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ABSTRACT 

By applying voltages across a liquid droplet and an 

underlying dielectric, it is possible to make dielectric forces 

compete with surface tension forces, and to thereby cause 

the liquid droplet to change shape. This effect has been 

used to successfully move, mix, split, and join droplets in 

micro-fluidic devices. In our past research we have 

developed models for the equilibrium deformation of 

electrically actuated liquid droplet. In this paper, we present 

a model for the fluid dynamics that can capture the time-

varying velocity fields inside the liquid and which can 

predict the dynamics of droplet splitting and joining. The 

model runs in minutes, is implemented in Matlab, and is 

being used to design controllers for precise control of 

droplet motion and droplet splitting.  

Keywords: 2-phase flow, electrowetting, micro-fluidics, 

modeling, control. 

1 INTRODUCTION 

Electro-wetting on Dielectric (EWOD) has been 

demonstrated experimentally in [1-5]. Our goal is to design 

controllers for the UCLA electro-wetting devices. To do 

this we need models that are predictive yet whose 

dimensionality (their number of internal states) is 

sufficiently low so that they fit into available control design 

methodologies. Most state-of-the-art control tools can only 

handle models with thousands to tens of thousands of 

states, hence it is simply not practical to design controllers 

using full fledged computational fluid dynamic (CFD) 

codes containing millions of states. In this paper we present 

a computational model that predicts the EWOD behavior 

but that is sufficiently low dimensional to use for control 

design. 

The paper is organized as follows. Section 2 gives a 

very brief overview of the EWOD devices. Section 3 

develops the governing fluid equations. Section 4 outlines 

the numerical solution scheme. Section 5 closes with some 

numerical results. 

2 DESCRIPTION OF THE DEVICES 

A schematic of an EWOD device is shown in Figure 1. 

The device consists of a top (see through) electrode, 

droplets of water (here only one droplet is shown), and an 

underlying grid of electrodes. There is also a layer of 

hydrophobic Teflon and a layer of solid dielectric silicon 

dioxide (not shown) between the water and the electrodes. 

Each electrode effectively changes the surface tension 

properties above it, and this change can be used to move 

droplets from electrode to electrode, to split droplets (by 

pulling on either side using three electrodes), to join 

droplets by making them collide, and to mix fluid in 

droplets by making the droplets execute complex paths.  

Figure 1: Schematic of sample EWOD device. (Figure 

courtesy of CJ Kim at UCLA.) 

An actual device with a splitting droplet is shown 

below, the view is through the top (see through) electrode. 

Figure 2: A splitting drop (seen from above) in an 

EWOD device. (Figure courtesy of CJ Kim at UCLA.) 
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In [6] we presented a model for the equilibrium shape of 

droplets under applied electric fields. In this paper, we 

further consider the non-equilibrium fluid dynamics, 

specifically; we focus on capturing motion, spliting, and 

joining of the liquid droplets. 

3 GOVERNING FLUID EQUATIONS 

Let us begin with the main assumptions used in the fluid 

flow analysis for the EWOD device.  First note that only 

the liquid is considered; the airflow dynamics are ignored.  

Since the spacing between the two plates of the device is 

small compared to the horizontal dimensions, the problem 

is effectively 2-dimensional.  The flow is assumed to be a 

continuum [7]; this is valid because the Knudsen number is 

very small due to the density of the liquid and the relatively

large spacing of the plates (i.e. the channel height is larger 

than a micron).  The flow equations are then derived from 

the Navier-Stokes equations (see [8], [9]) by making some 

fairly mild assumptions, such as incompressibility and 

Poiseuille flow assumptions. 

Figure 3: Illustration of EWOD Geometry (with a liquid 

bridge joining the plates). 

Let the X-Y plane (i.e. the Z = 0 plane) be centered 

between the two plates of the EWOD slab.  Let the distance 

between the plates (i.e. the channel height) be 2h (see 

Figure 3).  Assume that the Z-component of velocity is zero 

(i.e. w = 0).  Assume gravity has a negligible effect; this is 

valid because the channel height is very small 

(approximately 10-100 microns).  Also, assume that the 

flow is locally Poiseuille at the point (X, Y) in the plane.  

Meaning that the X and Y velocity components (i.e. u & v) 

have a quadratic velocity profile along the Z-axis.  Again, 

this is a good approximation because of the channel height.  

This puts the fluid equations into the following form: 
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Where u, v, and w are given as: 
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The function (z) is chosen so that its average over the 

plate spacing is 1.  After integrating along the Z-direction, 

and performing some algebra, we get the equations into the 

form: 
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Where the following boundary condition can be derived 

from the Young-Laplace relationship (see reference [10]): 
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Where, 

• Ω∂  is the boundary (in the X-Y plane) defined by the 

liquid/gas interface of the droplet. 

• )( Ω∂xyK  is the curvature of the boundary in the X-Y 

plane. 

• 0θ  is the nominal contact angle of the droplet with the 

dielectric solid. 

• 0cos
1

θ
h

 is an approximation of the boundary’s 

curvature in the Z-direction. 

• The mean curvature is just the sum of the two 

principal curvatures (one in the X-Y plane, the other 

parallel to the Z-axis). 

• )( Ω∂Volt  is the voltage applied to the electrode at a 

particular point of the boundary. 

• lgσ  is the surface tension of the liquid/gas interface. 

• areaCap  is the total capacitance per unit area in the 

solid dielectric layer. 

• µ is the dynamic viscosity of the liquid. 
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• ρ  is the density of the liquid. 

Since any constant offset to the pressure function does not 

change the velocity distribution in the droplet, we can 

rewrite the boundary condition as: 
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Now perform a non-dimensionalization with the following 

length scales: 

• Length Scale: L  = electrode length. 

• Velocity Scale: 0U = maximum velocity of a fluid 

droplet. 

• Pressure Scale: Lp lg0 σ= .

• Time Scale: 00 ULt = .

This gives the following dimensionless terms: 

• Lxx =~ , Lyy =~ .

• 0Uuu ave= , 0Uvv ave= .

• 0
~ ppp = .

• 0

~
ttt = .

• LKK xyxy ⋅=
~

 (dimensionless curvature). 

This gives the dimensionless equations (note: the ‘~’ is 

dropped for simplicity): 
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Where the bulk convective momentum terms have been 

dropped because of small Reynolds numbers at the micro-

scale.  However, the time derivative is kept in to account 

for rapidly changing boundary conditions induced by high 

frequency voltage actuation.  Also, F, Re, and Ca are 

defined as: 

• )(
2

),( 2
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σ
 (note: F is dimensionless). 
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4 NUMERICAL SOLUTION SCHEME 

Simulating EWOD droplet behavior requires that the 

droplet boundaries be properly defined.  This is achieved by 

using a level set method ([11], [10], [12], [13]) which 

effectively captures the liquid-gas interface as the zero level 

set of a scalar function defined on the X-Y plane.  Using 

this, the pressure and velocity fields inside the droplet can 

be obtained by finite difference methods.  The velocity field 

is then used to update the scalar level set function.  The 

motion of the droplet is ultimately captured by the 

evolution of the zero level set of the scalar function.  A 

summary of the algorithm is given here: 

0. Initialization: A Cartesian computational grid defined 

on a unit square is used to sample the level set and solve for 

the fluid variables.  The scalar level set function is 

initialized to be a distance function with a zero level set 

corresponding to the initial shape of the droplet.  The level 

set is chosen to be positive on the domain where the liquid 

is, and is negative elsewhere. 

1. Pressure Field: Laplace’s equation with Dirichlet 

boundary conditions is used to solve for the pressure field.  

The interior solution domain is given by where the level set 

function is positive.  The boundary conditions are applied at 

the grid notes adjacent to the interior domain nodes, and are 

computed based on the local interface curvature and applied 

voltage.  The interface curvature is calculated using 

standard 2
nd

 order central difference formulas operating on 

the level set function φ.  The solution scheme is based on a 

multi-grid Jacobi iterative solver. 
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2. Velocity Field: Through the use of a stream-function 

formulation, and a discrete Fourier transform technique, the 

velocity field is obtained for the current time step. 
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3. Level Set Update: After adaptively choosing a time step 

that obeys the CFL condition, the level set function is 

updated through a convection-type equation using a 

Hamilton-Jacobi WENO method. 0=++ yxt vu φφφ

4. Loop: Go to step 1, and solve using the updated level set 

function.  Iterate this process as long as necessary. 
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5 RESULTS 

The simulation was tested for the same on/off/on electrode 

case that is shown in the experiment of Figure 2. The 

sequence of figures below shows the attained results. When 

these figures are overlaid with the experiment, it can be 

seen that the simulation accurately matches the experiment. 

Figure 4: Numerical results for droplet splitting. The 

simulation corresponds to the electrode on/off/on case 

used in Figure 2. Each electrode is of x width 1/3
rd

 and 

of unit y length. The colored curves correspond to the 

pressure contours inside the liquid droplet.
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