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Xenotransplantation of patient-derived samples in mouse models has been instrumental in depicting the role of 
hematopoietic stem and progenitor cells in the establishment as well as progression of hematological malignancies. �e 
foundations for this �eld of research have been based on the development of immunode�cient mouse models, which 
provide normal and malignant human hematopoietic cells with a supportive microenvironment. Immunosuppressed and 
genetically modi�ed mice expressing human growth factors were key milestones in patient-derived xenogra� (PDX) models, 
highlighting the importance of developing humanized microenvironments. �e latest major improvement has been the use 
of human bone marrow (BM) niche–forming cells to generate human–mouse chimeric BM tissues in PDXs, which can shed 
light on the interactions between human stroma and hematopoietic cells. Here, we summarize the methods used for human 
hematopoietic cell xenotransplantation and their milestones and review the latest approaches in generating humanized BM 
tissues in mice to study human normal and malignant hematopoiesis.
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The hematopoietic niche
The hematopoietic system is a hierarchy of multiple committed 
lineages originating from hematopoietic stem cells (HSCs; Velten 
et al., 2017), whereas the bone marrow (BM) HSC niche is a spatial 
environment in which the HSC pool resides and is maintained by 
a balance of quiescence and expansion. This tightly controlled 
balance is regulated by multiple components of the BM niche, 
which are responsible for the shift between these two states. The 
BM is a highly vascularized tissue with a vast network of endothe-
lial cells (ECs), which form a major component of the HSC niche. 
BM ECs are known to release cytokines, signaling mediators, and 
growth factors into the BM microenvironment, therefore regu-
lating HSC quiescence, expansion, and activation (Raynaud et 
al., 2013; Ramasamy et al., 2016). Another major component of 
the hematopoietic niche is the mesenchymal stromal cell (MSC) 
fraction. It is a heterogeneous cell population well characterized 
in mouse models using specific reporters and also known as a rel-
evant component of the HSC niche in the human context (Zhou 
et al., 2014; Matsuoka et al., 2015). This class of stromal cells has 
the potency to give rise to other BM components, as chondro-, 
adipo-, and osteolineage cells. The nervous system also plays a 
role in the BM niche, as neuroglial cells regulate HSC traffic and 
proliferation (Spiegel et al., 2007; Méndez-Ferrer et al., 2008; 

Yamazaki et al., 2011). Finally, mature hematopoietic cells and 
cells from the immune system (megakaryocytes, macrophages, 
and T cells) also play distinct supportive functions for HSCs in 
the BM niche (Fig. 1; Chow et al., 2011; Bruns et al., 2014; Zhao 
et al., 2014; Yu and Scadden, 2016). Deregulation of HSC activity 
within the BM niche is a key factor in the development of hema-
tological malignancies. Although leukemia is predominantly 
considered a genetic disease (He et al., 2016; Papaemmanuil et 
al., 2016), several recent findings indicate that leukemic cells 
(myeloid malignancies in particular) also affect the function 
of BM niche components and vice versa, pointing toward the 
existence of an active cross talk between the two compartments 
(Raaijmakers et al., 2010; Frisch et al., 2012; Seke Etet et al., 2012; 
Hartwell et al., 2013; Krause et al., 2013; Schepers et al., 2013; 
Kode et al., 2014; Medyouf et al., 2014; Schajnovitz and Scadden, 
2014; Chattopadhyay et al., 2015; Dong et al., 2016; Hoggatt et al., 
2016; Lin et al., 2016; Zambetti et al., 2016; Passaro et al., 2017b; 
Sánchez-Aguilera and Méndez-Ferrer, 2017). Therefore, char-
acterization of the relationship between normal and malignant 
HSCs, as well as with the various components of the BM niche, 
is required to better understand the mechanisms of leukemo-
genesis and identify new potential targets that could be used for 
therapeutic strategies. As a result of the interaction of multiple 
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cellular components, the cytokine milieu, the presence of inner-
vated vascular structures, and a variety of immune cells, the BM 
niche must be studied in vivo, as in vitro models are reductive 
and lack key functional components. Patient-derived xenograft 
(PDX) models provide the best system to study the interactions 
between the different components of the BM and the role the 
niche plays in various hematological malignancies.

Human hematopoietic xenotransplantation
Despite numerous obstacles and caveats (Theocharides et al., 
2016), PDX models have proven their reliability in partially reca-
pitulating features of human normal and malignant hematopoie-
sis (see Table 1 for a summary of the history of immunodeficient 
mouse development; Chelstrom et al., 1994; Vormoor et al., 1994; 
Baersch et al., 1997; Hogan et al., 1997; Steele et al., 1997; Dazzi et 
al., 1998; Wang et al., 1998; Borgmann et al., 2000; Rombouts et 
al., 2000; Nijmeijer et al., 2001; Medyouf, 2017; Yoshimi et al., 
2017). These models have greatly improved our understanding of 
normal human stem cell biology, the concept of cancer stem cells 
(Lapidot et al., 1994; Bonnet and Dick, 1997), leukemic clonal het-
erogeneity (Clappier et al., 2011; Klco et al., 2014), clonal hierar-
chy (Woll et al., 2014; Mian et al., 2015), and the origins of relapse 
in leukemia (Shlush et al., 2017).

The initial studies showing engraftment in immunodeficient 
mice of human hematopoietic cells laid the foundations for xeno-
transplantation as a surrogate model to study hematological dis-
eases (Kamel-Reid and Dick, 1988; McCune et al., 1988; Lapidot et 
al., 1992). Although severe combined immunodeficiency (SCID) 
mice were instrumental in deciphering the concept of initiat-
ing cells in human acute myeloid leukemia (AML; Lapidot et al., 

1994), the ever-improving non-obese diabetic (NOD)/SCID (NOD-
SCID) model was essential in establishing the leukemic hierarchy 
of AML (Bonnet and Dick, 1997). Since then, and thanks to the use 
of IL-2 receptor (IL-2R) γ chain KO NOD/SCID (NSG) mice, the 
phenotypic heterogeneity of leukemia stem cells (LSCs) has been 
identified. It is indeed now well-accepted that despite the pres-
ence of LSCs in the CD34+CD38− fraction, progenitors can also 
acquire LSC properties such as granulocyte-myeloid progenitor–
like (CD34+CD38+CD45+) malignant cells (Goardon et al., 2011). 
Surprisingly, in some patients harboring mutations in Nucle-
ophosmin 1 gene, mature cells residing in the CD34− fraction 
have been shown to possess LSC properties (Taussig et al., 2010; 
Quek et al., 2016). Chronic myeloid leukemia (CML) harboring 
the translocation t(9:22), which generates fusion protein BCR-
ABL1, is the classical example of a stem cell disease where the 
LSCs originate from CD34+CD38− HSCs (Nowell and Hungerford, 
1961; Rowley, 1973; Heisterkamp et al., 1983; Giustacchini et al., 
2017). Several immunodeficient mouse models have been used to 
study the properties of primary CML patient–derived LSCs, the 
most notable being NOD-SCID–based mouse models (Holyoake 
et al., 1999; Eisterer et al., 2005). Interestingly, the level of 
engraftment observed in these animals correlates with the dis-
ease state, with higher engraftment observed with primary sam-
ples obtained from the blast crisis phase rather than the chronic 
phase of the disease (Dazzi et al., 1998; Wang et al., 1998; Clarke 
and Holyoake, 2017).

Unlike in myeloid malignancies, whether acute lymphoblastic 
leukemia (ALL) is driven by a physically identifiable LSC popu-
lation has been long debated. The use of PDX models has been a 
fundamental tool to shed light on this and to better define the 

Figure 1. �e hematopoietic BM niche. �e BM 
is a heterogeneous environment composed of dif-
ferent types of cells. �e two main architectural 
sca�olds of the tissue are the bone and the vessels, 
integrated in a complex network connected to nerve 
�bers. Associated with these structures are di�erent 
types of cells, as depicted in the �gure, regulating 
the tissue homeostasis and the normal HSC fate in 
healthy and disease states.
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Table 1. Summary of immunodeficient mice useful in human hematopoietic xenograft studies

Strain name Common 
name

Mutant alleles Phenotype HSC 
engraftment

Leukemic 
engraftment 
(AML/ALL)

References

B6.CB17-Prkdcscid/Szj SCID Prkdcscid Leaky immunodeficient + +/+ Bosma et al., 1983; McCune 
et al., 1988; Mosier et al., 
1988; Fulop and Phillips, 1990; 
Lapidot et al., 1992; Greiner et 
al., 1998

B6.129S7-Rag1tm1Mom/J Rag1KO Rag1tm1Mom Nonleaky 
immunodeficient

+ +/+ Mombaerts et al., 1992; 
Shinkai et al., 1993; Greiner et 
al., 1998

B6(Cg)-Rag2tm1.1Cgn/J Rag2KO Rag2tm1.1Cgn Nonleaky 
immunodeficient

+ +/+ Mombaerts et al., 1992; 
Shinkai et al., 1992; Greiner et 
al., 1998

NOD.CB17-Prkdcscid/J NOD-SCID Hc0; Prkdcscid NOD immunodeficient + +/+ Hesselton et al., 1995; Lowry 
et al., 1996; Pflumio et al., 
1996

NOD.129P2(B6)-B2mtm1Unc/J NOD/B2M B2mtm1Unc NOD, MHC class I 
negative

+ +/+ Koller et al., 1990; Feuring-
Buske et al., 2003

B6.129S4-Il2rgtm1Wjl/J IL-2Rγnull Il2rgtm1Wjl T/B/natural killer cell 
deficient

+ Not assessed Cao et al., 1995

C.Cg-Rag2tm1FwaIl2rgtm1Sug BRG Rag2tm1Fwa; Il2rgtm1Sug BALB/c, 
immunodeficient, 
radiosensitive, 
humanized

++ Not assessed Traggiai et al., 2004

NOD.cg-PrkdcscidIl2rgtm1Sug NOG Prkdcscid; Il2rgtm1Sug NOD, immunodeficient, 
radiosensitive, 
humanized

++ ++/++ Ito et al., 2002; Yahata et al., 
2003

NOD.Cg-Rag1tm1MomIl2rgtm1Wjl NRG Rag1tm1Mom; Il2rgtm1Wjl NOD, immunodeficient, 
radiosensitive, 
humanized

+++ +++/++ Pearson et al., 2008; Brehm et 
al., 2010; Maykel et al., 2014

NOD.Cg-PrkdcscidIl2rgtm1Wjl NSG Prkdcscid; Il2rgtm1Wjl NOD, immunodeficient, 
radiosensitive, 
humanized

+++ +++/++ Ito et al., 2002; Traggiai et al., 
2004; Ishikawa et al., 2005; 
Shultz et al., 2005

NOD.
Cg-PrkdcscidIl2rgtm1WjlTg(CMV-
IL3,CSF2,KIT LG)1Eav/MloySzJ

NSG-SGM3; 
NSGS

Prkdcscid; Il2rgtm1Wjl; 
Tg(CMV-IL3,CSF2,KIT 
LG)1Eav

NOD, immunodeficient, 
radiosensitive, 
humanized; expresses 3 
human cytokines

+++ ++++/+++ Nicolini et al., 2004; 
Wunderlich et al., 2010; Takagi 
et al., 2012; Yoshimi et al., 
2017

C;129S4-Rag2tm1.FlvCsf1tm1(CSF1)

FlvCsf2lIl3tm1.1(CSF2,IL3)

FlvThpotm1.1(TPO)FlvIl2rgtm1.1Flv/J

MIT RG Rag2tm1.Flv; Csf1tm1(CSF1)

Flv; Csf2lIl3tm1.1(CSF2,IL3)

Flv;Thpotm1.1(TPO)Flv; 
Il2rgtm1.1Flv

Immunodeficient, 
humanized; expresses 3 
human cytokines

+++ ++++/not 
assessed

Rongvaux et al., 2014; Ellegast 
et al., 2016

C;129S4-
Rag2tm1.1Flv Csf1tm1(CSF1)Flv Csf2/
Il3tm1.1(CSF2,IL3)Flv Thpotm1.1(TPO)

Flv Il2rgtm1.1Flv Tg(SIR PA)1Flv/J 

MIS TRG Rag2tm1.1Flv Csf1tm1(CSF1)

Flv Csf2/Il3tm1.1(CSF2,IL3)

Flv Thpotm1.1(TPO)

Flv Il2rgtm1.1Flv Tg(SIR 
PA)1Flv

Immunodeficient, 
humanized; expresses 4 
human cytokines

+++ ++++/not 
assessed

Rongvaux et al., 2014 ;Das et 
al., 2016 ; Ellegast et al., 2016

NOD.Cg-KitW-41J 
Prkdcscid Il2rgtm1Wjl/WaskJ 

NSGW41 KitW-41J; Prkdcscid ; 
Il2rgtm1Wjl

NOD, immunodeficient, 
humanized, human 
engraftment without 
irradiation

+++ Not assessed Cosgun et al., 2014

NOD.Cg-KitW-

41J Tyr + Prkdcscid Il2rgtm1Wjl/
ThomJ

NBS GW KitW-41J; Tyr +; Prkdcscid ; 
Il2rgtm1Wjl

NOD, immunodeficient, 
humanized, human 
engraftment without 
irradiation

+++ Not assessed McIntosh and Brown, 2015

C57BL/6 Rag2null Il2rgnull NOD-
Sirpa KitWv/Wv

BRG SK Rag2null;Il2rgnull;KitWv/Wv NOD, immunodeficient, 
humanized, human 
engraftment without 
irradiation

+++ Not assessed Yurino et al., 2016

NOD.Cg-Foxn1em1Dvs Prkdcscid 
Il2rgtm1Wjl/J

NSG-nude Foxn1em1Dvs ;Prkdcscid 
;Il2rgtm1Wjl

NOD, immunodeficient, 
radiosensitive, 
humanized, hairless

Not assessed Not 
assessed/+++

Wei et al., 2017
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LSC concept in ALL. Xenograft studies have shown that the LSC 
compartment in ALL can be genetically heterogeneous within 
the same individual and can evolve during cancer progression 
(le Viseur et al., 2008; Clappier et al., 2011; Notta et al., 2011; Rehe 
et al., 2013; Elder et al., 2017). In a recent work, ALL xenografts 
have been instrumental to determine how the microenvironment 
is fundamental for dormancy, drug resistance, and LSC activity 
(Ebinger et al., 2016). Thus, PDX models have represented a 
reliable tool in defining and supporting the stochastic stem cell 
concept in ALL and in shifting the attention to the LSC function 
rather than LSC immunophenotype (Passaro et al., 2016).

Although PDX models have increased our understanding in 
the cell biology of human hematopoietic malignancies, chal-
lenges remain in the observed engraftment heterogeneity. Each 
patient sample shows a distinct initial phenotype, specific LSC 
frequency, and individual phenotype in disease-propagating 
cells during xenotransplantation. Moreover, predominantly in 
myeloid malignancies, the engraftment levels of patient leuke-
mic cells vary considerably, with some patients engrafting at a 
very low level or not at all. Hence, it has been reported that in 
AML intermediate-risk patient groups, engraftment in immuno-
deficient mice can predict the clinical outcome of the patients, 
and indeed it is reported that patient samples able to engraft in 
immunodeficient mice correlate with a poorer overall survival 
(Pearce et al., 2006). Why some patients engraft and others do 
not is still to be determined. This might be related to the low pro-
liferation and low LSC frequency of some leukemias and/or to 
the dependence of some leukemias on the human-specific fac-
tors that are not provided by the mouse microenvironment. In 
agreement with this, a recent study has provided data demon-
strating improved engraftment of some patient leukemic cells 
when mice were kept alive for up to 1 yr (Paczulla et al., 2017), 
therefore demonstrating that low cell proliferation of leukemic 
cells in NSG mice and lower LSC frequency were at least part 
of the problem.

There have been attempts to manipulate the mouse microen-
vironment to mimic the human BM niche and provide functional 
support to human stem cells in “humanized” immunodeficient 
mice, but caveats still remain. The injection of human cytokines 
directly into mice produced a transient improvement in engraft-
ment, but this effect was subdued over time (Dao et al., 1997; 
Lapidot et al., 1997). Alternatively, the use of transgenic expres-
sion of human SCF (hSCF), hGM-CSF, and hIL-3 (three poorly 
cross-reacting cytokines) into either the NOD-SCID or, more 
recently, the NSG mice has led to improvements in the expan-
sion of normal myeloid cells. This method has also enabled the 
engraftment of patient samples that have historically been very 
difficult to study in vivo, such as those harboring Core Bind-
ing Factor oncogenes (AML1-ETO) or CBFβ-MYH11 (Nicolini et 
al., 2004; Wunderlich et al., 2010) or samples from CMML and 
JMML patients (Yoshimi et al., 2017). Nevertheless, the high level 
of human cytokines produced in these mice causes the exhaus-
tion of human normal hematopoietic stem and progenitor cells 
(HSPCs; Nicolini et al., 2004; Wunderlich et al., 2010). To cir-
cumvent this problem and obtain physiological levels of human 
cytokines, knock-in mice have been developed, such as the MIS 
TRG (Rongvaux et al., 2014; Das et al., 2016; Ellegast et al., 2016). 

These mice were genetically engineered to express human mac-
rophage-stimulating factor, IL-3, SIRPα, thrombopoietin, and 
GM-CSF to allow efficient human cell development (Rongvaux 
et al., 2014). These mice show higher engraftment of HSPCs 
derived from peripheral blood than conventional NSG mice 
(Saito et al., 2016) and support a robust engraftment of chromo-
some 16 inversion, favorable-risk group AML patients (Ellegast 
et al., 2016). Using a different approach, patient-derived MSCs 
have been co-injected with myelodysplastic syndrome (MDS) 
cells directly in the BM cavity of NSG-SGM3 mice (Medyouf et 
al., 2014), and this resulted in an increase in engraftment, high-
lighting the niche–MDS dependence and relationship. In the 
study by Medyouf et al. (2014), MSCs were detected for up to 3 
wk in the mouse BM. However, a recent study has shown that 
hMSCs injected intra-BM were rapidly undetectable (even in 
the injected bone) 1 wk after injection and thus might not sig-
nificantly improve human MDS engraftment compared with the 
control (no hMSC injected) mice (Rouault-Pierre et al., 2017a). 
It is worth noting the timing differences in tracing the lucifer-
ase signal in both studies. Medyouf et al. (2014) started tracing 
hMSCs from day 3 after injection, whereas Rouault-Pierre et al. 
(2017a) traced the MSCs from 4 h after injection.

In conclusion, the quality, robustness, and reliability of human 
hematopoietic myelolymphoid xenografts in genetically modified 
mouse models have been instrumental for the understanding of 
the pathogenesis of hematological malignancies (Table 1; Bosma 
et al., 1983; McCune et al., 1988; Mosier et al., 1988; Fulop and 
Phillips, 1990; Koller et al., 1990; Lapidot et al., 1992; Mombaerts 
et al., 1992; Shinkai et al., 1992, 1993; Cao et al., 1995; Hesselton 
et al., 1995; Lowry et al., 1996; Pflumio et al., 1996; Greiner et al., 
1998; Ito et al., 2002; Feuring-Buske et al., 2003; Yahata et al., 
2003; Nicolini et al., 2004; Traggiai et al., 2004; Ishikawa et al., 
2005; Shultz et al., 2005; Pearson et al., 2008; Brehm et al., 2010; 
Wunderlich et al., 2010; Takagi et al., 2012; Cosgun et al., 2014; 
Maykel et al., 2014; Rongvaux et al., 2014; McIntosh and Brown, 
2015; Das et al., 2016; Yurino et al., 2016; Wei et al., 2017). However, 
further development is still required to fully model these human 
hematopoietic diseases in vivo (Rouault-Pierre et al., 2017a,b; 
Wei et al., 2017).

Development of ectopic mature bone formation
Over the last few decades, research in bone grafts and prosthetic 
devices has been undertaken with the key aim of supporting the 
bone-healing process after injury. The use of fresh bone tissue 
as grafts is a well-understood field, as these grafts provide osteo-
genic cells, osteoinductive signals, and osteoconductive physical 
structures. However, bone graft substitutes are often required, 
and therefore, several bone implantable approaches have been 
developed incorporating one or all of the following properties: 
proper mechanical and osteoconductive properties, cytokine and 
growth factor carrier for proper delivery and induction of bone 
formation, and osteogenic cell carriers for proper bone formation 
(Greenwald et al., 2001; Civantos et al., 2017).

In a 1965 landmark study, evidence for the inductive prop-
erties of bone after ectopic implantation was described. In this 
study, the author shows the autoinduction of bone formation 
by the implanted material, naming the bony structures formed 
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in ectopic regions: “ossicles.” These ossicles showed sequential 
development of cartilage and bone tissue, with mature bone and 
BM tissues formed, a feature the author hypothesized as a possi-
ble new active site of hematopoiesis (Urist, 1965).

Since then, ectopic implantation approaches have been 
instrumental for the study and assessment of the osteoinduc-
tive property of cytokines, growth factors, and carrier materi-
als. Remarkably, growth factors such as BMP-2 and BMP-7 (bone 
morphogenetic proteins) implanted in combination with suit-
able carrier materials in ectopic regions induce the formation 
of bone with mature, vascularized BM tissue (Abarrategi et al., 
2008, 2009; El Bialy et al., 2017). Ectopic models have also helped 
to define the osteoinductive property of some ceramic materi-
als, although the molecular mechanisms still remain unknown 
(Barradas et al., 2011) and require the empirical testing of the 
in vivo osteoinductive property for each different implantable 
ceramic material (Fig.  2; Mankani et al., 2001, 2004; Arinzeh 
et al., 2005).

The implantation of cell carrier materials in subcutaneous, 
muscle, or kidney capsule bone ectopic scaffolds has been thor-
oughly reported (Scott et al., 2012), and this has helped to define 
the osteogenic activity of different types of cells (Nusspaumer et 
al., 2017). Subcutaneous implantation approaches incorporating 
MSCs, and the subsequent bone formation assessment, are con-
sidered to be one of the key assays that defines the multipotent 
nature of these cells (Bianco et al., 2013; Bianco and Robey, 2015). 
As a paradigmatic example, the kidney capsule and subcutaneous 
implantation approaches, combined with materials and growth 
factors, helped to identify a specific subset of mouse MSCs with 
defined phenotype and skeletal stem cell properties, located in 
the bone growth plate. These cells were able to differentiate to 
cartilage and bone tissues and had the capacity to generate ossi-
cles with mature hematopoietic BM tissue (Chan et al., 2015). 
Similarly, the hematopoietic function of ossicles and the chi-
merism of the newly formed tissues between the host cells and 
implanted cells has also been well described (Shih et al., 2017).

Bone differentiation of subcutaneously implanted MSCs can 
be improved using different methods. For example, it is known 
that parathyroid hormone (PTH) administration increases BM 
HSC engraftment (Adams et al., 2007; Adams and Scadden, 2008) 
and stimulates osteoblast formation (Uusi-Rasi et al., 2005). 
Therefore, the exogenous administration of PTH in implanted 
mice has been tested to induce the differentiation of MSCs, giving 
rise to ectopic bone formation and further homing of HSCs in the 
subcutaneous ossicles (Schneider et al., 2003; Song et al., 2010). 
Using a different approach, scaffold-seeded MSCs can be differ-
entiated in vitro to cartilage before implantation in a process 
called chondrogenic priming, which represents another possi-
ble avenue for ossicle formation (Freeman and McNamara, 2017).

Subcutaneous humanized niche approaches in mice
Recent advances in bioengineering have enabled the use of mate-
rial scaffolds to create a humanized microenvironment that acts 
as a framework to support cell proliferation and differentiation 
and study cell–cell interactions with the aim of maintaining 
implanted cellular phenotypes and function. hMSCs are used to 
create a layer of stroma on the carrier material, which provides 

the “niche-like units” for other cell types to reside in. Once the 
osteogenic ability of implanted cells was defined, the aim of these 
studies shifted to understanding the multipotency of hMSCs 
and their effect on the niche. The resulting human MSC carrier 
implants yielded human–mouse chimeric tissues colonized by 
mouse hematopoietic cells, suggesting this approach generates 
“humanized” microenvironments with niche properties, use-
ful for hematopoietic studies and metastatic processes of vari-
ous cancers (Moreau et al., 2007; Lee et al., 2012; Bersani et al., 
2014; Holzapfel et al., 2014; Čulen et al., 2015; Francis et al., 2016; 
Nelson and Roy, 2016; Theocharides et al., 2016; Aguado et al., 
2017; Martine et al., 2017).

Among the various available materials, osteoinductive 
ceramic scaffolds have also been used in combination with 
hMSCs in mouse subcutaneous implantation approaches and 
gave rise to the formation of ossicles of human–mouse chime-
ric bone with mature mouse BM tissues (Krebsbach et al., 1997; 
Chai et al., 2012). Using osteoinductive ceramics and hMSCs 
as implantable materials, a MCAM+/CD146+ subpopulation of 
human BM stroma cells associated with hematopoietic niche 
formation was identified (Sacchetti et al., 2007). The implanted 

Figure 2. Ectopic bone “ossicle.” (A) Whole body micro–computerized 
tomography image showing bone tissue in a mouse. �e red circle and the 
arrow show the location of a subcutaneous ossicle structure. (B) Gross mor-
phology of a mouse-harvested ossicle. (C) Hematoxylin/eosin histological 
staining of an ossicle based on an implant of hMSC carrier gelatin sponge with 
BMP-2. Note bone tissue (B and black arrows) forming a ring on the surface of 
the ossicle and a core resembling adult BM tissue with trabecular bone, hema-
topoietic cells, adipocytes, and vascular structures. (D) Masson’s trichrome 
histological staining of an ossicle based on hMSC carrier ceramic implant. 
Note the remaining ceramic material in pale blue (Cer), newly formed bone 
in the surface of the ceramics in dark blue, and mature BM tissue with hema-
topoietic cells, adipocytes, and vascular structures with erythrocytes in red.
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human stromal cells induced the formation of sinusoids inside 
the implants, and these cells produced angiopoietin-1, a ligand 
for the Tie-2 cell surface receptor, in the HSC niche (Sacchetti et 
al., 2007), providing evidence for a mechanism by which HSCs 
can home to the new humanized niche.

To challenge the in vivo multipotent osteogenic properties 
of implanted human cells, various studies have used BMPs in 
combination with different implantable materials and hMSCs 
(Park et al., 2009; Burastero et al., 2010). For example, BMP-2 
carrier ceramic scaffolds have been used to define the in vivo 
differentiation multipotency of hMSCs (Abarrategi et al., 2013). 
Furthermore, hMSCs have also been genetically modified to 
express BMP-2 or BMP-7, and these cells can generate subcuta-
neous ossicles in mice (Turgeman et al., 2001; Dragoo et al., 2005; 
Kang et al., 2007). Interestingly, the use of human bone-form-
ing growth factors can generate mature BM tissue with hema-
topoiesis, implying the presence of a human niche in these 
xenograft structures. In a related study, this model system was 
also successfully used to study human breast cancer metastasis 
(Moreau et al., 2007). Therefore, such models form humanized 
hematopoietic microenvironments and are applicable for under-
standing the role of the BM microenvironment and stem cells in 
tumor metastasis.

Another approach to generate humanized niches is to in vitro 
culture cell-seeded materials before implantation, an approach 
used in various other studies to further our understanding of 
material niche formation. In vivo, endochondral and intramem-
branous ossification processes are associated with hematopoietic 
niche formation (Reinisch et al., 2015), and therefore, the in vitro 
endochondral priming procedure has been tested to induce the 
formation of humanized bone and BM tissues in vivo. Interest-
ingly, using this procedure, hMSCs have been associated with car-
tilage tissue remodeling, as well as vascularization of the newly 
formed bone tissues, perhaps because of the angiogenic factors 
produced by chondrocytes, which naturally stimulate angiogen-
esis in vivo (Pelttari et al., 2006; Farrell et al., 2008, 2011; Scotti et 
al., 2010, 2013; Sheehy et al., 2015; Thompson et al., 2015; Visser 
et al., 2015; Yang et al., 2015; Freeman and McNamara, 2017). 
In another study, ceramic-coated materials seeded with hMSCs 
were cultured initially in vitro with the addition of BMP-7 and 
subsequently implanted in mice, generating a chimeric bone 
construct with metabolically active tissue producing extracellu-
lar matrix components. This tissue-engineered chimeric niche 
was demonstrated to serve as a reliable platform to study prostate 
cancer bone metastases (Holzapfel et al., 2014).

Human vasculature structure, and therefore the human peri-
vascular niche for hematopoietic cells, can also be generated in 
structures implanted in mice. HUV ECs subcutaneously implanted 
in Matrigel or other carrier materials can form a human vascular 
network (Schechner et al., 2000; Skovseth et al., 2007; Cooper 
and Sefton, 2011). Moreover, the exogenous overexpression of 
the E4ORF1 gene in HUV ECs improves their survival in vivo and 
their ability to form a humanized vasculature network (Seandel 
et al., 2008). As mesenchymal and ECs closely interact during 
neovascularization, MSCs have been co-implanted with human 
ECs, improving the vascular tissue formation as a result of the 
perivascular function of implanted MSCs (Koike et al., 2004; 

Scherberich et al., 2007; Ghanaati et al., 2011; McFadden et al., 
2013; Pedersen et al., 2013; Lin et al., 2017).

It is important to note that some studies have opted to use 
similar tools to those described here to develop in vitro methods, 
aiming to study human hematopoietic cell behavior under ex 
vivo conditions. Based on co-culture studies, three-dimensional 
(3D) models have been developed using various types of materi-
als with different human stromal cells along with human hema-
topoietic cells (Jing et al., 2010; Ferreira et al., 2012; Leisten et al., 
2012; Mortera-Blanco et al., 2012; Sharma et al., 2012; Cuddihy 
et al., 2013; Raic et al., 2014; Bara et al., 2015; Choi et al., 2015; 
Miyoshi et al., 2015; Dhami et al., 2016; Dong et al., 2016) A novel 
BM-on-a-chip system, where human BM tissue is generated in 
a polydimethylsiloxane device in vivo and then cultured in a 
microfluidic system, has been recently developed (Torisawa et 
al., 2014). Using a similar concept, a 3D co-culture system based 
on a hydroxyapatite coated zirconium oxide scaffold seeded with 
hMSCs and HSPCs has also been developed (Sieber et al., 2017). 
Both these studies demonstrated that the engineered BM retains 
HSPCs within the formed “hematopoietic-like niche,” in propor-
tions comparable with in vivo studies, for up to 28 d in culture 
(Torisawa et al., 2014; Sieber et al., 2017). These in vitro models 
provide an interesting alternative, with the ability to genetically 
or pharmacologically manipulate individual hematopoietic cell 
populations or to add other stroma components (such as ECs), as 
well as cytokines, in a step-wise manner in vitro and then analyze 
the response of the engineered BM.

Although most of the studies reporting in vivo bone forming 
assays and in vitro BM modeling used as stroma primary BM-de-
rived cells, some of these used primary stroma niche cells from 
other tissues (Dragoo et al., 2005; Kang et al., 2007; Ferreira et 
al., 2012; Leisten et al., 2012; Mortera-Blanco et al., 2012; Sharma 
et al., 2012; Raic et al., 2014; Reinisch et al., 2015), transfected 
or transduced cells (Turgeman et al., 2001; Dragoo et al., 2005; 
Kang et al., 2007; Seandel et al., 2008), or even stroma cell lines 
(Miyoshi et al., 2015). It is worth noting that the source and sta-
tus of stroma compartment used should be taken into account, 
as it may influence the cellular cross talk and niche function 
of stroma cells.

Subcutaneous humanized niche to study human healthy HSPCs
The recent technological advances in generating material-based 
humanized hematopoietic niches have not only been examined 
for mouse hematopoietic cell colonization, but also in human 
hematopoietic transplantation studies (Fig. 3).

Polyacrylamide hydrogel–based scaffolds seeded with human 
stromal cells and implanted in immunodeficient mice, followed 
by injection of BM CD34+ cells, provided evidence of coloniza-
tion by human hematopoietic cells (Lee et al., 2012, 2016). Nota-
bly, there was an increased secretion of cytokines such as IL-6 
and VEGF inside the implanted scaffolds, originating from the 
hMSCs, enhancing angiogenesis as well as homing of hHSCs (Lee 
et al., 2012). After 16 wk, human CD45+ cell engraftment was 
detected in the scaffolds, as well as the native mouse BM (Lee 
et al., 2012). These scaffolds were further developed by geneti-
cally engineering the human stroma cells before their implan-
tation in scaffolds, aiming to generate an array of humanized 
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niches within the same scaffold (Lee et al., 2016). This enabled 
the authors to study the effect of expressing different cytokines 
in the scaffolds on human HSC recruitment, engraftment, and 
differentiation potential (Lee et al., 2016).

In a separate study, hMSCs and ECs, supplemented with 
Matrigel, were directly injected in NSG mice, followed by intra-
venous injection of human cord blood cells (Chen et al., 2012). 
This approach enabled the formation of extramedullary bone, 
with BM cavities exhibiting hypoxic environments in discrete 
areas, mirroring the human BM niche. Moreover, these extra-
medullary humanized niches supported both human as well as 
murine hematopoietic cells, with engraftment levels of human 
myelolympho lineages comparable with those in host mouse BM 
tissues (Chen et al., 2012). The use of injectable Matrigel as cell 
carrier material has been further investigated by Reinisch et al. 
(2015), who demonstrated that, among hMSCs from different 
sources, only BM-derived MSCs were able to form a BM cavity, 
through a vascularized cartilage intermediate: a process the 
authors named “endochondral signature niche formation.” In 

this case, PTH was used to induce in vivo human stromal cell dif-
ferentiation and ossicle formation (Reinisch et al., 2017). These 
in vivo humanized structures supported human hematopoiesis, 
with functional human HSCs able to successfully engraft second-
ary recipient mice (Reinisch et al., 2015).

A further subcutaneous scaffold structure, using biode-
gradable polycaprolactone seeded with hMSCs and cultured in 
vitro with osteogenic differentiation media before implantation 
demonstrated that it is feasible to create humanized bone con-
structs in NSG mice with humanized niche formation (Holzapfel 
et al., 2015a). When human CD34+ cells were injected by retro-
orbital intravenous injection, these humanized structures were 
capable of recapitulating both the morphological features as 
well as biological functions of the human niche, with a higher 
engraftment of hCD45+ cells in the humanized scaffolds com-
pared with the host mouse bones. This led authors to speculate 
that species-specific HSC microenvironment interactions may 
be vital for human hematopoietic xenograft studies (Holzapfel 
et al., 2015a).

Figure 3. Di�erent approaches to bioengineer 
humanized hematopoietic niche. All approaches 
are based on an in vitro step to prepare an implant-
able structure with hMSCs and a cell carrier mate-
rial. Some approaches include an in vitro cell dif-
ferentiation step, the co-seeding of hECs, or the 
addition of osteogenic factors such as BMPs before 
implantation in mice. Following these �rst step, the 
human cell carrier devices are then implanted in 
mice aiming to generate subcutaneous humanized 
niches in vivo. Human hematopoietic cells can be 
integrated in the system at di�erent steps. �ey can 
be seeded in vitro (1), before the in vivo implanta-
tion of the device. �ey can be i.v. injected in the 
mouse before (2) or a�er the implantation of the 
device (3), and they can also be injected directly 
inside the device a�er implantation (4). Bone for-
mation in vivo may be promoted via systemic PTH 
injection. Red symbols on top of the mice represent 
sublethal irradiation. HCs, human BM cells.
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The aformentioned scaffold systems vary in materials and 
methodology, but all rely on bone formation for MSCs as a key 
step in in vivo scaffold development. Interestingly, an alternative, 
non–bone-forming, implantable approach has been reported to 
also maintain and expand human HSPCs. In this case, cord blood–
derived human CD34+ cells were included with hMSCs and ECs in 
carrier scaffolds before implantation, aiming to simultaneously 
provide human HSPCs and human niche components together in 
the scaffolds to integrate signals from the three key components. 
Interestingly, these scaffolds allow the long-term engraftment of 
human HSPCs, with improved myeloid development compared 
with lymphoid-biased engraftment usually seen in the BM of 
intravenous/intrabone injected NSG mice (Abarrategi et al., 
2017; Passaro et al., 2017a).

Subcutaneous humanized niche to study human malignant 
hematopoietic cells
The approaches describing implanting scaffolds with a human-
ized microenvironment for investigating normal hematopoietic 
engraftment have proven equally valuable in studying hemato-
poietic malignancies. Indeed, recently there has been great suc-
cess using scaffold approaches to model hematopoietic malignan-
cies in vivo, using primary patient cells that are poor “engrafters” 
in host mouse BM tissue (Fig. 4; Čulen et al., 2015; Ho et al., 2015; 
Holzapfel et al., 2015b; Flores-Figueroa and Gratzinger, 2016; 
Nelson and Roy, 2016; Theocharides et al., 2016).

The first study of successful AML engraftment in human-
ized microenvironment came from Vaiselbuh et al. (2010), who 
developed an ectopic niche by coating polyurethane scaffolds 
with human BM-MSCs. After the implantation of these scaffolds 
into NOD-SCID mice, de novo vascularization and osteoclast 
as well as adipocyte development demonstrated an organized 
human BM microenvironment 8 wk after implantation. Pri-
mary AML cells injected directly in preimplanted scaffolds, or 

injected retroorbitally, engrafted in the scaffolds and were able 
to proliferate in a process the authors postulated is reliant on the 
CXCL12–CXCR4 axis. Notably, human leukemic cells migrated out 
of the scaffolds and colonized the murine BM, liver, and spleen 
during later stages, raising the possibility that there might be a 
requirement for human-specific stroma during the initial stages 
of leukemia establishment, but this may not be required for relo-
cation at later stages of leukemic development. Furthermore, 
CD34+ LSCs were observed in scaffolds 5 mo after implantation, 
and these LSCs were found in direct contact with the human 
stroma, suggesting it as a preferable niche for this subset of leu-
kemic cells (Vaiselbuh et al., 2010).

In addition to AML, Groen et al. (2012) applied the use of 
humanized scaffolds to engraft primary multiple myeloma 
patient samples, which are known to be highly dependent on the 
human BM microenvironment for their survival and growth. 
Biphasic calcium phosphate–based osteoinductive ceramic par-
ticles were loaded with hMSCs, cultured in osteogenic differ-
entiation media for 7 d, and then implanted subcutaneously in 
RAG2−/−γc

−/− mice (Siddappa et al., 2007, 2008; Prins et al., 2009; 
Groen et al., 2012). After successful implantation of scaffolds, 
primary multiple myeloma patient samples were injected either 
directly into the humanized ossicles or, alternatively, via an int-
racardiac route (Groen et al., 2012). All patient samples in this 
study were able to successfully engraft in the humanized ossi-
cles, whereas only one patient sample was able to engraft in the 
host mouse BM. Using the same technical approach, MLL-AF9–
transduced cord blood CD34+ cells and CD34+ cells from CML 
patients were implanted in humanized scaffold in NSG mice. 
Transcriptome analysis of the human leukemic cells recovered 
demonstrated that “stemness,” as well as the disease phenotype, 
was better preserved in the humanized niche compared with the 
murine BM (Sontakke et al., 2016). Moreover, similar scaffolds 
were formed with genetically engineered hMSCs, which secrete 

Figure 4. Timeline of PDX in human hematopoietic context. (Bottom) Milestones in human hematopoietic PDX approaches are reported, based on engra�-
ment in host mouse BM niche. (Top) Milestones in human hematopoietic PDX approaches are reported, based on the generation of implantable humanized 
microenvironment with hMSCs. Refer to Table 1 and text for more details and references.
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human IL-3 and thrombopoietin (TPO), with better preservation 
of the myeloid compartment (Carretta et al., 2017).

A later study demonstrated the great promise for modeling 
previously nonengrafting AML in humanized microenviron-
ments. Using ceramic scaffolds coated with hMSCs, Antonelli et 
al. (2016) showed positive engraftment (29/39 patients engrafted) 
from a large cohort of AML patients. Within 12 wk, subcutane-
ously implanted scaffolds formed structures mimicking the 
human BM niche, including bone formation with embedded 
mouse vasculature. Interestingly, favorable-risk AML patients 
with an inversion of chromosome (16) aberration, which usually 
do not engraft in the murine BM, were able to engraft in human-
ized scaffolds in NSG mice. BM cells from intermediate-risk AML 
patients engrafted in scaffolds in NSG and Rag2−/−γc−/− mouse 
models, and these patient cells also colonized the host murine 
organs, including BM, spleen, and liver. More importantly, ossi-
cles enabled maintenance of the clonal heterogeneity in xeno-
grafted cells recovered from primary transplants, and their LSC 
self-renewal capacity was retained, as demonstrated by serial 
transplantation assays (Antonelli et al., 2016).

In a similar study using a different technical approach, 
Reinisch et al. (2016) demonstrated a similar retention of sub-
clonal architecture in AML patient samples. Humanized ossicles 
were obtained by PTH treatment in hMSC carriers and then sub-
cutaneously injected into mice, and normal, as well as malignant 
human, hematopoietic cells were transplanted in NSG mice 8 wk 
after the preimplantation of hMSC carrier. With a total in vivo 
experiment time of 34 wk, results showed that human AML cells 
inside humanized ossicles recapitulated the original subclonal 
architecture of AML patient samples with a higher frequency 
of AML LSCs compared with traditional injection methods. 
Furthermore, this model also enabled the successful engraft-
ment of acute promyelocytic leukemia patient cells and myelo-
fibrosis patient samples (harboring JAK2 or calreticulin muta-
tion), which have previously failed to engraft in NSG mouse BM 
(Reinisch et al., 2016).

In two recent studies, hMSCs seeded in gelatin-based carrier 
scaffolds were used to study leukemic cells from AML patients 
in vivo. These studies used both non–bone-forming as well as 
BMP-2 bone–forming scaffolds and reported the engraftment 
kinetics of AML patient–derived cells. It is important to note 
that these patient cells were not able to engraft in the BM of 
the mouse, therefore highlighting the need for the humanized 
niche for human LSC maintenance. This humanized scaffold 
approach can be used not only with BM-derived hMSCs, but also 
with human ECs, providing the opportunity to mimic multiple 
different human hematopoietic niches in the implanted scaf-
folds (Abarrategi et al., 2017; Passaro et al., 2017a). These studies 
suggested that donor MSCs can act as a cell source for neotissue 
formation after in vivo implantation of the scaffolds, while also 
enabling the recruitment of host cells that can subsequently par-
ticipate in this neovascularization.

Finally, Battula et al. (2017) developed a different approach 
for studying human AML in mice, a process they termed “human 
bone implant” in mice. This approach uses freshly collected 
human BM biopsies from hip replacement patients and directly 
transplants it subcutaneously into NSG mice, using Matrigel as a 

carrier. The mouse-implanted human BM tissue undergoes vas-
cularization and bone restoration, providing a functional human 
BM microenvironment capable of supporting the engraftment 
with human leukemia, a process the authors related to increased 
osteogenic activity in human bone implant (Battula et al., 2017).

In summary, the evolution of strategies used over the years 
to develop preclinical models to study human normal and malig-
nant hematopoiesis have tried to answer a multitude of questions 
using various tissue engineering approaches. Some of these 
studies have developed various protocols where carrier material 
scaffolds require various periods of in vitro culturing prior to in 
vivo implantation (Martine et al., 2017), whereas others use in 
vivo models directly (Abarrategi et al., 2017; Passaro et al., 2017a), 
with varying experimental time frames ranging from 12 wk 
(Abarrategi et al., 2017) to 34 wk (Reinisch et al., 2016). Another 
important aspect to note is the use of stromal cell types for gener-
ating the humanized niche. Most studies have only used human 
mesenchymal cells, whereas others have co-injected human 
ECs (or total human BM cells) to generate vascular structures, 
thereby increasing the humanized nature of the implants (Chen 
et al., 2012; Battula et al., 2017; Passaro et al., 2017a). Lastly, the 
use of conditioning regiments in mice (such as irradiation) after 
the implantation of the cell-seeded biomaterial (Holzapfel et al., 
2015a; Reinisch et al., 2016, 2017) is somewhat controversial, as it 
may adversely affect the newly formed hematopoietic niche and 
regress the vasculatures that are derived from hMSCs and ECs.

It is worth noting that each of these approaches have spe-
cific and sometimes unique scientific values, and all will unde-
niably play a significant role in various aspects of future pre-
clinical studies.

Conclusions and future directions
Modeling human hematopoiesis in mice is a thoroughly devel-
oped approach, with applications in stem cell studies, clonal 
evolution, and drug screening, to name a few. Continuous efforts 
have been made to develop new mouse models with a more 
humanized microenvironment, which would be more permis-
sive for human studies. However, despite great improvements 
in human hematopoietic cell engraftment and the success in 
recapitulating disease phenotypes, some malignancies are still 
difficult to model in xenotransplantation. Moreover, current PDX 
models present some limitations related to lacking/insufficient 
immune systems or interspecies differences of growth factors 
and receptors, among others.

Advancements in bioengineering and carrier materials have 
provided an improved model system that can generate human-
ized microenvironments, which can be used as an alternative to 
the traditional xenotransplantation approach. Although tradi-
tional in vivo assays have proven useful in understanding human 
hematopoiesis in the mouse microenvironment, implantable 
scaffold methods are able to incorporate assessment of multicel-
lular interactions between human stromal cells and HSCs. How-
ever, questions remain regarding the specific role of the mouse 
vasculature, as well as the cytokines supplied by the mouse sys-
tem to these humanized scaffolds. Other important aspects that 
need to be examined are the optimal human stromal cell types, 
carrier material, and in vitro culture conditions that would allow 
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the development of a robust human niche in vivo. It is important 
to engineer scaffolds that can closely mimic the multicellular 
aspects of the human bone, but considering the complexity of 
the human BM tissue, even in the best scenario, these engineered 
scaffolds will still represent a model with their own specific lim-
itations. Despite this, this new approach can provide an import-
ant tool to potentially generate patient-specific human microen-
vironments in mice that can be used to unravel the role of human 
tumor microenvironments, disease pathology, and physiological 
response to drugs. Ultimately, the use of many of these bioengi-
neered models and continuous efforts to improve their effective-
ness, as well as physiological relevance, will propel preclinical 
studies to a new era of targeted therapeutic development. This 
represents an exciting period, wherein these preclinical mouse 
models will not only serve simply to confirm clinical outcomes, 
but also have the potential to routinely enhance clinical success.
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