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Abstract—The Lagrangian vortex method for solving the Navier–Stokes equations is applied for nu-
merically modeling the unsteady flow past a wing airfoil executing angular oscillations in a viscous
incompressible flow. Formulas relating the unsteady forces on the airfoil and the vorticity field are
derived. The calculated results are compared with the experimental data for the NACA-0012 airfoil
executing harmonic oscillations in an air flow at the Reynolds number Re = 4.4×104.
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The phenomenon of a sharp increase in the lift during the unsteady motion of an oscillating airfoil
presents a topical problem of both engineering and fundamental importance. It can lead to additional vari-
able loads on the lifting surfaces of maneuvering aircraft, the rotating blades of helicopters and compressors,
and the flapping wings of birds or mechanical devices. At fairly high oscillation amplitudes and frequencies
the stage of decrease of the angle of attack is accompanied by the generation of an intense vortex on the
leeward side of the airfoil [1]. For a while, this vortex leads to a considerable increase in the lift and is
then carried away into the wake. To understand and control the process, adequate numerical modeling of
unsteady separated flows is necessary. Direct numerical simulation (solution of the time-dependent three-
dimensional Navier–Stokes equations) could be such a method. However, this approach requires very large
computational resources.

Though conventional engineering methods of numerical analysis based on the solution of the Reynolds
equations can provide—given an appropriate choice of the turbulence model—results in agreement with
experiment, the need to make this choice reduces the value of the method as far as its prediction possibilities
are concerned. In particular, certain details of the time-dependent process required for the development of
controls may turn out to be suppressed. The same can be said about widespread vortex methods based on the
solution of the Euler equations (discrete vortex method, etc.), since their use involves the need to preassign
separation points apriori or make additional assumptions concerning the body boundary-layer structure.

In this study, we shall attempt to model the unsteady flow past an oscillating airfoil using the viscous
vortex domain method [2, 3] which is a numerical method for solving the two-dimensional Navier–Stokes
equations in Lagrangian coordinates based on the notion of “diffusion velocity” [4, 5]. Moreover, the method
used is refined and supplemented and formulas for calculating the unsteady stresses on the surface of a body
in a viscous flow in terms of the vorticity distribution in the ambient space are derived.

1. FORMULATION OF THE PROBLEM

We will consider the time-dependent two-dimensional motion of a wing airfoil in an unbounded space
filled with a viscous incompressible fluid, initially at rest. The fluid flow is governed by the Navier–Stokes
and continuity equations
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2 GUVERNYUK, DYNNIKOVA

Fig. 1. Schematics of the wing airfoil motion.

∂V
∂ t

− V×ΩΩΩ = −∇∇∇
(

p
ρ

+
V 2

2

)
+ νΔV,

∇∇∇ ·V = 0, ΩΩΩ = curlV.

(1.1)

In the absolute Cartesian coordinate system x, y the airfoil motion is governed by the law

dx0

dt
=

{
0, t ≤ 0

−U, t > 0,

dy0

dt
= 0,

α =

{
α0 − α1, t ≤ 0

α0 − α1 cos(2π f t), t > 0.

Here, x0 and y0 are the Lagrangian coordinates of the O axis about which the airfoil Sa executes angu-
lar oscillations, t is time, α is the current angle between the chord and the x axis, U is the translational
component of the wing velocity, α0 is the mean angle of attack, α1 is the amplitude of the angular oscilla-
tions about the mean value α0, f is the circular oscillation frequency, L is the airfoil chord length, h is the
relative distance from the leading edge to the oscillation axis, and C is a closed contour representing the
airfoil Sa boundary (Fig. 1). In the two-dimensional motion under consideration the velocity vector V is
parallel and the vorticity vector ΩΩΩ perpendicular to the x, y plane. The pressure p is defined correct to an
arbitrary constant (we will assume that p = 0 at infinity), while the density ρ and the kinematic viscosity ν
are everywhere constant.

The initial conditions correspond to the state of rest throughout the entire x, y space. The no-slip condi-
tion V = VC is imposed on the contour C, while at infinity the disturbances of all the functions vanish. The
problem involves five dimensionless parameters

α0, α1, h, k = πL f/U, Re = LU/ν .

In what follows, we will use dimensionless variables scaling the linear dimensions and velocities on L
and U , respectively, time on L/U , and the pressure and the other stresses on ρU2.

From Eq. (1.1) there follows the vorticity transport equation [6]

∂ΩΩΩ
∂ t

= curl

(
V×ΩΩΩ +

1
Re

ΔV
)

,

which, in accordance with [4, 5], can be written, using the definition of the diffusion velocity Vd, in the
form:
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MODELING THE FLOW PAST AN OSCILLATING AIRFOIL 3

∂ΩΩΩ
∂ t

= curl((V + Vd)×ΩΩΩ), Vd = − 1
Re

∇Ω
Ω

, (1.2)

where Ω is the unique nonzero component of the vector ΩΩΩ.
In an ideal fluid flow the circulation remains constant on “liquid” contours moving at the velocity V of

the fluid (Helmholtz theorem); however, in a viscous flow this is usually not the case. Nevertheless, from
Eq. (1.2) it follows that, if the viscous flow remains plane-parallel, then there are contours that possess
the analogous property of circulation conservation in the process of motion, that is, the circulation remains
constant on contours all of whose points move at the velocity V + Vd .

From Eqs. (1.1) and (1.2) we can also derive the following expression for the pressure:

∇∇∇p = Vd ×ΩΩΩ − dV
dt

. (1.3)

The main problem consists in determining the unsteady vorticity field in the two-dimensional space S
surrounding the airfoil Sa. The velocity field can be reconstructed from the vorticity field using known
integral representations [6, 7], while the corresponding expressions for the pressure and viscous stresses on
the body are derived below (Section 4).

In the comoving coordinate system xa, ya (xa = x + Ut, ya = y) fitted to the oscillation axis O (Fig. 1)
we have a reverse motion, in which the fluid moves, while the wing executes purely angular oscillations
in the fluid flow. Starting from a certain moment after oscillation onset, the flow past the airfoil tends to
become quasi-periodic, like the analogous wind-tunnel flow, which makes it possible to draw corresponding
comparisons with the experimental data.

2. METHOD OF NUMERICAL SOLUTION

The general scheme of the computational algorithm of the viscous vortex domain method is as follows.
The domain Sa inside the airfoil is modeled by a fluid moving together with the airfoil as a rigid body, that
is, with vorticity equal to 2ω , where ω is the angular velocity of the airfoil. For modeling the vorticity
generation by the surface of the body in the viscous flow, in each time step a discrete set of vortex domains
with circulations ensuring the fulfillment of the impermeability condition on the body contour is introduced
near the surface. Then these newborn vortex domains move as Lagrangian particles on the velocity V + Vd,
while the additional vorticity on the contour remains equal to zero; thanks to this, there is no velocity jump
on the body surface and the no-slip boundary condition is automatically fulfilled. An analogous approach
was used in the diffusion velocity method [4]; however, the viscous vortex domain method is free of certain
significant shortcomings inherent in method [4]. In particular, a way of calculating the diffusion velocity
Vd is developed such that, as distinct from [4], it ensures the correct determination of this velocity near the
body surface. The problems associated with the approximation of the vorticity field ΩΩΩ by a sum of Gaussian
distributions with a fixed radius, adopted in [4], are also overcome.

In Lagrangian methods, the calculation of the vorticity field gradient entering into formula (1.2) for the
diffusion velocity Vd presents a very complicated problem. Here, we use an integral representation [3] based
on the fact that any smooth scalar function Ω(r) given in a plane can be expressed in the form:

Ω(R) = lim
ε→0

1
I

∫

S

Ω(r)e−ξ dr′, I =
∫

S

e−ξ dr′

r′ = r − R, dr′ = dx′dy′, ξξξ =
r′

ε
.

(2.1)

In fact, substituting the expansion of the function

Ω(r) = Ω(R) + r′∇Ω(R) + O(r′2)
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4 GUVERNYUK, DYNNIKOVA

under the integral sign in Eq. (2.1), we obtain

1
I

∫

S

Ω(R)e−ξ dr′ = Ω(R)

1
I

∫

S

(r′∇Ω(R))e−ξ dr′ = ε∇Ω(R)
1
I

∫

S

ξξξ e−ξ dr′.
(2.2)

The integral ratio on the right-hand side of Eq. (2.2) is bounded (moreover, it can be shown that at points
R which do not lie on the contour it vanishes as ε → 0); from this there follows Eq. (2.1).

On the basis of Eq. (2.1) we can write

∇Ω(R)
Ω

≈
∫

S

Ω(r)
ξξξ
r′

e−ξ dr′
[∫

S

Ω(r)e−ξ dr′
]−1

− 1
I

∫

S

ξξξ
r′

e−ξ dr′. (2.3)

On the right-hand side of expression (2.3) the second term is independent of the vorticity distribution;
it depends only on the geometry of the flow region S and the position of point R. We will designate it by
−W(R). The integral in the numerator of W can be transformed into a contour integral as follows:

∫

S

r′

εr′
e−ξ dr′ = −

∫

S

∇e−ξ dr′ =
∮

C

ne−ξ dl. (2.4)

Here, n is the outward normal to the surface contour and l is the distance measured along the surface.
In the case in which the distance from an internal point of the flow region to the region S boundary is

much greater than ε , the integral I in the denominator of the expression for W calculated for this point is
equal to 2πε2, while for a point lying on a boundary interval whose length is much greater than ε it is equal
to πε2. This can easily be verified, since the corresponding quadrature can be calculated analytically in
polar coordinates. For an arbitrary point of region S this integral can be transformed into a contour integral.
For this purpose, we will use the relation

e−ξ = −ε∇
(

r′(r′ + ε)
r′2

e−ξ
)

which can be verified by differentiating the right side. Then, using the Stokes theorem, we obtain

∫

S

e−ξ dr′ = −
∫

S

ε∇∇∇
(

r′(r′ + ε)
r′2

e−ξ
)

dr′

= −
∮

C

εn
(

r′(r′ + ε)
r′2

e−ξ
)

dl −
∮

Cδ

εn
(

r′(r′ + ε)
r′2

e−ξ
)

dl,

where the contour Cδ is a circle of infinitely small radius drawn around the point r′ = 0. The integral over
this contour is equal to −2πε2; therefore, we have

∫

S

e−ξ dr′ = 2πε2 −
∮

C

εn
(

r′(r′ + ε)
r′2

e−ξ
)

dl. (2.5)
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Finally, using Eqs. (2.3) to (2.5) and replacing the integrals by sums over discrete domains Si with known
circulations Γi we can write a discrete approximation for the diffusion velocity Vd in Eq. (1.2)

Vdi
≈ 1

Re ∑
j

Γ jri j

εri j
exp

(−ri j

ε

)(
∑

j

Γ j exp

(−ri j

ε

))−1

+ Wi,

Wi = ∑
k

wik, wik =
1

Re

nkdk

si
exp

(−rik

ε

)
,

si = 2πε2
i + ∑

k

ε(nkrik)
rik + ε

r2
ik

exp

(−rik

ε

)
,

ri j = ri − r j; rik = ri −
rk + rk+1

2
; dk = |rk+1 − rk|.

(2.6)

Here, summation over the index k means summation over the contour intervals and rk are gridpoint
coordinates. If the accuracy of calculation of the integrals (2.4) and (2.5) written in the form of finite sums
needs to be increased, then the contour intervals should be divided into smaller parts.

As can be seen from expression (2.6), the contribution of domain j to the diffusion velocity at point i is a
vector directed along the line connecting points i and j; it is repulsive for circulations of the same sign and
attractive if they are opposite in sign. The contribution decays exponentially with the distance between the
points.

The vector Wi is the sum of the vectors wik representing the contributions of the contour intervals to the
diffusion velocity at point i.

The contribution of each interval is directed normal to the interval and is repulsive irrespective of the
circulation sign. If the distance to the wall is much greater than ε , then the contribution of this interval
vanishes.

Going over from an integral to a finite sum produces an error due to the fact that inside the domain the
integrand is not constant. In order for the function exp(−|r − ri|/ε) entering into the integrand to vary
weakly within the domain, the value of ε must be much greater than the linear dimensions of the domain.
On the other hand, with increase in ε the error of representation (2.3) also increases. Moreover, the function
Ω itself must be weakly variable inside the domain. Under the condition of existence of a smooth solution,
the error can be made arbitrarily small in the limit of an infinitely divided domain.

In the course of the numerical simulation, we will keep track of a finite number of Lagrangian points,
assuming that each point lies within a domain with a time-independent circulation. In the process of motion
the contour boundaries may be deformed; as a result, the domain may turn out to be considerably extended.
In this case, the contours can be mentally reclosed in such a way that the circulation of the domain surround-
ing each point remains invariable, while its form becomes more compact. This can be done, for example,
by searching through pairs of neighboring domains and so replacing the extended boundary between them
by a shorter boundary that the circulation of each domain remains the same. Though this reasoning is not
rigorous, observation of the nature of the distribution of the selected points suggests that this is possible.
Since the positions of the domain boundaries do not enter into the formulas, the particular choice is of no
importance. All that matters is that the entire vorticity is distributed over a finite number of domains, while
the information on each domain is carried by the corresponding Lagrangian point.

For calculating the diffusion velocity from formula (2.6), the value of the parameter ε for each point
is chosen on the basis of the following rule. For point i the distance to the nearest point j (or to several
nearest points) is determined by searching through all the points; then εi is taken to be equal to this distance
multiplied by a certain margin c (c > 1). In formula (2.6), when summing over j, a j-independent value
ε = εi is used. Thus, the value of ε is chosen from the local characteristics of the control point distribution.
In this case, a situation can arise, in which in summing over all the domains in formula (2.6) the value of
ε is insufficiently large, as compared with the dimensions of distant domains. However, since the domain
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6 GUVERNYUK, DYNNIKOVA

Fig. 2. Comparison of the calculated and experimental flowfields for the oscillating NACA-0012 airfoil at α0 = 15◦,
α1 = 10◦, h = 0.25, k = 0.2, and Re = 4.4× 104 in the stages of increase (a)–(e) and decrease (f)–(h) in the angle of
attack α .

contributions decay exponentially with the distance to the observation point, both the contribution of a
distant domain and the error in calculating it turn out to be unimportant.

The viscous vortex domain method was tested against certain model problems of unsteady separated
flow past bodies at different Reynolds numbers [8]; the results obtained were compared with the available
experimental data and the numerical results of other authors obtained by finite-difference methods.

3. CALCULATED RESULTS FOR THE FLOWFIELD

The flow over an oscillating wing was calculated with reference to the NACA-0012 airfoil at α0 = 15◦,
α1 = 10◦, h = 0.25, k = 0.2, and Re = 4.4×104. These parameter values were chosen for comparison with
the experimental data [1], where the flow patterns in different wing oscillation stages were obtained using
smoke visualization. In the calculations, the number of division points on the contour was 247, while the
time step was equal to 0.004. After just two oscillation periods, a quasi-periodic regime of flow past the
airfoil was attained. The comparison with experiment was carried out for the third oscillation period; at this
point, the number of vortex domains amounted to 6 to 8 thousand.

In Fig. 2 the experimental smoke-visualization pictures [1] are matched with the calculated positions of

FLUID DYNAMICS Vol. 42 No. 1 2007



MODELING THE FLOW PAST AN OSCILLATING AIRFOIL 7

the vortex domains; the light and dark circles correspond to domains with positive and negative circulations,
respectively. In the same figure, the broken curves represent the calculated positions of the passive admixture
“emitted” from points ahead of the airfoil. In Fig. 2a to 2e, (the stage of increase of the angle of attack)
the process of large vortex formation on the leeward side of the airfoil is visible. The vortex is formed
chiefly by negative-circulation, or clockwise, domains born on the leading edge. When these domains are
displaced downstream, their circulation turns out to be excessive for ensuring the no-slip condition on the
downstream portion of the contour; as a consequence, a positive vorticity is formed there, together with a
flow between the two vortex formations directed from the trailing to the leading edge. This flow decelerates
the displacement of the negative-circulation vortex and this circulation accumulates, since on the leading
edge vortex generation continues. On the other hand, the counterflow fills the separation zone with fluid
(air) which gradually pushes the vortex downstream.

As the angle of attack reaches a maximum and begins to decrease (Fig. 2e and 2f), the negative circulation
“excess” increases, thus accelerating the process of vortex displacement into the cocurrent flow. After
the negative-circulation vortex has been carried away, the positive circulation formed below it also turns
out to be excessive. It is subjected to a process which is similar but shorter, since the positive vortex is
supplemented from the trailing edge. As a result, following a large negative vortex, a large positive vortex
is shed from the airfoil (Fig. 2f). The two vortices of opposite sign induce in each other’s vicinity a velocity
directed perpendicular to the line connecting them (in this case, upward). The ascending vortices form a
mushroom-shaped structure (Fig. 2h) which is then convected downstream. Then a series of smaller vortices
is similarly shed from the airfoil (Fig. 2g). The figures demonstrate good qualitative agreement between the
calculated and experimental data.

4. CALCULATION OF TIME-DEPENDENT HYDRODYNAMIC FORCES

Let us derive general expressions for the force Fp + Fτ acting on the body in a viscous flow in terms of
the vortex field parameters

Fp =
∮

C

npdl, Fτ =
∮

C

τττ dl,

where p is the pressure and τττ is the tangential stress on the contour C of the airfoil Sa.
The pressure force Fp can be brought into the form:

Fp =
∮

C

(
ez ×

∂r
∂ l

)
pdl = ez ×

∮

C

p
∂r
∂ l

dl

= ez ×
(∮

C

∂rp
∂ l

dl −
∮

C

r
∂ p
∂ l

dl

)
= −ez ×

∮

C

r
(

∂r
∂ l

∇∇∇p

)
dl.

Substituting the expressions for the gradient ∇p from the Navier–Stokes equation in form (1.3) in the
above equation yields

Fp = ez ×
∮

C

r
(

dV
dt

dr
)

− ez ×
∮

C

r((Vd ×ΩΩΩ)dr). (4.1)

We now transform the first term of Eq. (4.1) as follows:

ez ×
∮

C

r
(

dV
dt

∂r
∂ l

)
dl = −

∮

C

r×
(

dV
dt

×
(

ez ×
∂r
∂ l

))
dl = −

∮

C

r×
(

dV
dt

×n
)

dl. (4.2)

By virtue of the no-slip condition, the fluid velocity on the contour is equal to the velocity of the contour
itself
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V = V0 + ωωω × (r − r0). (4.3)

Therefore, its total time derivative coincides with the acceleration of points on the contour

dV
dt

= V̇0 − ω2(r − r0) + ω̇ωω × (r − r0). (4.4)

Here, V0 and r0 are the velocity and radius-vector of the point about which the airfoil rotates and ωωω is
the angular velocity vector.

Substituting Eq. (4.4) in Eq. (4.2) and evaluating the integrals we obtain

ez ×
∮

C

r
(

dV
dt

∂r
∂ l

)
dl = −

∮

C

r× ((V̇0 − ω2(r − r0) + ω̇ωω × (r − r0))×n)dl

= −
∫

Sa

r× (∇∇∇× (V̇0 − ω2(r − r0) + ω̇ωω × (r − r0)))ds

−
∫

Sa

((V̇0 − ω2(r − r0) + ω̇ωω × (r − r0))×∇∇∇)× rds

= −rm ×2ω̇ωωSa + V̇0Sa − ω2(r − r0)Sa + ω̇ωω × (r − r0)Sa, (4.5)

where rm is the radius-vector of the center of the region Sa.
The second term of Eq. (4.1) can be written in the form:

− ez ×
∮

C

r((Vd ×ΩΩΩ)dr) =
∮

C

r× ez

(
(Vd ×ΩΩΩ)

∂r
∂ l

)
dl

=
∮

C

r×
(

(Vd ×ΩΩΩ)×
(

ez ×
∂r
∂ l

))
dl =

∮

C

r× ((Vd ×ΩΩΩ)×n)dl =
∮

C

r×ΩΩΩ(Vdn)dl. (4.6)

The quantity ΩΩΩ(Vdn)dl is the vorticity flux Jdl from the body surface to the fluid taken with the opposite
sign. Substituting Eqs. (4.5) and (4.6) in Eq. (4.1), we obtain the final expression for the pressure force

Fp = V̇0Sa − ω2(rm − r0)Sa + ω̇ωω × (3rm − r0)Sa −
∮

C

r×Jdl.

In the numerical simulation the flux Jdl is taken as the circulation Γ(g) of the vortices formed near
the control element dl in time Δt (the circulations of the vortices eliminated because of their penetration
inside the contour are included in J with the opposite sign) divided by Δt. Correspondingly, in the discrete
representation the contour integral is determined by the sum

∮

C

r×Jdl ≈∑
k

rk ×
Γ(g)

k

Δt
.

In a viscous incompressible flow the stress tensor takes the form [7]:

P =

⎛
⎜⎜⎜⎝

−p + 2
1

Re
∂Vx

∂x
1

Re

(
∂Vx

∂y
+

∂Vy

∂x

)

1
Re

(
∂Vx

∂y
+

∂Vy

∂x

)
−p + 2

1
Re

∂Vy

∂y

⎞
⎟⎟⎟⎠ .
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The viscous stress τττ acting on the body over an area Δs = nΔs is expressed by the formula

τττ = − 1
Re

⎛
⎜⎜⎜⎝

2
∂Vx

∂x

(
∂Vx

∂y
+

∂Vy

∂x

)
(

∂Vx

∂y
+

∂Vy

∂x

)
2

∂Vy

∂y

⎞
⎟⎟⎟⎠

⎛
⎝nx

ny

⎞
⎠

= −2(∇∇∇V)
Re

⎛
⎝1 0

0 1

⎞
⎠

⎛
⎝nx

ny

⎞
⎠ +

2
Re

⎛
⎜⎜⎝

∂Vy

∂y
−∂Vy

∂x

−∂Vx

∂x
∂Vx

∂x

⎞
⎟⎟⎠

⎛
⎝nx

ny

⎞
⎠

− 1
Re

⎛
⎜⎜⎜⎝

0

(
∂Vx

∂y
− ∂Vy

∂x

)
(

∂Vy

∂x
− ∂Vx

∂y

)
0

⎞
⎟⎟⎟⎠

⎛
⎝nx

ny

⎞
⎠

= − 1
Re

(2n(∇∇∇V) − 2(n×∇∇∇)×V + n× (∇∇∇×V)).

Since in an incompressible flow ∇V = 0, we obtain

τττ = −2
1

Re
(n×∇∇∇)×V +

1
Re

n×ΩΩΩ. (4.7)

The operator n×∇∇∇ does not contain derivatives normal to the airfoil contour C, while, under the no-slip
condition, the fluid velocity is equal to the contour velocity determined by formula (4.3). Therefore, in
Eq. (4.7) we have

(n×∇∇∇)×V = (n∇∇∇)V + n× (∇∇∇×V) − n(∇∇∇V) = (n∇∇∇)(ωωω × r) + n×2ωωω

= (ωωω × (n∇∇∇)r) + n×2ωωω = (ωωω ×n) + n×2ωωω = n×ωωω .

Substituting this expression in Eq. (4.7), for the tangential stress on the rigid contour we obtain

τττ =
1

Re
(n×ΩΩΩ − 2n×ωωω).

The friction force Fτ acting on the contour as a whole is as follows:

Fτ =
∮

C

τττ dl =
1

Re

∮

C

n×ΩΩΩdl ≈ 1
Re ∑

k

nk ×ΩΩΩkdk.

Since, according to Eq. (2.2), we have

ΩΩΩk ≈
1
sk

∑
i

ΓΓΓi exp

(
−rik

εk

)

using Eq. (2.6) and the condition of the equality of εi and εk we can write Fτ in the form:

Fτ = ∑
k

∑
i

1
sk

wik ×ΓΓΓisi.

In Fig. 3 the angle-of-attack dependence of the wing lift coefficient in the process of unsteady motion
obtained in this study is compared with the experimental data [1] and [9]. In [1] the lift was indirectly
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Cy

α

Fig. 3. Lift coefficient: (1) and (2) calculation and experiment [1] for k = 0.16 and Re = 4.4×104 and (3) experiment [9]
for k = 0.153 and Re = 4.8×104.

Cx

π/2 π 3/2π 2kt

Fig. 4. Drag coefficient: (1) calculation and (2) experiment [9].

calculated by means of approximate formulas on the basis of measurements of the velocity distribution
averaged over several oscillation periods in a section perpendicular to the oncoming flow at a distance of
0.3L from the airfoil (Fig. 1). From these measurements, the authors of [1] calculated the vorticity flux from
the airfoil and then, using the data thus obtained, the lift variation by means of the Joukowski formula. The
accuracy of the results thus obtained is poor, which is acknowledged by the authors of [1].

In [9] the pressure was directly measured at a number of points on the airfoil; then the lift coefficient
was calculated by integration. Clearly, the calculated data are in good agreement with experiment [9]. The
results obtained in [1] are qualitatively the same but lie lower.

In all three cases, hysteresis takes place. Near the point of maximum angle of attack, a sharp decrease
in the lift is observable at the moment of negative-circulation vortex shedding; then it increases rapidly due
to shedding of a positive vortex. Furthermore, the results of both this study and [1] indicate the oscillation
of the lift variation about a lower value than in the case of increase in α . In both cases, the oscillation
amplitudes and periods are in agreement.

The calculated time dependences of the drag coefficient obtained in this study and [9] are compared in
Fig. 4 for the same values of the parameters as in Fig. 3. Clearly, the results are in good qualitative and
satisfactory quantitative agreement (it should be borne in mind that the data were obtained by averaging
over many periods).

Summary. Using the viscous vortex domain method for modeling the two-dimensional flow past an
oscillating airfoil makes it possible adequately to reproduce the time-dependent processes of large vortex
formation and shedding which lead to lift hysteresis. The numerical calculation of the passive admixture
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tracks yields flowfields which almost coincide with the experimental flow patterns obtained by smoke visual-
ization. Formulas for calculating the unsteady stresses on the surface of a body in a viscous flow are derived
in terms of the vorticity distribution in the ambient space. The calculated lift coefficients are in agreement
with the experimental data. The computational technique developed in the study makes it possible to analyze
the hydrodynamic mechanisms of generation of time-dependent loads on an oscillating wing.

The study was carried out with the support of the Russian Foundation for Basic Research (projects
Nos. 04-01-00554 and 06-08-01217) and the Program Nsh-8597.2006.1.
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