparable to the actual cell cytoskeleton's mesh size
(Δl≈75 nm, see Fig. 1) in order to represent the RBC membrane; however, the model lacks
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fluid dynamics. The group could successfully compare their model with experiments, since the
application of force in the experiment allowed the membrane to achieve a series of steady
states. In this regime, a RBC does not induce significant flow by its deformation because the
rate at which the RBC is stretched (≈10 μm per second) is too slow to induce any significant
fluid stresses compared to the membrane stresses.

Our simulation size was 50×20×20 lattice nodes, the fluid relaxation parameter was taken to
be τ=1, the RBC had an initial radius of 4 lattice units and was stretched (in the x direction) at
a rate of 0.05% per time step, to limit the influence of deformation on flow (for consistency
with Dao's experiment and model). The simulation ran in parallel on 5 CPU's and required only
2 minutes to reach a deformation of 200% (2000 time steps).

Our results agreed well with those of Dao et al. [17] for both the maximum transversal diameter,
DT, and longitudinal diameter, DL as the RBC was stretched by increasing force, F; see Fig.
11.

We stress that successful comparison of our model against this experiment (consisting of a
series of equilibrium states) only validates the mesh mechanics. We address validation of our
model's dynamics in Sec. IV D.

Mills et al. [52] used Dao's computational model [17] to provide the local maximum principal
stretch ratio of the RBC under stretch. Figures 12 and 13 show that our model quantitatively
recovers Dao's results very well. A remarkable point is that the distribution of stress is (on
average) dependent on the axial radius of the RBC: the highest stress is near the poles (where
the clamps are), where the axial radius is the smallest. The stress is the least in the middle of
the RBC, where the radius is the greatest. This, indeed, correlates with the Landau and Lifshitz
theoretical model (see previous section).

C. RBC relaxation to equilibrium: Force parameter calibration

Following Dao et al. [17], when the stretching force, F, imposed on the poles of the RBC is
released at the point of maximum deformation, the cell returns to its original biconcave shape
with a characteristic time tc. Hochmuth et al. [53] proposed the following relaxation dynamics:

( 28 )

where λ1 is the total longitudinal stretch ratio, λ1,max is the maximum stretch (200% in this
case) and ε is the elongation index. Figure 14 shows the results of our characteristic relaxation
measurements along with the best exponential fit. We found that the characteristic time of
relaxation tc was 320 time steps. We also found that the inverse of the characteristic relaxation
time, tc, for relaxation to equilibrium shape for the RBC, is linearly dependent on the stretch
parameter KS, see Fig. 15. Dao et al. [17] found experimentally that tc=0.19±0.06 s. With this
information and the calibration of Fig. 15, we have KS=0.03 for healthy RBC's. Furthermore,
Dao et al. reported that a force of 140 pN is necessary to stretch a RBC longitudinally by 75%
(see Fig. 11). This provides a calibration of the force applied on the RBC's pole, through the
quantity ϕi of Eq. (1), see Fig. 15. We therefore have the following parameters for healthy

human RBC's (in LB units), .
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D. Deformable particle dynamics

Only the dynamic behavior of the DPs remains to be validated. To this end, we first compare
the shear-induced tumbling of our RBC with that of a solid ellipse.

1. RBC dynamics—We use a conformation identical to that of Pozrikidis [40]; see Fig. 16.

Our simulation consists of a single, neutrally buoyant RBC in a linear shear flow. The long
axis of symmetry of the RBC is perpendicular to the flow. Parameters were taken from the
previous section, representing a healthy RBC.

The simulation size was 50×30×30 lattice nodes, the LB fluid relaxation parameter was τ=1,
the RBC had an initial radius of 4 lattice units. The shear rate was 10 s−1. The simulation ran
in parallel on 5 CPU's and required only 3 minutes for each tumble (4000 time steps). A shear
rate of approximately 10 s−1 provides the most dramatic RBC deformation. A RBC exposed
to shear rates below this level tumbles without significantly deforming; above this level, the
RBC tank treads with no apparent variation of its shape (similar to the sheared vesicle of Fig.
19).

We obtained good qualitative agreement with the simulations of Pozrikidis [40], see Fig. 17.
Note that (i) Eggleton and Popel [44] reported significant stability issues with their model in
this configuration, making it impossible to simulate a full revolution; and (ii) Pozrikidis [40],
in 2003, required of the order of a week of CPU time for one tumble in linear shear. In our
simulations, one tumble required only 3 minutes of processing time on 5 CPUs; moreover,
there were no stability issues in this regime.

2. Ellipse dynamics—Following the example of Aidun et al. [55], we performed additional,
more quantitative tests of our model's dynamics by simulating the motion of a solid ellipse at
vanishing Re (see below), with one of the principal axes constrained parallel to the vorticity
vector of the shear flow (the ellipsoid rotates around this axis), see Fig. 18. In this section, the
Reynolds number is defined

( 29 )

where γ is the shear rate, ν is the viscosity of the fluid, and d=2b where b is the length of the
major axis (radius) of the ellipsoid.

Under present conditions, Jeffery ([56]) showed that the angle of rotation θellipse and the angular

rate of rotation  are given by

( 30 )

( 31 )

from which the motion of the ellipse has period
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( 32 )

In turn, this means that (a) the rotation period scales linearly with the inverse of the shear rate
γ and that (b) there is no difference between the trajectories of a two-dimensional and a three-
dimensional ellipsoid, since Eqs. (30)–(32) do not include the parameter c, the remaining major
axis of the ellipsoid, parallel to the axis of rotation. We define by ς(Re) the normalized product:

( 33 )

Note that ς=1 under Jeffery's assumptions.

The simulation size was 50×30×30 lattice nodes, and the fluid relaxation parameter τ=1; the
ellipse had shape parameters of a=1.5, b=4, and c=1.5. The top and bottom shear velocities
were 0.01 (corresponding to a shear rate γ of 8×10−4, and a Reynolds number Re of 0.3,
consistent within Jeffrey's assumptions of low Re). The simulation ran in parallel on 5 CPUs
and required only 6 minutes for one tumble of the ellipse (4000 time steps).

Figure 19 shows that our model recovers, very well, the analytical angular rate of rotation

 from Eq. (31). The “pointiness” of the profile we obtained compared to the analytical
solution is probably due to tank treading of our ellipse when the major axis is parallel to the
plane of shear (when  is at its minimum).

Equation (32) shows that, for low Re (Jeffery's assumptions), ς should remain constant and
equal to unity, independent of Re. For nonzero Re, Aidun et al. [55] observed that ς diverges
as Re−0.5, with a significant departure from unity (more than 10%) at Re=5. Figure 20 shows
similar behavior, ς remain equal to unity for Re<3 and diverges for Re>3 (approximately). It
is interesting to note that we found a log increase while Aidun found an inverse square root
increase. The difference is probably due to the deformation and tank treading of the RBC: the
method we use models, by design, deformable objects and therefore is not efficient at
maintaining solid shapes, especially at high stresses (the ellipse stiffness had to be reduced to
comply with the stability constrains that the LB method imposes at high γ). These last series
of results (tumbling of deformable RBC or solid ellipsoid) validate the overall dynamics of
our model and illustrate its efficiency.

V. PROOF OF CAPABILITY: 200 RBCS IN CONFINED GEOMETRY

Thus far we have presented an efficient approach to simulating the rheology of a single DP.
We next show that our model can reproduce flow of a dense solution of DPs, at physiological
Re [O(10−2−10−3)]. To the authors’ best knowledge, this level of accuracy is the most complete,
accurate, and computationally tractable at this date.

A. Snapshots

As a proof of capability, we simulated 200 RBCs in a rectangular channel. We chose RBCs
over vesicles and capsules because the flow they produce is the most interesting. Their
biconcavity provides them with a unique tumbling behavior at a moderate shear rate (≈10
s−1), undeformed tumbling at lower shear, and tank treading at higher shear. The presence or
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absence of other cells locally increases or decreases the local shear rate, making the flow of
concentrated RBCs highly complicated.

The simulation domain size was {length, width, depth}={100, 33, 27}. The 200 RBCs where
initialized randomly on a rectangular lattice filling the simulation space (holding up to 210
RBCs), with 1 micron spacing between them (one lattice Boltzmann node). The volumetric
cell concentration was 30%.

Figures 21 and 22 show the time evolution of the 200 RBCs. Figure 23 shows the velocity
profiles averaged along the length of the conduit before steady state and at steady state.

The arrangement of the RBCs reached steady state after approximately 0.45 seconds in real
units, or 3 hours of simulation. Running the simulation for three times longer did not produce
any significant changes in RBC arrangement or axial velocity profile. This required only 10
hours of computation on 15 CPUs, demonstrating the high efficiency of this approach. The
profiles of Fig. 23 exhibit the expected significant blunting occurring in suspension flows, as
observed experimentally [57,58]. Varying cell concentration, deformability, viscosity, and
other cell parameters would lead straightforwardly to empirically derived, accurate, local rules
of the macroscopic flow of such a suspension (which might be used to increase the accuracy
of continuum models solving similar flows at a larger length scale).

B. Detailed pressure field: Unprecedented accuracy

In more detail, Figs. 24 and 25 show the pressure fields corresponding to Figs. 21 and 22. The
profiles show the pressure in the longitudinal plane bisecting the depth of the simulation,
together with the profiles of RBCs cut by this plane. This shows an unexpected behavior: the
pressure field varies significantly—spatially and temporarily; a fact that is normally ignored
in biological models. A direct consequence could be that cells comprising the vessel wall would
be exposed to widely varying pressures and shear forces, potentially affecting the gene
expression of these cells.

This is the first time, to our knowledge, that the pressure field within a flowing suspension of
deformable particles has been reported explicitly (computationally or experimentally). This
kind of application, along with the model's ability to easily adapt to different conduit
configurations and particle properties, should provide unprecedented insight into the fluid
dynamics of RBCs in concentrated flow.

Finally, it is important to note that lubrication forces are not included in the present
implementation of the model. This approximation relies on the fact that the cells were initialized
with an explicit layer of fluid surrounding all cells; because we operate at low Re, we expect
that this layer should be maintained at all times. We did notice that the minimum distance
separating any two DP nodes regularly crossed the half LB spacing limit (the limit below which
the previous assumption no longer holds), probably due to the first order accuracy in the
interpolation of the velocities of the DP nodes. We propose, in future work, to adapt and validate
Nguyen and Ladd's model (Ref. [59]) for explicit lubrication in LB.

C. Efficiency and scalability of the model

Whether simulating blood flow, dense vesicle flow, or any suspension flow, the main question
is how the model scales with the simulation size and number of particles. There are therefore
two independent components to the model requirements. (1) The dependence on simulation
size is usually linear with the volume of the simulation (total number of nodes). (2) The
dependence on the number of particles in turn depends strongly on the essential fundamentals
of the method, and the cell-cell interaction rules.
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Tables II and III demonstrate the computational dependency of the model by (i) varying the
size of the simulation and the number of CPU's accordingly, with only one DP, and (ii) varying
the simulation size and the number of CPUs, maintaining the concentration of cells constant
(important when the cell concentration is a fixed parameter, as in blood flow, for example).
Δt represents the time needed for the simulation to reach 1000 time steps.

These results demonstrate that the model is appropriately linear in the number of cells and
geometry, and therefore is highly scalable.

VI. CONCLUSION

In summary, we have developed and validated an approach for simulating the flow a dense
suspension of deformable particles, with the primary design constraint of efficiency, rather
than higher-order accuracy. We chose the lattice Boltzmann method to approximate the full
Navier-Stokes equations efficiently and accurately, and a simple harmonic spring model to
reproduce the membrane mechanics of the deformable cell. We validated the mechanical
properties of each parameter of the model against several models of deformable particles, and
the overall dynamics against known deformations. Finally, we demonstrated the power of this
method by simulating 200 fully three-dimensional, deformable red blood cells in flow. Thanks
to the simplifications made to this model, it is highly efficient and capable of addressing
configurations unapproachable with current computationally expensive techniques.

Despite its efficiency, our approach was not designed for scales where the typical length is of
the order of 100 cell diameters; in these cases, continuum models are more appropriate. Our
model is, on the other hand, ideal for generating accurate rules for implementation in the latter
continuumbased models.

Future improvements to the model will be the incorporation of reversible, dynamic RBC-RBC
adhesion, and the inclusion of cytoskeletal reorganization, which can result in hysteresis of the
stresses and temporary changes in the preferred cell shape. These changes, when applicable,
will be easily linked to local properties of the fluid (e.g., a dynamic and local strain resistance
also depending on local stress history would better approximate real RBC dynamics).
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FIG. 1.

(Color online) Artist's view of a RBC membrane. The cytoskeletal triangular mesh is embedded
in the plasma phospholipid bilayer by the transmembrane proteins. The plasma layer (bi-layer
of amphifilic molecules) is believed to be responsible for the constraints of constant area and
resistance to buckling. It can rearrange itself very easily, and is often referred to as a fluid
membrane. The network of proteins attached underneath the plasma layer is responsible for
the shear resistance (through molecular links between the proteins) and bending. The whole
membrane also contains ionic pumps maintaining the inner volume of the RBC constant.
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FIG. 2.

(Color online) Meshes used for the RBCs, capsules, and vesicles, consisting of only
approximately 400 nodes (800 faces approximately) only, compared to ∼104 nodes for
comparable methods. This relatively coarse mesh reduces computational requirements while
accurately reproducing flow and cell deformation.
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FIG. 3.

(Color online) Diagram defining DP mesh face metrics for area, stretching, and bending.
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FIG. 4.

(Color online) Interpolation of the velocity of the DP surface mesh node r from the eight
surrounding LB fluid nodes (including x), contained in the volume Ξ(r). Γ(r,x) is the volume
as depicted and Ξ is the LB subdomain encapsulating r.
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FIG. 5.

(Color online) Interpolation of the force on the LB fluid node x from the DP surface mesh node
r. Γ(r,x) is the volume as depicted and Ξ(x) is the LB subdomain encapsulating x.
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FIG. 6.

(Color online) Longitudinal local stress Tx and lateral inverse radius 1/R(x) of a spheroidal
vesicle stretched by two equal and opposite forces of magnitude F at its two poles. The abscissa
is the normalized position on the hemisphere (0/1 corresponding to the central and/or
extreme positions). The measurements were taken at steady state, with a total longitudinal
stretch of 120%, in order to remain in the small deformation regime. The only force applied
on the vesicle membrane was the strain force, FS(Ψα,Ψβ). Tx was normalized by F. The
oscillations observed near x → 1 (corresponding to the extremity of capsule) are most certainly
due to the discretization of the mesh: the number of mesh nodes decreases significantly towards
the extremity, hence the histogram bin used to calculate at x is subjected to more noise.
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FIG. 7.

(Color online) Diagram of the configuration used by Kraus et al. [15]. A neutrally buoyant
vesicle is sheared horizontally at a shear rate γt and exhibits a tank-treading motion with, at
steady state, an inclination θ and an average rotation velocity, ω.
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FIG. 8.

(Color online) Snapshots showing the steady state (tank-treading) orientation and shape of an
ellipsoidal vesicle for various reduced volume v. The shear rate did not vary between
simulations. The angle of view of was chosen to show the elliptical profile of the vesicles

predicted by [15]. The forces applied were FA(Ψ), , and , area, bending, and
volume, respectively. The fitted ellipsoidal profiles are shown with the dashed white line.

Dupin et al. Page 28

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2009 September 28.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



FIG. 9.

(Color online) Inclination angle, θ, measured between the direction of shear and the longest
axis of inertia, as a function of the reduced volume v. θ was normalized to π. The continuous
solid line is the predicted analytical value in Ref. [15].
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FIG. 10.

(Color online) Measured angular velocity of the vesicle averaged over all nodes, ω, as a
function of different reduced volumes v. ω was scaled to the shear rate γ. The continuous solid
line is the predicted analytical value by [15].
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FIG. 11.

(Color online) Longitudinal (DL) and transverse (DT) diameters of the stretched RBC as a
function of the stretching force F. The black diamonds along with error bars are the
experimental measurements by Dao et al. [17].
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FIG. 12.

(Color online) Deformation of a RBC stretched along its poles. The first column is experimental
data from Mills et al. [52], the second column is from the present method, and the third column
is from a finer mesh model by Dao et al. [17]. Our results in this series of stretching simulations
agree closely with those from both experimental and numerical studies. The simulation
configu-ration used for these data was identical to that of Fig. 11.
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FIG. 13.

(Color online) Local maximum principal strain of the stretching experiment, Fig. 12. The first
column is from our model and the second column is from the finer model by Dao et al. [17].
The distribution of stress on the RBC is qualitatively similar in both methods; the difference
in mesh coarseness in the two models is obvious here. The slight asymmetry of our
measurements are due to the inherent slight asymmetry of our coarse RBC mesh.
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FIG. 14.

(Color online) Evolution of the elongation index (ε) during the relaxation to rest, biconcave
equilibrium shape of a RBC initially stretched by 200%. ε follows the expected exponential
decay, providing a time constant tc of 320 LB time steps.
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FIG. 15.

(Color online) Dependence of the inverse characteristic relaxation time (tc)−1 with the stretch
modulus of the membrane KS. Dao et al. [17] reported an experimental relaxation time of

 s, corresponding to (tc)−1=8.3 s−1. This calibrates the stretching modulus kS

to kS=0.03.
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FIG. 16.

(Color online) Tumbling RBC from linear shear impressed horizontally. A sheared RBC (1)
tumbles with no significant deformation below a shear rate of approximately 10 s−1, and (2)
tank treads at higher shear rates (the membrane rotates around the highly deformed, flat
ellipsoidal cell). We therefore chose to investigate the tumble and/or deformation of a RBC at
this transition shear rate. See [54], for example, for more experimental details.
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FIG. 17.

(Color online) Profiles of a neutrally buoyant tumbling RBC from a linear shear impressed at
top and bottom. The snap shots are at dimensionless time γt=0, 4, 8, and 11, respectively. The
shear rate γ is 10 s−1, approximately at the tumbling and/or tank-treading transition value found
experimentally (see Skalak and Chien [54], for example).
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FIG. 18.

(Color online) Tumbling of a solid ellipse in response to a linear shear impressed at top and

bottom. The ellipse has an instantaneous orientation θ(t), rotation speed , and b(a)
the major (minor) axis. The stability was compromised at the highest shear rates (corresponding
to Re≈50) due to the necessity for large forces applied to the membrane in order to simulate a
“solid” ellipse (by design, our particles have deformable membranes). This stability problem
is, however, not an issue in the range of Re and under the physiological conditions for which
the model is intended (where the stresses on the cells are orders of magnitude lower).

Dupin et al. Page 38

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2009 September 28.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



FIG. 19.

(Color online) Angular velocity as a function of time for a solid tumbling ellipse in shear (solid
line) and RBC (points). The disparity is probably due to some tank treading of the RBC when
it is aligned with the direction of the shear.
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FIG. 20.

(Color online) Dependance of ς as a function of Re. Jeffery [56] predicted analytically that
ς=1 for vanishing Re, and Aidun et al. [55] observed with their simulation that ς remains
constant until Re≈5 and then diverges. Our model provides solutions consistent with both these
regimes. The difference in divergence behavior is probably due to the fact that our model ellipse
deforms and tank treads at high Re (our model's computational stability required lowering the
stiffness of the ellipse as Re increased).
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FIG. 21.

(Color online) Caption on Fig. 22.
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FIG. 22.

(Color online) Snapshot of the evolution of 200 RBC's in flow, initialized on a regular lattice.
The RBCs collide, interact, and deform in a physical manner. Qualitatively, the disorder and
mixing of the RBC's reaches steady state after 0.45 s. The total computational time was only
10 hours on 15 CPUs.
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FIG. 23.

(Color online) Axial in-length velocity profiles of the simulation described in Figs. 21 and 22.
The velocity profile reaches steady state (b), approximately at the same time as the RBC's
disorder described in Figs. 21 and 22 (after 0.45 s). (a) A transient velocity profile.
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FIG. 24.

(Color online) Caption on Fig. 25.

Dupin et al. Page 44

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2009 September 28.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



FIG. 25.

(Color online) Cross sectional pressure and RBC profiles of 200 RBC's flowing at a
concentration of 30%. The same color map has been used for all the pressure profiles in this
figure. We found that the pressure varied significantly with time along the wall, which could
have some influence on the behavior of the cells comprising it.
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TABLE II

Scalability vs geometry size with constant size and/or CPU ratio and number of cells. The lower time requirements in
the first column are certainly due to the effect of inter-CPU communication time.

    1 RBC

Size 30×30×30 50×30×30 100×30×30

No. of CPU 3 5 10

Δt 2.0 2.5 2.5
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TABLE III

Simulation overall scalably: increasing geometry size while maintaining cell concentration constant. The plateau shows
that the simulation is highly scalable.

Ht=0.1

Size 30×30×30 50×30×30 100×30×30

No. of CPU 4 6 11

Δt 5 7 7.5
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