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Abstract

Abnormal metabolism is a hallmark of cancer, yet its regu-

lation remains poorly understood. Cancer cells were considered

to utilize primarily glycolysis for ATP production, referred to as

the Warburg effect. However, recent evidence suggests that

oxidative phosphorylation (OXPHOS) plays a crucial role dur-

ing cancer progression. Here we utilized a systems biology

approach to decipher the regulatory principle of glycolysis and

OXPHOS. Integrating information from literature, we con-

structed a regulatory network of genes and metabolites, from

which we extracted a core circuit containing HIF-1, AMPK, and

ROS. Our circuit analysis showed that while normal cells have

an oxidative state and a glycolytic state, cancer cells can access a

hybrid state with both metabolic modes coexisting. This was

due to higher ROS production and/or oncogene activation, such

as RAS, MYC, and c-SRC. Guided by the model, we developed

two signatures consisting of AMPK and HIF-1 downstream

genes, respectively, to quantify the activity of glycolysis and

OXPHOS. By applying the AMPK and HIF-1 signatures to The

Cancer Genome Atlas patient transcriptomics data of multiple

cancer types and single-cell RNA-seq data of lung adenocarci-

noma, we confirmed an anticorrelation between AMPK and

HIF-1 activities and the association of metabolic states with

oncogenes. We propose that the hybrid phenotype contributes

to metabolic plasticity, allowing cancer cells to adapt to various

microenvironments. Using model simulations, our theoretical

framework of metabolism can serve as a platform to decode

cancer metabolic plasticity and design cancer therapies targeting

metabolism. Cancer Res; 77(7); 1564–74. �2017 AACR.

Introduction

Cells can utilize multiple metabolic pathways for energy pro-

duction and biosynthesis depending on the requirements for

cellular function and the availability ofmetabolites. In the presence

of glucose, cells typically uptake glucose and convert it to pyruvate

inside the cytosol by glycolysis. Under normoxic conditions, pyru-

vate is further transported into mitochondria where it undergoes

oxidative phosphorylation (OXPHOS) toproduceATP through the

tricarboxylic acid (TCA) cycle and the electron transport chain

(ETC). On the other hand, under hypoxia, cells utilize anaerobic

glycolysis instead, which converts pyruvate into lactate, and pro-

duces ATP in a much faster but less efficient way. If fatty acid or

glutamine is available, cells under normoxia can also undergo fatty

acid oxidation (also called b-oxidation) or glutamine oxidation.
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Major Findings

We developed a theoretical framework for modeling gene

regulation of cancermetabolism.We found that, in addition to

glycolytic and oxidative metabolism in normal cells, cancer

cells have a new hybrid phenotype in which both metabolic

modes coexist. Cells in the hybrid state have enhanced met-

abolic plasticity to facilitate tumorigenesis and metastasis.

Guided by the modeling, we developed the AMPK and HIF-

1 signatures to quantify the activity ofOXPHOSand glycolysis,

respectively. We propose a new cancer therapeutic strategy by

targeting the hybrid state.
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Abnormal metabolism is a hallmark of cancer (3–5). Unlike

normal cells, cancer cells largely depend on glycolysis to produce

energy even in the presence of oxygen, which is referred to as the

Warburg effect (6, 7) or aerobic glycolysis. Aerobic glycolysis is an

aggressive metabolic phenotype in that it has the advantage to

produce ATP at a high rate and prepare biomass for amino acids

and fatty acid synthesis that are required for rapid cell prolifer-

ation (7). Although aerobic glycolysis is generally regarded as a

dominantmetabolism in cancer cells (8), recent evidence suggests

that mitochondrial OXPHOS is also utilized by cancer cells (9–

12). Indeed, the influence of mitochondria on cancer cells is well

documented (13–19), suggesting that mitochondria are actively

functioning in cancer cells. More importantly, it has been revealed

that OXPHOS contributes to cancer metastasis (11–15, 19–21).

Yet, it is still unclear how these metabolic modes are regulated in

cancer cells, particularly the advantages of having each one of

them.

To shed light on these puzzles, we utilize a computational

systems biology approach to study the genetic regulation of

glycolysis and OXPHOS (including glucose oxidation, fatty acid

oxidation, and glutamine oxidation). Certainly, cancer metabo-

lism has been studied by several computational modeling

approaches. However, each of these earlier works mostly focused

on only a part of the interplay between glycolysis and OXPHOS.

For example, there are studies of the Warburg effect, including

modeling of the regulation by reactive oxygen species (ROS) of

hypoxia-inducible factor 1 (HIF-1) in response to hypoxia (22),

and modeling of the genome-scale metabolic network based on

metabolic flux balance analysis (23). Some other studies focused

on mitochondrial functions, for example, in the study of the

Quick Guide to Equations and Assumptions

In this study, we constructed a regulatory network of cell metabolism that consists of regulatory proteins and metabolites.

To understand the behavior of the network, we coarse-grained the whole network into a minimalist circuit of three components—

AMPK, HIF-1, and ROS. Here we assumed that the essential feature of the network could be captured by this circuit, while the effects

of many other relevant genes can be regarded as inputs to this circuit. The dynamic behaviors of the regulatory circuit AMPK:HIF-1:

ROS (Fig. 2)were analyzed by solving nonlinear differential rate equations. Typically, the deterministic rate equation for a protein or

metabolite has a generic form:

dX=dt ¼ gX � G� X � kX � K: ðAÞ

Here, X represents the level of the protein or the metabolite. gX and kX represent the basal production and degradation rates of X,
respectively. G and K represent the regulation on the production and degradation of X, respectively.

Overall, we assumed that the regulation ofX by a componentY can be described by a nonlinear function, namely the shifted Hill

function (1, 2),

Hs Y ; Y0; lY ; nY
� �

¼ H� Y ; Y0; nY
� �

þ lYH
þ Y ;Y0; nY
� �

; ðBÞ

where Y0 is the threshold level, nY is the Hill coefficient, and lY is the fold change.

H� is the inhibitory Hill function, defined as

H� Y ;Y0; nY
� �

¼ 1

�

1þ
Y

Y0

� �nY
� �

: ðCÞ

Hþ is the excitatory Hill function, defined as

Hþ Y ;Y0; nY
� �

¼
Y

Y0

� �nY
�

1þ
Y

Y0

� �nY
� �

: ðDÞ

lY < 1 represents an inhibitory regulation and lY > 1 represents an excitatory regulation.

When the production of X is regulated by Y; G ¼ HsðY ; Y0; lY; nYÞ. When the degradation of X is regulated by

Y ;K ¼ HsðY ; Y0; lY ; nYÞ.
When the production (or degradation) of X is regulated by two components Y and Z simultaneously, G can be expressed as:

G or Kð Þ ¼
Hs Y ; Y0

X ; lY ; nY
� �

Hs Z; Z0
X ; lZ; nZ

� �

Y and Z are independent
Ccomp k0; Y ;Y

0
X ; kY ; nY ;Z;Z

0
X ; kZ; nZ

� �

Y and Z are competitive

	

ðEÞ

Details of the functional form of Ccompcan be found in Supplementary Information Section S3.

Inourmodeling, AMPKandHIF-1 competitively regulate the productionofROS (bothmitochondria ROS and cytosol ROS); ROS

and oxygen competitively regulate the degradation of HIF-1. All the other combined regulatory processes are assumed to be

independent. The parameters were estimated per experimental evidence, as shown in Supplementary Tables S3–S6. Furthermore,

the model allowed evaluation of the effects of oncogenes and metabolic therapies. Details can be found in Supplementary

Information Section S3–S6, S9.
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cooperative effects of TrxR and Prx in defending oxidative stresses

(24). The evolutionary advantage of metabolic heterogeneity of

cancer has alsobeen investigated (25)with emphasis on glycolysis

and acidity.However,we still lack a comprehensive picture of how

different metabolic pathways contribute to the survival and

oncogenic potential of cancer cells. Therefore, there is an urgent

need to explore in detail how genes andmetabolites regulate both

aerobic glycolysis and OXPHOS.

In this study, we establish a theoretical framework formodeling

genetic regulation of the interplay between glycolysis and

OXPHOS in cancer metabolism. On the basis of an extensive

literature survey, we construct a metabolic network model for

both glycolysis and OXPHOS. The network includes both regu-

latory genes and metabolites that are involved in these metabolic

pathways. To capture the two regimes of cancer metabolism, we

further coarse-grained the network into a core regulatory circuit,

composed of HIF-1, 50 AMP-activated protein kinase (AMPK) and

ROS. The circuit contains HIF-1 and AMPK, as they are the master

regulators of glycolysis andOXPHOS, respectively (7); and ROS is

included because both cytosolic and mitochondrial ROS

(mtROS) mediate the interplay between the regulatory genes and

metabolites (20, 26). This reduced representation provides a clear

picture of the interplay between glycolysis and OXPHOS. Similar

HIF-1:AMPK:ROS representation has also been proposed in the

study of longevity in Caenorhabditis elegans (C. elegans; ref. 26),

suggesting that the circuit is evolutionarily robust. The core

regulatory circuit is modulated by several oncogenic signaling

pathways, including MYC, RAS, and c-SRC (27–29). Many met-

abolic drugs (30) directly target the genes that are associated with

specific metabolic reactions, such as GLUT1, HK and FASN, or

regulatory genes in the current study, that is, AMPK and HIF-1.

Therefore, the regulatory circuit allows us to model the effects of

the oncogenes andmetabolic drugs on cellularmetabolism. Aswe

show later, this model can explain important experimental obser-

vations, and is sufficient to capture the main differences between

cancer and normal cells.

Computational modeling of our reduced circuit shows that in

general cancer cells can have three stable states—a Warburg state

(W: high HIF-1, low pAMPK), an oxidative state (O: low HIF-1,

high pAMPK), and a hybrid state (W/O: high HIF-1, high

pAMPK). Here, the AMPK activity is represented by the level of

phosphorylated AMPK (pAMPK) at threonine-172 of the a sub-

unit. Compared with cancer cells, normal cells usually lack the

hybrid phenotype due to their lower mtROS production and

higher rate of HIF-1 degradation. The activation of oncogenic

pathways is an alternative way to induce cells to lie in the hybrid

state. The discovery of the hybrid metabolic state for cancer cells

from the network analysis has been supported by recent exper-

imental evidence (summarized in Supplementary Table S1;

refs. 10, 11, 16, 19, 20). The association of cancer metabolism

and oncogenic pathways are also supported by extensive The

CancerGenomeAtlas (TCGA) and single-cell transcriptomics data

analysis of multiple cancer types under this theoretical frame-

work. Particularly, we develop two signatures to quantify AMPK

and HIF-1 activities and find that AMPK activity anticorrelates

with HIF-1 activity in several tumors but not in the others. We

propose that the W/O hybrid state enhances metabolic plasticity,

therefore allowing the cancer cells to adapt to the tumor micro-

environment and promote cancer progression and metastasis.

Guided by the simulations of targeting AMPK or HIF-1, we make

predictions on the effectiveness of various therapeutic strategies,

such as hyperbaric oxygen, metformin, and 3-bromopyrvate

(3BP), in reducing the metabolic plasticity of cancer cells. All

told, our model provides not only a theoretical framework for

charactering the regulatory mechanism of glycolysis and

OXPHOS and its connection to tumorigenesis, but also new

insights into the optimal therapeutic strategies that specifically

target cancer metabolism.

Results

The regulatory network of glycolysis and OXPHOS

After an extensive literature analysis, we constructed a compre-

hensive network (Fig. 1) featuring the regulation of oxidative

respiration and glycolysis by both genes and metabolites. The

network contains the following four types of regulatory interac-

tions. First, the threemajormetabolic pathways, aerobic glycolysis,

glucose oxidation and fatty acid oxidation (green rectangles),

directly inhibit each other because they compete for shared meta-

bolites (see Supplementary Information Section S1 for details).

Second, the activity of these metabolic pathways is directly regu-

lated by specific genes (red ovals).Most prominently, the fatty acid

oxidation and glucose oxidation are regulated by an energy sensor

gene,AMPKand theglycolytic pathway is regulatedby thehypoxia-

inducible factor, HIF-1. Third, some metabolites produced by the

metabolic pathways (yellow rectangles) in turn regulate the activ-

ities of some regulatory genes. HIF-1 is stabilized by both NOX-

derived ROS (noxROS) from cytosol and OXPHOS-derived ROS

frommitochondria (mtROS).Meanwhile, ROS induces phosphor-

ylation andactivation ofAMPK, yet excessive productionof ATPby

either metabolic pathway could block the AMPK activity (see

Supplementary Table S1 for details). Fourth, the regulatory genes

are also coupled to several oncogenic pathways (blue ovals),

including RAS, MYC, and c-SRC (Supplementary Table S2).

The core AMPK:HIF-1:ROS regulatory circuit

To capture the principles of how genes and metabolites

modulate metabolism, we coarse-grained the extensive meta-

bolic network (Fig. 1) to a minimalist regulatory circuit con-

sisting of AMPK, HIF-1, and ROS (including noxROS and

mtROS; Fig. 2). These components were chosen, because they

play critical roles in regulating the decision-making of both

glycolysis and OXPHOS. Moreover, the core regulatory circuit

captures the main features of the more complete network. As we

show later, the reduced circuit is sufficient to explain important

experimental observations of glycolysis and OXPHOS. It is

worth noting that the core circuit is directly coupled with both

the oncogenic pathways and metabolic pathways. Its dynamic

behavior can shed insight into the interplay of the various

metabolic modes in cancer.

As shown in Fig. 2, the regulatory links among these four

components, AMPK, HIF-1, noxROS, and mtROS, are derived

from either direct or indirect regulatory interactions (see Supple-

mentary Information Section S2 for details). Various oncogenic

pathways are modeled as input signals to the circuit, and the

activities ofOXPHOSand glycolysis aremodeled as the readout of

the circuit. The detailed experimental evidence for the regulatory

interactions of the full network and the associated reduced circuit

are listed in the Supplementary Table S2. The corresponding

chemical rate equations are provided in Supplementary Informa-

tion Section S3. The parameters and their experimental justifica-

tions are provided in Supplementary Tables S3–S6.
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The metabolic circuit allows multiple cell phenotypes

To identify the possible cell states that are allowed by the core

circuit, we performed an analysis of the circuit equations with two

sets of parameter that correspond to normal and cancer cells,

respectively. Here we illustrate the results by considering the

differences between cancer cells and normal cells in two aspects.

First, cancer cells have higher mtROS production due to repro-

grammed mitochondria (20). Second, cancer cells have more

stable HIF-1 because less oxygen is available to each cell due to

abnormally rapid proliferation. The effects of the oncogenic path-

ways will be evaluated in the next section. Therefore, as compared

with normal cells, cancer cells produce more mtROS in response

to the AMPK activation (represented by g, maximum fold change

of mtROS by the AMPK activation), and have a lower HIF-1

degradation rate (denoted by kh). As mentioned above, the

activity of AMPK was quantified by the concentration of its

phosphorylated form, that is, pAMPK.

Our simulations show that normal cells have two stable steady

states, which correspond to the high HIF-1, low pAMPK state and

the low HIF-1, high pAMPK state (Fig. 3A), which are associated

with theWarburg effect (W) and oxidative respiration (O) respec-

tively (the "W" state and "O" state in Fig. 3A). This result is

consistent with the fact that while cells usually use glucose

oxidation to produce energy, they switch to glycolysis during

anaerobic exercise. Next, we performed an analogous analysis for

the cancer cells, as reflected by larger g and lower kh. Interestingly,
we found that cancer cells have a newhybrid state – (high pAMPK,

highHIF-1; "W/O" state in Fig. 3B) in addition to the "W" and "O"

states. The new hybrid state is found to be a robust feature of the

cancer cells by parameter sensitivity analysis (Supplementary Fig.

S1). In the hybrid state, the levels of pAMPK and HIF-1 are both

high because the cancer cells maintain high levels of ROS that

both stabilizes HIF-1 and activates AMPK. The existence of the

hybrid metabolic phenotype means that cancer cells have the

flexibility to simultaneously utilize both glycolysis andmitochon-

drial OXPHOS.

The role of mtROS production and ontogenetic pathways in

cancer metabolism

We further evaluated the effects of mtROS production and

several oncogenes on the dynamic behavior of the AMPK:HIF-

1:ROS circuit. In Fig. 4A, we show that, when the rest of the

parameters remain unchanged, the increase of g shifts the cells

MYC

MYC

AMPK

PGC1a

HIF-1

Glycolysis

Angiogenesis Mitochondria biogenesis

Oxidative metabolism

FAS

FAO

ETC

Glycolysis
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ATP
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Trx
FOXO3

Cytosol Mitochondria
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Figure 1.

Schematic illustration of the regulatory

network of metabolism. The network

includes both regulatory genes

(ellipses) and metabolites (rectangles).

The arrows represent positive

regulation and the bars represent

negative regulation. AMPK and HIF-1

play a central role in regulating different

metabolic pathways, while the

metabolic pathways regulate activities

of AMPK and HIF-1 partially through

ROS. The oncogenic pathways directly

regulate the activity of AMPK, HIF-1, and

noxROS.

RAS noxROS

mtROS

Glycolysis

OXPHOS
Glucose oxidation

Fatty acid oxidation
Glutamine oxidation

HIF-1 AMPK

MYC

c-SRC

RAS

MYC

c-SRC

Figure 2.

The AMPK:HIF-1:ROS regulatory circuit. AMPK and HIF-1 are the master

regulators of OXPHOS and glycolysis, respectively. ROS represents bothmtROS

and noxROS. RAS, MYC, and c-SRC modulates the balance of glycolysis and

OXPHOS (details in Fig. 4).
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frombistability (with two stable steady states) to tristability (with

three stable steady states) and gives rise to the hybrid metabolic

state – "W/O," in addition to "W" and "O" phenotypes. This is

because, once again, higher production of mtROS by mitochon-

dria stimulates both AMPK activation and HIF-1 stabilization,

which is consistent with the experimental results that partial

inhibition of ETC leads to the coexistence of glycolysis and

OXPHOS by producing excessive mtROS (20). In addition to

ROS production, stabilization of HIF-1, as reflected by lower kh,

can also give rise to the hybridW/O state (Supplementary Fig. S2).

Similarly, we simulated the response of the core circuit to the

changes in the activity of the following oncogenic pathways, that

is, MYC (Fig. 4B), c-SRC (Fig. 4C), and RAS (Fig. 4D; See Sup-

plementary Information Section S4–S6 for the modeling details).

Interestingly, in all these cases, we found thatmoderate activation

of RAS, MYC, or c-SRC induces the circuit from a two-state system

to a three-state system containing the hybrid state "W/O." Strong

activation of RAS can drive the circuit to either the "W" or the

"W/O" phenotype, while strong activation of c-SRC can drive the

circuit to either the "O" or the "W/O" phenotype.However, strong

activation ofMYC can drive the circuit to the "W" state. The results

are consistentwith the experimental evidences on the role of some

oncogenic pathways inmodulatingboth glycolysis andOXPHOS.

Previously, we show that cells with high c-SRC activity have

substantial levels of glycolysis and fatty acid oxidation (31). In

addition, MYC overexpression has been shown to promote fatty

acid oxidation in triple-negative (TN) breast cancer (32). More-

over, RAS can simultaneously activate glycolysis and OXPHOS

(33). It is likely that cancer cells can be in the hybrid phenotype

when the effects of the excessive production of ROS or the

activation of the oncogenes outweigh the mutual inhibitions

between AMPK and HIF-1.

Quantification of metabolic state by the activities of AMPK and

HIF-1

To validate the metabolic circuit model, we performed an

extensive data analysis on the TCGA data from eight cancer types.

Herewequantified the activities of AMPKandHIF-1 by evaluating

the expression of downstream targets of both AMPK and HIF-1

(a total of 33 genes for AMPK, and 23 genes for HIF-1, see

Supplementary Information Section S7 for details). For each

cancer type, we performed principal component analysis (PCA)

on the RNA-seq data independently for either the AMPK down-

stream genes or the HIF-1 downstream genes, from which we

assigned the first principal component as the axis to quantify the

activities of AMPK or HIF-1. The AMPK or the HIF-1 axes (sig-

natures) derived from different cancer types are surprisingly

similar (Supplementary Table S7 and S8; Supplementary Fig.

S3), indicating the consistent regulatory functions of AMPK and

HIF-1 across these tissues and cancer types.Most of the genes have

positive contributions to the respective principal component

(Supplementary Fig. S4), indicating that they are positively reg-

ulated by AMPK or HIF-1. For a few genes that have substantial

negative contributions, we identified experimental evidence for

the negative regulation (Supplementary Table S9).

Strikingly, even though the AMPK and HIF-1 gene sets are

independent and the corresponding principal axes were obtained

independently, we observed strong anticorrelations between the

HIF-1 and AMPK activities for several major cancer types—liver

hepatocellular carcinoma (HCC), lung adenocarcinoma (LUAD),

breast invasive carcinoma (Fig. 5A–C). We obtained similar

results for three other types of cancer—stomach adenocarcinoma,

acute myeloid leukemia, and pancreatic adenocarcinoma (PAC;

Supplementary Fig. S5A–S5C), but not in clear cell renal cell

carcinoma (CCRCC), prostate adenocarcinoma, and colorectal

adenocarcinoma (Supplementary Fig. S5D–S5F). From the data

analysis, we observed a spectrum of cases with "W," "W/O" and

"O" phenotypes. Notably, we did not observe two clearly sepa-

rated clusters representing glycolysis and OXPHOS respectively;

therefore, the AMPK and HIF-1 activities are strongly anticorre-

lated but not mutually exclusive in cancer. However, the TCGA

data analysis was not sufficient to explain the existence of the

hybrid "W/O" state due to the mixture of normal and cancer cells

in the tissues and possible heterogeneity ofmetabolic states in the

cell populations. Thus, we looked into single-cell RNA-seq data of

LUAD (34), which shows a similar anticorrelation between the

AMPK and HIF-1 activities and mainly a bimodal distribution

with substantial amount of hybrid cells (Fig. 5D; see Supplemen-

tary Figs. S8–S11 for more details on the single-cell RNA-seq data

analysis). This finding suggests that the hybrid metabolic pheno-

type can also be observed for individual cancer cell.

Next,we applied theAMPKandHIF-1 signatures to evaluate the

metabolic activities of different subtypes of breast carcinoma and

different types of tumors across TCGA. HER2þ and TN breast

tumors clearly show higher HIF-1 activity and lower AMPK

activity than luminal tumors (Fig. 5E), consistent with the
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Figure 3.

The nullclines and steady states in the

phase space of AMPK and HIF-1. The red

line represents the nullcline of dh=dt ¼ 0,

and the blue line represents the nullcline of

dA=dt ¼ 0 (see Supplementary

Information Eq. S1). The green solid dots

denote stable steady states and the green

hallow dots denote unstable steady state.

Each stable state is associated with a

metabolic phenotype. For normal cells (A),

the circuit allows aWarburg state, denoted

by "W," and an OXPHOS state, denoted

by "O." For cancer cells (B), the circuit

allows an additional hybrid state, denoted

as "W/O."
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experimental observation that TN cells are more dependent on

glycolysis than luminal cells (35). PAC and CCRCC show higher

HIF-1 activity and lower AMPK activity compared with HCC (Fig.

5F; Supplementary Fig. S6), consistent with experimental obser-

vations (see Supplementary Fig. S6 for details).

For each of the three cancer types shown in Fig. 5A–C, we

further evaluated the activities of the oncogenic pathways in

samples with various metabolic phenotypes. First, each cancer

sample was assigned a metabolic state ("W," "W/O" and "O") by

k-mean clustering analysis of the whole dataset (Fig. 5, left). The

activities of the oncogenic pathways (MYC, c-SRC, and AKT) were

quantified by the oncogenic scores derived experimentally in

previous studies [see Supplementary Information Section S8 for

details regarding the calculation of the oncogene score (36)]. The

classification and scoring methods allow us to evaluate the enrich-

ment of samples with high oncogenic activity for each metabolic

phenotype (Fig. 5A–C). Interestingly, high MYC activity was

observed to be enriched in the "W" phenotype, whereas high c-

SRC and AKT (representing RAS) activities are enriched in both the

"W" and the "W/O" phenotypes. Low oncogenic activity is asso-

ciatedwith the "O" phenotype and lowRS group (better prognosis;

ref. 34)of single LUADcells (Supplementary Figs. S7andS8). These

results are consistent with the modeling results and experimental

evidence discussed in the previous section. Moreover, we evaluated

the 5-year overall survival rates for different metabolism pheno-

types and found that patient samples in "O" phenotype are signi-

ficantly correlated with better survival results compared with

patients' samples in either "W"or "W/O" (Fig. 5A–C).Consistently,
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Bifurcation diagrams of the levels of phosphorylated AMPK (pAMPK) and HIF-1 driven by mtROS production (A), MYC (B), c-SRC (C), and RAS (D). g represents

the fold change of mtROS by AMPK activation. The blue, green, and magenta solid lines represent the phenotypes O, W/O, and W, respectively. The red

dashed line represents the unstable states. Different background colors represent different phases.
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single LUADcellswithhigher risk scores (worse prognosis; ref. 34)

maintain higherHIF-1 activity (Fig. 5D). Thus, we believe that our

HIF-1 and AMPK signatures provide an easy and reliable scoring

method to quantify the metabolic states of glycolysis and

OXPHOS based on RNA-seq data from both bulk tumors and

single cells.

The advantages of the hybrid metabolic phenotype and

experimental support

We argue that cancer cells in the "W/O" hybrid state can have a

significant advantage in supporting their survival, proliferation,

and metastasis. First, cells in the hybrid state have higher meta-

bolic plasticity to better adapt to various microenvironments,
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Figure 5.

Evaluation of the AMPK and HIF-1 activities using TCGA patient data and single-cell RNA-seq data of lung adenocarcinoma in HCC (n ¼ 373; A), LUAD

(n¼ 517; B), and breast-invasive carcinoma (n¼ 971; C). Left, each point represents the AMPK and HIF-1 activities of one sample. For each dataset, the standard k-

mean analysis was applied to group the cases into the W, W/O, and O states. Middle, the fraction of the top 20% samples with high oncogene activities

in each metabolic group (W, W/O, and O). c2 test was used to test the significance (See Supplementary Information Section S10). � , P < 0.05; �� , P < 0.01;
��� , P < 0.001. Right, Kaplan–Meier (KM) overall survival curves of patients that were stratified by their metabolic states. D, Evaluating the AMPK and HIF-1

activities of single LUAD cells (n¼ 77). Left, each point represents the AMPK and HIF-1 activities of a single cell. Histogram represents the distribution of single cells

projected to the first principal component of their AMPK and HIF-1 signatures. Three Gaussians are required to fit to the histogram (Supplementary Fig. S11).

Right, box plot for HIF-1 activity. Evaluation of the AMPK and HIF-1 activities of luminal A (n ¼ 531), luminal B (n ¼ 135), HER2þ (n ¼ 36), and TN (n ¼ 141) breast

carcinoma (E), and HCC (n ¼ 373), CCRCC (n ¼ 534), and PAC (n ¼ 179) from TCGA (F; see Supplementary Information Section S7 for details of methods).
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such as hypoxia and acidic conditions, because these cells are

flexible in their use of available nutrients, such as glucose and fatty

acids, to produce energy. Second, the hybrid state allows cancer

cells to efficiently produce energy bybothOXPHOSand glycolysis

while at the same time using lactate and pyruvate, the byproducts

of glycolysis, to generate biomass for cell proliferation (7). Third,

cells in the hybrid state can modulate ROS at a moderate level, so

that cells can take advantage of ROS signaling (20, 37) to promote

metastasis meanwhile avoid excessive DNA damage (38). Here,

ROS scavenging is achieved by pyruvate and NADPH, the bypro-

ducts of glycolysis and fatty acid oxidation, respectively. Fourth,

thehybrid statemight be specifically associatedwithmetastasis, as

suggested by some experimental evidence listed below. In sum-

mary, cancer cells at the hybridmetabolic phenotype have advan-

tage in multiple aspects over cells with either the "W" or the "O"

phenotypes.

Our metabolic circuit model is consistent with many recent

observations that, although glycolysis is a typical feature of cancer

cells, mitochondrial respiration plays a crucial role in tumor

invasion and metastasis (9, 16–21, 39). It has been observed that

some aggressive tumor cells, such as SiHa andHeLa, have not only

oxidative respiration but also glycolysis due to stronger HIF-1

activation from lactate (21). Moreover, the inhibition of the

mitochondrial respiratory chain contributes to the reduction of

multidrug resistance of slow cycling melanoma cells (14). It has

also been shown that the surviving pancreatic cancer cells after

doxycycline withdrawal depend on OXPHOS and are highly

sensitive to OXPHOS inhibitors (13). Also, the super-metastatic

tumor cells obtained by experimental selection in vitro (SiHa-F3

cells) and in vivo (B16F10 and B16-M1 to M5 tumor cells) have

increased OXPHOS with higher ROS production (20). TGFb1
treatment of non–small lung carcinoma A459 cells induces

metastasis, and they were found to have decreased fatty acid

synthesis and increased oxygen consumption (11). The inhibition

of OXPHOS by graphene for multiple cancer cells, including

breast cancer cells and hepatocellular carcinoma cells, can effec-

tively inhibit tumormigration and invasion (39). In the context of

4T1 mammary epithelial cancer cells, PGC-1a promotes metas-

tasis through activating mitochondrial biogenesis and OXPHOS

(10). The breast cancer cells can also shift from glycolysis to

mitochondrial OXPHOS after radiation exposure to generate

more ATP for survival (16). A detailed list of these experimental

findings is presented in Supplementary Table S1. These data taken

together indicates a critical role ofOXPHOS in tumorigenesis, and

supports our predictionof thehybrid "W/O" state.Ourmodel and

its experimental support suggest that the hybrid metabolic phe-

notype could be a good target for metabolic drugs.

Modeling therapeutic strategies targeting cancer metabolism

It has been shown that targeting cellular metabolism is a

promising strategy for fighting against cancer (details in Supple-

mentary Table S10; ref. 30). Certain metabolic drugs have been

shown to be effective in treating cancers in some cases. These

drugs, for example, S-trans, trans-farnesylthiosalicylic acid (FTS;

ref. 40), 2-deoxy-D-glucose (2DG; ref. 41), 3-bromopyruvate

(3BP; ref. 42), metformin (43), and AICAR (44), typically target

glycolysis or mitochondrial OXPHOS. It has also been suggested

that combinations of different drugs could prove more effective

(40, 45, 46). For example, administrating metformin and 2DG

together can induce massive ATP depletion in cancer cells and

further trigger cellular processes to induce cell death, such as

autophagy or p53-dependent apoptosis (45). Often, metabolic

drugs work well in some cases but not in others, and the under-

lying mechanisms are not completely understood. Here we pro-

pose that these therapeutic strategies might be effective partly

because they target the hybrid metabolic phenotype of cancer

cells. An effective treatment outcome could be achieved by shift-

ing the metabolic phenotype from the hybrid state to the other

allowed states of the cancer cells. By doing so, the drugs might

sensitize the cancer cells, therefore, other therapies, such as

chemotherapy, can be more effective in killing the cancer cells.

We evaluated the dynamic response of the AMPK:HIF-1:ROS

circuit to various treatment strategies, each of which exerts its own

regulatory mechanism on the circuit (See Supplementary Infor-

mation Section S9 for details). In particular, hyperbaric oxygen

therapy can effectively reduce hypoxia and accelerate degradation

of HIF-1; 3BP, similar to 2DG, targets the glycolytic enzymes such

as glucose transporters (GLUT) and hexokinase (HK), thus effec-

tively reducing cellular glycolysis; metformin activates AMPK,

inhibits ETC Complex-1, and inhibits mTOR in an AMPK-inde-

pendent manner, which further inhibits HIF-1. The effective

circuit diagrams for each case are shown in Fig. 6, and details of

the modeling procedures are shown in Supplementary Informa-

tion Section S5 with the relevant parameters given in Supplemen-

tary Table S11. The model allows us to calculate the steady states

and simulate the time course of the levels of pAMPK, HIF-1, and

ROS. We are especially interested in how different treatments

drive phenotypic transitions among different metabolic states.

A comparison of possible metabolic therapies

Starting from the model where cancer cells have the "W," the

"W/O," and the "O" states, we evaluated the effects of various

treatment strategies on allowing the cell to escape from the

tristability of the metabolic circuit. Each of the panel of Fig.

6A–D shows the bifurcation diagram of the levels of pAMPK and

HIF-1with respect to the level of the drugs, for each treatment. The

results show that these treatment strategies can shift the cancer

metabolism from the tristable phase to the monostable phase

("O") by increasing the dose level.

From the bifurcation analysis, metformin is less effective com-

pared with the hyperbaric oxygen therapy and 3BP. The ineffi-

ciency of metformin is caused by the decrease of mitochondrial

potential and increase of mtROS production by the drug (46).

Various treatment strategies were further evaluated by simulating

the time course of the levels of pAMPK, HIF-1, and ROS (Sup-

plementary Figs. S12–S15). We assume that an effective therapy

needs to drive cancer cells away from the hybrid states. We found

that the administration of metformin alone is less effective in

avoiding the hybrid state, while the combined therapies are more

effective. The prediction is consistent with the finding that, in

human gastric and esophageal cell lines, the administration of

bothmetformin and 2DG (whose effect is similar to 3BP) is more

effective than the administration of each drug alone (46).

Discussion

In this study, we established a theoretical framework for

modeling genetic regulation of cancer metabolism. By integrating

existent data, a network was constructed that features the regu-

lation of mitochondrial OXPHOS and glycolysis by both regula-

tory protein and metabolites. We further coarse-grained the

network into a core regulatory circuit that is composed of HIF-1,
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AMPK, and ROS. Although we made several simplifications, the

reduced circuit was still sufficient to capture regulation of both

glycolysis and OXPHOS, as well as the major differences in

metabolism between normal and cancer cells. As the regulatory

links in the core circuit are supported by multiple experiments

(Supplementary Table S1), the circuit model is expected to be

robust for studying the behavior of glycolysis and OXPHOS.

Normal cells typically use either OXPHOS or glycolysis at a

fixed time depending on the availability of energy sources,

because of tight regulation of the metabolic circuit and the

competition between different metabolic modes. Cancer cells,

however, kidnap the same gene regulatory circuit of metabolism

for their own advantage. Because of either high energetic and

oxidative stresses or the activation of specific oncogenes, cancer

cells can be in a hybrid metabolic phenotype utilizing both

glycolysis and OXPHOS. As cells in the hybrid "W/O" state have

increased plasticity, they could have an advantage in survival over

cells with the other phenotypes. The modeling results are sup-

ported by the TCGA patient data from multiple cancer types. The

model also explains the phenomenon of oxygen shock (47). Cells

that largely rely on glycolysis are exposed to large amount of

oxygen when they reach the blood vessel. These cells could switch

0
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Figure 6.

The bifurcation diagrams of the levels of pAMPK in response to the oxygen level in the hyperbaric oxygen therapy (A), 3BP level (B), metformin level (C),

and combined 3BP and metformin therapy (D). In A, the normal condition of oxygen level is 5%. In B–D, the drug (1/2/3) represents a hypothetic signal with

opposite effect of the corresponding drug(s). In A–D, blue, green, and magenta solid lines represent phenotype O, W/O, and W, respectively. The red dashed

lines represent the unstable steady states. The dashed lines with arrows indicate transitions between two phenotypes. Different background colors represent

different phases.
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the metabolic phenotype to the "W/O" state, which further

induces metastasis (10). In future work, the landscape approach

(48, 49) could be utilized to quantify the transition processes

among glycolysis, OXPHOS, andhybridmetabolismphenotypes.

Note that, in addition to the use of glycolysis and OXPHOS,

cancer cells can also utilize glutamine as a nitrogen source (5),

while cancer-associated fibroblasts can perform glycolysis to fuel

cancer cells byproducing lactate, knownas reverseWarburg effects

(50). These aspects are out of the scope of this current study, but

they are worth further investigation by using modeling approach.

To help test the basic motions of our core circuit model, we

developed two metabolic signatures, one for glycolysis based on

the expressions of HIF-1 downstream genes and the other for

OXPHOS based on the expression of AMPK downstream genes.

These metabolic signatures were applied to distinguish patient

samples from multiple cancer types or single cells with different

metabolic phenotypes, to identify the anticorrelations between

the AMPK and HIF-1 activities, and to elucidate the association of

oncogenic pathways with the metabolic states. In general, we

expect these metabolic signatures to be a powerful tool to predict

the metabolic phenotypes of cancer cells directly from gene

expression data.

We proposed to design metabolic therapies by considering

the hybrid metabolic phenotype (W/O). A putative strategy

would be to drive cancer cells away from the hybrid states.

Guided by this assumption, we evaluated the effectiveness of

several therapeutic strategies by model simulation. We found

that therapy using metformin is more likely to drive cells into

the hybrid metabolic phenotype during the treatment time-

course than the therapies using glycolysis blockers, such as 3BP

and 2DG. Our model also provides an explanation of why

some combined therapies are more effective (45, 46), because

these therapies are efficient in driving cells out of the hybrid

state.
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