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Abstract A stabilized enhanced strain finite element

procedure for poromechanics is fully integrated with an

elasto-plastic cap model to simulate the hydro-mechanical

interactions of fluid-infiltrating porous rocks with associa-

tive and non-associative plastic flow. We present a quan-

titative analysis on how macroscopic plastic volumetric

response caused by pore collapse and grain rearrangement

affects the seepage of pore fluid, and vice versa. Results of

finite element simulations imply that the dissipation of

excess pore pressure may significantly affect the stress path

and thus alter the volumetric plastic responses.

Keywords Bearing capacity � Cap plasticity � Excess
pore pressure � Hydro-mechanical coupling �
Poromechanics � Stabilized procedure

1 Introduction

The fully coupled diffusion–deformation processes occur-

ring within porous media, such as sand, clay, and rock, are

of interest to numerous geotechnical engineering applica-

tions. The presence of fluid inside the pores and in between

the interconnected grains may induce excess pore pressure,

limit volumetric deformation, and introduce rate depen-

dence to the mechanical response of the solid skeleton due

to the transient nature of fluid diffusion [14, 31]. Since pore

fluid flow may profoundly change the mechanical response

of porous media, it is important to take it into account to

ensure the sufficiency of engineering designs.

The fluid–solid interaction in porous media is often

viewed in the context of mixture theory, in which one or

multiple fluids in the connected pore network and a solid

skeleton are homogenized as constituents of a continuum

mixture [8, 14, 31]. The resulting boundary value problem

leads to a two-way coupled system involving at least two

balance equations: one to characterize the deformation of

the solid skeleton, and one for the mass balance of the pore

fluid.

There is an extensive body of literature focusing on

finite element analysis of such a coupled system for geo-

technical engineering applications [11, 22, 28, 36, 44, 51].

Some of these efforts incorporate critical state plasticity

models to capture shear failure and strain localization

underneath the foundation. This type of shear failure may

be accompanied by various amounts of plastic dilation.

Nevertheless, geomaterials, such as high-porosity rock and

salt, are vulnerable to both shear and compaction failure. In

addition to accumulating plastic dilation due to micro-

crack growth, grain rotation, and sliding, these materials

may exhibit significant inelastic compaction due to pore

collapse or grain crushing when the confining pressure is

sufficiently high. This distinct micro-mechanical feature

not only affects the macroscopic mechanical behavior, but

also the interaction between the mechanical and the

hydraulic responses. While this plastic compaction can be
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captured by critical state soil models, the cap plasticity

model used in this study, if calibrated carefully, may pro-

vide more accurate predictions due to the usage of separate

evolution equations to capture different mechanisms.

To capture the inelastic compactive behavior of fully

saturated rock, we incorporate a cap plasticity model that

uses a pressure-dependent shear yielding/failure surface

with a hardening compactive elliptical cap to capture the

pore collapse. For cap models with non-smooth intersec-

tion between the shear yield surface and the compactive

cap (e.g. [16, 33]), difficulties may arise from the singu-

larities induced by the non-smoothness of yield surfaces at

the intersection. This issue must be addressed by special

treatments, which often introduce severe algorithmic and

numerical complexities [23]. To overcome this issue,

smooth variations of the traditional cap model have been

proposed by Borja [10], Dolarevic and Ibrahimbegovic

[17], Fossum and Fredrich [18], Grueschow and Rudnicki

[21], Swan and Seo [46]. In this paper, we adopt the

smooth variation of a three-invariant cap model proposed

in Fossum and Fredrich [18] and subsequently imple-

mented and analyzed in Foster et al. [19], Regueiro and

Foster [30]. This model features a material state that may

move freely from compactive to shear-dominated dilative

deformation. The third stress invariant is introduced to

capture the difference in strength of geomaterials observed

in triaxial compression and extension tests.

While using the same finite element space for dis-

placement and pore pressure is convenient, equal-order

spatial discretizations may cause spurious oscillations in

pore pressure near the undrained limit due to the lack of the

inf-sup condition [44, 51]. To satisfy the inf-sup condition,

one often uses finite dimensional spaces spanned by dif-

ferent basis functions to interpolate the displacement and

pore pressure fields. However, the usage of multiple basis

functions increases the computational cost and leads to

difficulties in post-processing the finite element simula-

tions. Another unrelated but equally important issue is the

volumetric locking caused by the incompressibility of the

solid skeleton itself. This may occur in granular materials

approaching critical state and for soft tissues with little or

no compressibility. This volumetric locking can also be

cured by introducing an extra degree of freedom for

hydrostatic stress to model the volumetric response of the

skeleton. Nevertheless, the extra degree of freedom used to

cure volumetric locking also causes an additional compu-

tational cost and may lead to other stability issues [13, 53].

To address these two issues described above, we

incorporate an inf-sup stabilization technique (for spurious

modes near the undrained limit) along with an assumed

strain scheme (for volumetric locking) such that (1) both

the displacement and the pore pressure fields may span the

same basis functions without spurious oscillations and (2)

the resultant finite element solution is locking-free and

stable. The formulation is then integrated with a cap-sur-

face model to simulate the fully coupled deformation–

diffusion process exhibited in porous rock. By integrating

the cap-surface model with the stabilized hydro-mechani-

cal scheme, we study how inelastic compaction affects the

hydraulic response of collapsible porous media and predict

whether the presence of pore fluid would delay or promote

inelastic compaction.

An outline of the paper is as follows. Section 2 reviews

the balance laws that characterize the fully coupled

deformation–diffusion process and describes the numerical

techniques used to stabilize the accompanying finite ele-

ment solutions. Section 3 outlines the constitutive model

for rocks and granular materials vulnerable to pore col-

lapse. Section 4 discusses stress-induced permeability

changes. Numerical results are presented in Sect. 5, and

conclusions are drawn in Sect. 6.

As for notations and symbols, bold-faced letters denote

tensors; the symbol ‘�’ denotes a single contraction of

adjacent indices of two tensors (e.g. a � b ¼ aibi or

c � d ¼ cijdjk); the symbol ‘:’ denotes a double contraction

of adjacent indices of tensor of rank two or higher (e.g.

C : �e ¼ Cijkl�
e
kl); the symbol ‘�’ denotes a juxtaposition of

two vectors (e.g. a� b ¼ aibj) or two symmetric second-

order tensors (e.g. a� b ¼ aijbkl).

2 Formulation of poromechanics problems

In this section, we present the formulation of the porom-

echanics problem in the infinitesimal regime. We first

review the small strain theory with compressible solid and

fluid constituents. Then, we introduce the numerical

schemes employed to address the numerical deficiencies,

particularly the volumetric locking and spurious oscillation

in the pore pressure field.

2.1 Brief review of poromechanics theory

The central premise of the poromechanics continuum the-

ory is the idea that the total stress, r; experienced by a

porous medium is the sum of two components. The first

component comes from the stress induced by deformation

and re-arrangement of the solid grains that form the solid

skeleton (the effective stress r0). The second component is

the pore pressure p, i.e.,

r ¼ r0 � BpI: ð1Þ

Here B is a scalar parameter and the effective stress is

equivalent to the stress the solid skeleton would have

experienced if the solid skeleton underwent the same

deformation without the presence of pore fluid. The scalar
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parameter B has been interpreted from a variety of

viewpoints and, as a result, there are multiple effective

stress definitions. A common form of the effective stress is

from Terzaghi et al. [47] where he deduces that B is a

coefficient that depends on the effective surface area of the

grains. Skempton [37] performed experiments on soils to

measure the range of B and argue on empirical grounds that

it equals 1 if both constituents are incompressible but can

be much less for rocks composed of deformable grains. Nur

and Byerlee [27] consider the porosity limit of the solid

constituent and argue that if there are no pores in the solid

skeleton, the pore pressure should vanish and hence the

effective pressure becomes identical to the confining

pressure. Based on this observation, they conclude that,

B ¼ 1� K

Ks

; ð2Þ

where K is the solid skeleton bulk modulus and Ks is the solid

grain bulkmodulus. The ratioK/Ks equals 1when the porosity

(ratio between the pore volume and the total volume) becomes

zero and/or the bulk and solid skeleton bulk modulus are

identical. The definition of the effective stress in (1) allows

one to separate the constitutive model of the solid skeleton

from the pore fluid counterpart and thus simplify the

formulation. Considering the limiting case where inertial

terms are neglected, the balance of linear momentum under

the quasi-static condition thus takes the form,

rx � ðr0 � BpIÞ þ c ¼ 0; ð3Þ

c ¼ cs þ cf ¼ ð1� /f Þqsgþ /fqf g; ð4Þ
where g is the acceleration due to gravity, /f is the porosity

(i.e. the ratio between pore and total volume), and qs and qf

are the intrinsic densities of the solid grain and pore fluid

(i.e. mass of the constituent divided by the volume occu-

pied by the corresponding constituent). Meanwhile, the

balance of angular momentum simply requires the sym-

metry of the effective stress, r0ij ¼ r0ji:

In porous media, the pore pressure may alter the storage

capacity of the pores, while volumetric deformation of the

skeleton may change the pore geometry and induce or limit

seepage [41–43, 45]. These interactions are taken into account

in the balance ofmass equation, which takes the following form,

�Brx � _u� 1

M
_pþrx � 1

l
kðrxpþ cf Þ ¼ 0; ð5Þ

where l is the viscosity of the pore fluid, and k is the

intrinsic permeability of the porous system. The scalar

parameter M is the Biot modulus referred to in Biot [8] and

Coussy [14] and takes the following form,

M ¼ KsKf

KfðB� /f Þ þ Ks/
f
; ð6Þ

where Ks and Kf are the bulk moduli of the solid grain and

the pore fluid constituents.

2.2 Weak form of the poromechanics problem

The weak form of the poromechanics problem is obtained

by coupling Eqs. (3) and (5) and applying the principle of

virtual work. Consider a body B consisting of material

points x 2 Rndim where ndim is the number of the spatial

dimensions. The boundary of B is denoted by oB; which is

the direct sum of the Dirichlet and Von Neumann bound-

aries for displacement and pore pressure,

oB ¼ oBu [ oBt ¼ oBp [ oBq; ð7Þ
; ¼ oBu \ oBt ¼ oBp \ oBq; ð8Þ

where oBu is the solid displacement boundary, oBt is the

solid traction boundary, oBp is the pore pressure boundary,

and oBq is the pore fluid flux boundary. The boundary

conditions are prescribed as,

u ¼ u on oBu; ð9Þ
n � r ¼ t on oBt; ð10Þ
p ¼ p on oBp; ð11Þ
�n � q ¼ q on oBq; ð12Þ

where u and t are the prescribed skeleton displacement and

traction, p and q are the prescribed pore pressure and the

fluid flux. n is the unit normal vector to the boundaries. In

addition, we consider the trial space for the weak form

which reads,

Vu ¼ fu : B ! R
3ju 2 ½H1ðBÞ�3; uj

oBu
¼ ug; ð13Þ

Vp ¼ fp : B ! Rjp 2 H1ðBÞ; pj
oBp

¼ pg; ð14Þ

where H1 denotes the Sobolev space of degree one. The

admissible variations of displacement g and pore pressure

w therefore read,

Vg ¼ fg : B ! R
3jg 2 ½H1ðBÞ�3; gj

oBg
¼ 0g; ð15Þ

Vw ¼ fw : B ! Rjw 2 H1ðBÞ;wj
oBp

¼ 0g: ð16Þ

For brevity, the spatial argument x 2 B is not explicitly

written. Moreover, the time derivative of function A is

simply denoted as _A: The weighted-residual statement of

the balance of mass and linear momentum reads: find u 2
Vu and p 2 Vp such that for all g 2 Vg and w 2 Vw;

Gðu; p; gÞ ¼ Hðu; p;wÞ ¼ 0; ð17Þ

where G : Vu � Vp � Vg ! R and H : Vu � Vp � Vw ! R

are defined as,
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Gðu; p; gÞ ¼
Z

B

rx � g : ðr0 � BpIÞ � g � cf g dV

�
Z

oBt

g � t dC; ð18Þ

Hðu; p;wÞ ¼
Z

B

wBrx � _uþ w
1

M
_p

� �
dV

�
Z

B

wrx � 1
l
kðrxpþ cf Þ dV

�
Z

oBq

wq dC: ð19Þ

2.3 Assumed strain for volumetric locking

Standard displacement-based finite element formulations

may exhibit a tendency to lock in the nearly incompressible

regime. This overly stiff response can be remedied by

introducing additional degrees of freedom to decouple the

volumetric and deviatoric responses [53]. Nevertheless,

introducing additional degrees of freedom may slow down

the computation and cause further complications related to

the satisfaction of the inf-sup condition. As an alternative,

locking can be eliminated by using the assumed strain

method [35, 44, 44, 44, 52]. The key idea of the assumed

strain method is to consistently replace the strain obtained

from the interpolated displacement field by an incompati-

ble strain field. Since no additional solution fields are

introduced, this method is more efficient than the mixed

field method. Nevertheless, additional stabilization mech-

anisms must be introduced into the finite element formu-

lation in order to eliminate spurious modes, such as the

hourglass mode discussed in Wriggers [52].

In this work, we introduce an assumed strain formulation

which derives directly from the assumed deformation gradient

method presented in Sun et al. [44]. This assumed strain for-

mulation is based on the fact that the infinitesimal strain tensor

is the linearized strain measure of both the Green-Lagrange

strain tensor and the Eulerian strain tensor, i.e.

� ¼ 1

2
ðrx � uþ ðrxuÞTÞ ¼ 1

2
ðFþ FT � 2IÞ: ð20Þ

Hence, one may define an assumed strain field by replacing

the standard deformation gradient with an incompatible,

assumed deformation gradient that can overcome the

volumetric locking, i.e.

� ¼ 1

2
ðFþ F

T � 2IÞ: ð21Þ

For instance, one may employ the logarithm-based

volumetric approximated deformation gradient by Moran

et al. [25] which reads,

FðniÞ ¼
exp

PnI
j¼1 logðJð�njÞ �NjðniÞ

h i

JðniÞ

0
@

1
A

1=3

FðniÞ; ð22Þ

where ni are the integration points, J ¼ detF; and �Nj is the

prescribed functionwhichgenerates the approximate Jacobianof

F. nI is the number of sampling points for J. �njðj ¼ 1; 2; :::; nIÞ
denotes the prescribed local coordinates of the sampling points

for J such that �Njð�niÞ ¼ dij de Souza Neto et al. [15].

Here we adopt the refinement in Sun et al. [44], of

which a combined standard/F-bar element approach is used

to ensure stabilization, as seen in the following equation,

eFðniÞ ¼ eJðniÞ1=3JðniÞ�1=3
FðniÞ; ð23Þ

where

eJðniÞ ¼ exp ð1� aÞ
XnI

j¼1

logðJð�njÞ �NjðniÞ
 !

þ a log JðniÞ
 !

;

ð24Þ
where a 2 ½0; 1�: The combined formulation may reduce to

the standard or F-bar formulation by adjusting a. Further-

more, it can be easily shown that (23) is identical to the

mid-point assumed deformation gradient formulation in de

Souza Neto et al. [15] if a = 0 and the volume averaging

of log J(X) is computed via one-point quadrature at the

centroid of the element. In all the simulations presented in

this paper, we found that setting a = 0.05 appeared to

eliminate the zero energy modes.

2.4 Projection stabilization for equal-order

discretization

Near the undrained limit, the pore fluid trapped inside the

pore space may cause the skeleton to lose its compressibility

as a consequence of the incompressibility of the pore fluid. In

that case, the mixed finite element formulation is unstable

unless (1) the trial and the solution space of displacement and

pore pressure both satisfy the inf-sup condition [3, 4, 5, 12] or

(2) a stabilization procedure is applied [9, 44, 51].

In either case, the objective is to make sure that the

kernel of the solution space of the pore pressure field does

not contain any non-trivial spurious modes,

kerðrhÞ ¼ ph 2 Vh
p

Z

B

phrx � uh dV ¼ 0 8u 2 Vu
h

8
<
:

9
=
;

¼ f0g; ð25Þ

whereVh
p � Vp andV

h
u � Vu are the finite dimensional spaces

of the displacement and pore pressure, andrh is the discrete

gradient operator defined in Vu
h: If (25) does not hold, then a

non-trivial spurious pressure mode may exist and thus there

could be multiple admissible solutions for Eqs. (18, 19).
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The presence of spurious pore pressure modes can be

interpreted as a signal that the pore pressure space is

comparatively too rich for the displacement space. There-

fore, the strategy employed to eliminate the spurious zero

energy modes includes restricting the pore pressure space

properly. Similar problems also arise when equal-order

velocity-pressure bases are used in the solution of the

incompressible Navier-Stokes problem. For instance, [9]

uses the weaker inf-sup bound to derive stabilization pro-

cedures for both the Q1P0 and Q1P1 finite elements. This

stabilization procedure is adopted in White and Borja [51]

to solve the poromechanics problem with incompressible

solid and fluid constituents.

Recall that a stable and accurate approximation to the

saddle point for the pair of Vp
h and Vu

h satisfies the discrete

inf-sup condition, i.e.

sup
uh2Vh

u ;uh 6¼0

R
B phrx � uh dV

kuhk1
� ckphk0; 8ph 2 Vh

p ; ð26Þ

where c is a positive constant independent of the mesh size.

As pointed out in Bochev et al. [9], while an equal-order

pair Vp
h and Vu

h does not satisfy (26), it does satisfy a

weaker bound

sup
uh2Vu

h;uh 6¼0

R
B phrxuh dV

kuhk1
� c1kphk0 � c2hkrxphk0; 8ph 2 Vh

p ;

ð27Þ
where c1 and c2 are both positive constants independent of

the mesh size.

For poromechanics problems with nonlinear constitutive

laws, the inf-sup condition cannot be directly applied.

However, one can apply the inf-sup condition to the tan-

gent of the linearized governing equations. In this case, a

stabilization term is added to (19) in order to penalize the

deficiency in the displacement/pore-pressure approxima-

tion pair. This penalty term reads

Rstab ¼
Z

Be

s w�PðwÞð Þ _p�Pð _pÞð ÞdV ; ð28Þ

where s is the stabilization parameter. P is a projection

operator that maps the pore pressure onto a element-wise

constant function,

PðpÞ ¼
PnI

j¼1 pðnjÞwðnjÞPnI
i¼1 wðniÞ

; pðnjÞ ¼
Xnnode

a¼1

NaðnjÞpa; ð29Þ

where Pð�Þ is a constant within a single finite element con-

sisting of nI integration points and wðnjÞ is the associated

weight corresponding to the jth integration points for

numerical integrations. NaðnjÞ and pa are the interpolation

function and the nodal pore pressure corresponding to the

node awhere nnode denotes the number of nodes per element.

3 Three-invariant cap plasticity model

Cap models are typically used in the modeling of compli-

cated behavior of porous geomaterials, taking into account

pressure-sensitive yielding, differences in strength in tri-

axial compression and extension, the Bauschinger effect,

dependence on porosity, and so on. They are capable of

capturing shear localization in low porosity geomaterials.

Stefanov et al. [39] has shown that a carefully calibrated

cap model may also reproduce compactive shear and pure

compactive deformation bands in high-porosity

geomaterials.

In this section, the formulation and numerical imple-

mentation of a three-invariant, isotropic and kinematic

hardening cap plasticity model are briefly described. The

model is composed of a pressure-dependent shear yield

surface and a hardening compaction cap as shown in

Fig. 1. Notice that in Fig. 1, the sign convention is com-

pression positive while in the rest of the paper, compres-

sion is treated as negative. For more details and motivation

of the model, the reader is referred to [18, 19]. The

numerical integration of the cap model is performed using

a refined explicit algorithm with a normal correction as

detailed later in this section.

3.1 Yield functions and plastic potentials

Before introducing the yield and plastic potential functions,

a deviatoric backstress tensor a is presented to capture the

Bauschinger effect for cyclic loading, such that the relative

stress tensor can be defined as n ¼ r� a: The yield func-

tion f and plastic potential function g are then both written

in terms of stress invariants of the relative stress tensor, i.e.

J
n
2 and J

n
3 ; where the superscript n shows the stress

invariant is written in term of relative stress tensor. The

stress invariant I1 is unchanged since the backstress tensor

a is deviatoric in nature. The yield function and plastic

potential function are given as,

f ðI1; Jn2 ; Jn3 ; a; jÞ ¼ ðCðbÞÞ2Jn2 � FcðFf � NÞ2 ¼ 0; ð30Þ

gðI1; Jn2 ; Jn3 ; a; jÞ ¼ ðCðbÞÞ2Jn2 � Fg
c ðFg

f � NÞ2; ð31Þ

where Ff is an exponential shear failure function, and Ff
g is

the corresponding plastic potential surface given as,

Ff ðI1Þ ¼ A� C expðDI1Þ � hI1; ð32Þ
F
g
f ðI1Þ ¼ A� C expðLI1Þ � /I1: ð33Þ

The shear failure surface Ff (as shown in Fig. 1b) captures

the pressure-dependence of the shear strength of the

material. N is a material parameter that represents the

offset of the yield function from the shear failure surface.

A, C, D and h are material parameters that are fit to
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experimental peak stress for various confining pressures.

L and / are determined from experimental measurements

of volumetric plastic deformation. CðbÞ is a function of the

Lode angle, which takes into account the differences in

strength in triaxial compression and extension tests, as

typically seen in geomaterials. The Lode angle b is given

as

b ¼ � 1

3
sin�1 3

ffiffiffi
3

p
J
n
3

2ðJn2Þ3=2

 !
; ð34Þ

and CðbÞ is introduced as

CðbÞ ¼ 1

2
1þ sinð3bÞ þ 1

w
ð1� sinð3bÞÞ

� �
ð35Þ

¼ 1

2
1� 3

ffiffiffi
3

p
J
n
3

2ðJn2Þ3=2
þ 1

w
ð1þ 3

ffiffiffi
3

p
J
n
3

2ðJn2Þ3=2
Þ

 !
; ð36Þ

where w is the ratio of triaxial extension strength to

compression strength. Fc provides a smooth elliptical cap

to the yield function and is given by

FcðI1; jÞ ¼ 1� Hðj� I1Þ
I1 � j

XðjÞ � j

� �2

; ð37Þ

where H(j - I1) is the Heaviside function. The effect of

the function Fc is that at some value of mean stress, j, the

yield surface begins to deviate from the initial shear yield

surface, until a point X is reached, where there is no shear

strength. The function X(j) is the intersection of the cap

surface with the I1 axis in the
ffiffiffiffiffi
J2

p
versus I1 plane and is

given by

XðjÞ ¼ j� RFf ðjÞ; ð38Þ

where R is a material parameter governing the aspect ratio

of the cap surface. The corresponding functions for the

plastic potential g are written as,

Fg
c ðI1; jÞ ¼ 1� Hðj� I1Þ

I1 � j

XgðjÞ � j

� �2

; ð39Þ

XgðjÞ ¼ j� QFf ðjÞ; ð40Þ

where Q is a material parameter analogous to R.

3.2 Evolution laws for isotropic/kinematic hardening

parameters

There are two internal variables involved in the cap plas-

ticity model: the cap hardening parameter j for isotropic

hardening, and the deviatoric back stress a for kinematic

hardening. The evolution of j is related to the volumetric

plastic strain, �pv ; while the evolution of a is related to the

deviatoric plastic strain, ep: The evolution of a is given by

the following expression

_a ¼ _chaðaÞ; ð41Þ

ha ¼ caGaðaÞdev og

or

� �
; ð42Þ

where _c is the consistency parameter, and ca is a material

parameter that controls the rate of hardening. GaðaÞ is a

function which limits the growth of the back stress as it

approaches the failure surface and can be written as

GaðaÞ ¼ 1�
ffiffiffiffiffi
Ja2

p

N
; Ja2 ¼ 1

2
a : a: ð43Þ

The evolution of j, related to isotropic hardening, is given as

(a)

shear 

surface

compactive 

cap

(b)

Fig. 1 Cap plasticity model yield surface: a three-dimensional representation in principal stress space; b two-dimensional representation in

meridional stress space; deviatoric stress
ffiffiffiffiffi
J2

p
versus mean stress I1. Sign conventions in this figure: compression positive and tension negative
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_j ¼ _chjðjÞ; ð44Þ

hj ¼ trðog=orÞ
o�pv=oj

: ð45Þ

The following form of volumetric plastic strain is used,

�pv ¼ Wðexp½D1ðXðjÞ � X0Þ � D2ðXðjÞ � X0Þ2� � 1Þ: ð46Þ
In the above, W, D1 and D2 are material parameters,

X0 = X(j0) is the initial cap position with j0 being the

initial value of the cap parameter.

3.3 Flow rule and generalized Hooke’s law

To complete the formulation for the cap plasticity model at

small strains, an additive decomposition of the strain rate

tensor into elastic and plastic parts is introduced,

_� ¼ _�e þ _�p: ð47Þ

We assume the existence of a plastic potential function

(e.g. (31)) that governs the direction of plastic flow via

_�p ¼ _c
og

or
; ð48Þ

where _c is the plastic multiplier or consistency parameter.

For associative flow, g = f. For linear isotropic elasticity,

the generalized Hooke’s law is written as

_r ¼ ce : _�e ¼ ce : ð _�� _�pÞ; ð49Þ

where ce is the fourth-order isotropic elasticity tensor

ce ¼ kI � I þ 2lI; I ¼ 1=2ðdikdjl þ dildjkÞei � ej � ek � el;

ð50Þ
and I is the second-order identity tensor, I is the symmetric part

of the fourth-rank identity tensor, dij is theKronecker delta, ei is

the Cartesian basis vector, k and l are Lamé constants.

3.4 Numerical integration of the constitutive model

Given the values of stress and the internal variables at time

tn, and the strain increment D�; the goal of the numerical

integration is to find the stress and internal variable values

at time tn?1. This is accomplished using the evolution Eqs.

(41, 44, 48, 49), while at the same time satisfying the yield

condition (30). In this work, we employ a refined explicit

integration algorithm. This refined explicit scheme is

advantageous over the implicit counterpart, in the sense

that it is easier to implement and does not require linear-

izing and solving a system of nonlinear equations. In the

cap plasticity model, the number of unknowns can be as

large as 13 (6 for stress components, 5 for kinematic

hardening parameter, 1 for isotropic hardening and 1 for

plastic multiplier), but this number can be reduced to 7

using a modified spectral decomposition method as shown

in Foster et al. [19]. Alternatively, a semi-implicit algo-

rithm proposed by Tu et al. [48] for integrating nonsmooth

elasto-plasticity models may be applied which keeps the

internal variables constant and delays the update until local

convergence is achieved, effectively reducing the number

of unknowns in the system of nonlinear equations.

The explicit integration scheme adopted in this work

includes an algorithm to prevent the stress and hardening

parameters from drifting away from the yield surface. To that

end, a normal correction algorithm [38] is employed. The

integration scheme consists of an elastic trial state followed by

a plastic-corrector as described in Algorithm 1. Once the

plastic update is obtained, the yield surface is evaluated again

to determine if a drift has occurred. The extent of the drifting

depends on the accuracy of the integration scheme and the

nonlinearity of the constitutive models. The stress correction

algorithm to prevent such drifting is detailed in Algorithm 2.

This algorithm uses a correction normal to the yield surface to

correct the drifted stress. Notice that the expression for ~v in

Algorithm 2 is due to the assumption of holding hardening

parameters unchanged while using normal correction.
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3.5 Material properties for Salem limestone

To replicate the effective stress–strain relation of the Salem

limestone, we employ two sets of material parameters

reported in Fossum and Fredrich [18], Foster et al. [19],

Regueiro and Foster [30]. The first set of material parame-

ters, which is listed in Table 1, is for modeling associative

plastic behavior of Salem limestone. For comparison, we

also employ a second set of material parameters reported in

Regueiro and Foster [30] to replicate non-associative plastic

behavior. This set of material parameters is listed in Table 2.

In both cases, the hydro-mechanical coupling and the

hydraulic properties are captured via the additional mate-

rial parameters listed in Table 3. All numerical simulations

reported in Sect. 5 are conducted with the two sets of

material parameters reported in Tables 1 and 2, along with

the hydro-mechanical coupling and hydraulic parameters

listed in Table 3.

4 Stress-induced permeability changes

Adequately modeling the hydro-mechanical response of

porous media requires constitutive models for both the

solid skeleton (e.g. the cap plasticity model), and the pore

fluid (e.g. Darcy’s law). While significant effort has been

spent on developing sophisticated constitutive models to

handle the solid skeleton response in porous continua [19,

19, 21, 22, 22, 24, 41], permeability, which governs the

solid-fluid interaction inside the porous media, is often

assumed to be constant or related to porosity via simple

models [6]. Recent researches, such as [20, 34], Yang and

Aplin [54], have incorporated other factors, such as pore

throat distributions, pore shapes, effective stress and

damages into empirical or semi-empirical formulas to

improve the accuracy of permeability predictions.

To quantitatively assess how porosity evolution leads to

changes in hydraulic response, we perform a regression

analysis and obtain the best fitted coefficient, ko, for the

Kozeny–Carman equation based on the Salem limestone

log data from Stevenson [40], i.e.

k ¼ ko
ð/f Þ3

ð1� /f Þ2
: ð51Þ

Meanwhile, volumetric deformation of the skeleton may

lead to shrinkage or enlargement of the pore space. This

effect is modeled via the Biot’s coefficient and Biot’s

modulus (cf. [14]),

_/f ¼ Bð _�eii þ _�piiÞ þ
1

M
� /f

Kf

� �
_p: ð52Þ

Note that if the stress state lies on the cap surface, then part

of the porosity change is irreversible. Figure 2 compares

Table 1 Material parameters for the cap model fitted to Salem

limestone data

Parameter Description Value Unit

E Young’s modulus 22,547 MPa

m Poisson’s ratio 0.2524 Dimensionless

A Shear failure

parameter

689.2 MPa

C Shear failure

parameter

675.2 MPa

D, L Shear failure

parameter

3.94 9 10-4,

3.94 9 10-4
1/MPa

h, / Shear failure

parameter

0.0, 0.0 Rad

R Cap parameter 28.0 Dimensionless

j0 Initial cap position -8.05 MPa

W Parameter for �pv
function

0.08 Dimensionless

D1 Parameter for �pv
function

1.47 9 10-3 1/MPa

D2 Parameter for �pv
function

0.0 1/MPa2

ca Bulk modulus 1e5 MPa

w Triaxial extension to

compression strength

ratio

1.0 Dimensionless

N Initial yield surface

offset

6.0 MPa
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the best fit Kozeny–Carman equation (red line) with the log

data from Stevenson [40]. We found that the best fit

ko = 17.76 Darcy, while R
2
= 0.585.

We assume that the isothermal condition holds. The

pore fluid is at 20 �C where the viscosity of the pore fluid is

10-3 Pa � second. When the porosity equals to 0.1, k=l ¼
2:69� 10�12m=ðPa sÞ; the approximate hydraulic con-

ductivity is 2.63 9 10-8 m/s.

5 Numerical examples

In this section, we present a one-dimensional confined

compression loading, an unconfined drained shear loading,

and two punch loading simulations. Our objective is to

verify the implementation and examine how factors such as

loading rate, drainage of pore fluid, and pore collapse affect

the stability of the fully saturated porous rock. In addition,

we also use the examples to assess the numerical

performance of the stabilized mixed finite element with

assumed strain formulation. Gravity effects are neglected

in the numerical examples.

5.1 One-dimensional compression loading

Previously, the one-dimensional loading test has been used

to verify the implementation for the finite strain poroelas-

ticity problem in the context of the stabilized finite element

formulation in Sun et al. [44]. Here we re-use this one-

dimensional confined test for two purposes: (1) to verify

the finite element implementation with the assumed strain

formulation and (2) to examine the hydro-mechanical

coupling effect in a simple loading path.

For the sake of completeness, we briefly outline the

boundary value problem for uniaxial confined compression.

First, a fully saturated stress free numerical specimen is placed

in a cylindrical hydrated chamber such that no pore fluid

exchange occurs at the bottom and the side boundaries. As a

result, the pore fluid flux is zero at those locations. The height,

h, of the cylinder is 30 m, and the radius of the cylinder is 30

m. Horizontal displacement is constrained to simulate one-

dimensional compression condition. A ramp-and-hold

downward displacement is applied on the top surface where

water is free to flow in and out of the articular layer, i.e.

uðz ¼ h; tÞ ¼ �ct if to � t� 0

�cto if t[ t0

�
; ð53Þ

where c is the loading rate. The analytical solution of this

problem is available if both constituents are assumed to be

Table 2 Material parameters for the non-associative cap plasticity

model. Non-associativity is introduced through L and /

Parameter Description Value Unit

E Young’s modulus 22,547 MPa

m Poisson’s ratio 0.2524 Dimensionless

A Shear failure parameter 689.2 MPa

C Shear failure parameter 675.2 MPa

D, L Shear failure parameter 3.94 9 10-4,

3.5 9 10-4
1/MPa

h, / shear failure parameter 0.1, 0.085 Rad

R Cap parameter 28.0 Dimensionless

j0 Initial cap position -8.05 MPa

W Parameter for �pv function 0.08 Dimensionless

D1 Parameter for �pv function 1.47 9 10-3 1/MPa

D2 Parameter for �pv function 0.0 1/MPa2

ca Bulk modulus 1e5 MPa

w Triaxial extension to

compression strength

ratio

1.0 Dimensionless

N Initial yield surface offset 6.0 MPa

Table 3 Additional material parameters used in the poromechanics

formulation

Parameter Description Value Unit

Ks Bulk modulus of the

solid constituent

5 9 104 MPa

Kf Bulk modulus of the

pore fluid

2.2 9 103 MPa

k0/l Kozeny–Carman fitting

coefficient

2.176 9 10-9 m2/(Pa s)

/f Porosity 0.1 Dimensionless

0.02 0.04 0.06 0.08 0.1 0.12 0.14

10
−1

10
0

10
1

10
2

10
3

Porosity

P
e
rm

e
a
b
ili

ty
, 

m
D

a
rc

y

Log data (Stevenson 1978)

Kozeny−Carman equation

Fig. 2 Kozeny–Carman equation compared against log data from

Stevenson [40]
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incompressible and the permeability tensor is isotropic. In

this case the traction on the top surface reads,

t3ðtÞjz¼h ¼
cHA

h
½tHðto � tÞ þ toHðt � toÞ�

þ 2ch

j

X1

n¼1

1

n2p2
½Hðto � tÞð1� e�antÞ

þ Hðt � toÞðe�anðt�toÞ � e�antÞ�; ð54Þ

where H is the Heaviside step function. HA = k ? 2 G is

the sum of the Lamé’s first parameter and two times the

shear modulus, an = n2p2jHA/h
2 and j = k/m is the

intrinsic permeability k divided by the viscosity m.

Due to the axisymmetry, only a quarter of the domain is

modeled. To verify the implementation and ensure that the

assumed strain methodology does not introduce errors, we

conducted finite element simulations of an elastic porous

layer with the same elastic parameter in Table 1, but fixed

the porosity, and set Ks and Kf equal to 1,000 GPa,

approximating both solid and fluid constituents as incom-

pressible. Figure 3 shows the finite element solution and

the analytical solution obtained via Eq. (54) for c = 0.15

m/h and to = 0.1 h. Notice that the analytical and numer-

ical solutions are in excellent agreement. This indicates

that the assumed strain formulation is able to capture the

analytical solution when both the solid grain and pore fluid

are incompressible.

Next, we employ the elasto-plastic cap model and set

both the bulk modulus of the solid grain, Ks, and pore fluid,

Kf, equal to the assigned values in Table 3. As a result of

the compressibility of the constituents, the Biot’s coeffi-

cient B = 0.7 and the Biot’s modulus M = 18 GPa. Five

loading rates are prescribed as c = 0.0015, 0.015, 0.15, 1.5

and 15 m/h. Figure 4 compares the finite element solutions

obtained at the five different loading rates. Notice that

although the prescribed displacement is the same, the

maximum traction decreases from 180 to 136 MPa,

apparently due to the decreased loading rate. Also notice

that the plasticity model is time independent, and thus, the

rate effect is solely due to the coupling between the solid

deformation and pore fluid diffusion. Figure 5a shows the

stress path in

ffiffiffiffiffi
J
n
2

q
versus I1 plane. Of all five simulations

with different rates, plastic response only occurs when

c = 0.15, 1.5 and 15 m/h. In Fig. 5b, the stress paths are

plotted in
ffiffiffiffiffi
J2

p
versus I1 plane, along with the final failure

surface. As expected, the stress paths appear to deviate

from the yield surface because the principal directions of

the relative stress tensor n are changing.

The difference in mechanical responses among different

cases is due to the hydro-mechanical coupling effect. At

higher loading rates, the interaction occurs near the

undrained limit, where the pore fluid acts as a volumetric

constraint to the solid skeleton in a time scale smaller than

that of the diffusion process. Thus, a higher traction must

be applied to achieve the same prescribed displacement,

and this higher traction leads to plastic yielding and the

development of a plastic zone near the top layer of the

confined specimen. By contrast, the mechanical response

of the porous layer is purely elastic when the slow loading

rates (c = 0.0015 , 0.015 m/h) are prescribed. These results

indicate that the external work due to the prescribed
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Fig. 3 One-dimensional compression loading on a fully saturated

porous medium with incompressible constituents. Traction responses

obtained via the stabilized finite element method and analytical

solution at the top of the fully saturated specimen with incompressible

constituents (c = 1.5 m/h and to = 0.1 h)
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displacement induces substantial pore fluid diffusion but

not plastic work if the loading rate is close to the drained

limit.

While the prescribed displacement is held constant,

the pore-diffusion process may continue until the fluid

reaches steady state. During this period, the plastic zone

may propagate from the top layer until the onset of

elastic unloading. As shown in Fig. 6, the plastic zone

would expand from the top layer to around 1.5 m from

the top surface as pore fluid diffuses. However, when the

pore pressure profile becomes linear via the vertical axis,

as shown in Fig. 7, steady state is reached and the plastic

zone remains the same between t = 630 and 720 s.

Notice that the hydro-mechanical coupling effect show-

cased in this one-dimensional example could not be

properly modeled if the transient diffusion effect was

neglected. As a result, oversimplifying these problems

as fully drained or undrained may lead to significant

errors.

(a) (b)

Fig. 5 One-dimensional compression loading with associative cap plasticity. Stress path of the material point nearest to the top layer loaded at

different loading rates: a in meridional stress space

ffiffiffiffiffi
J
n
2

q
versus I1; b in meridional stress space

ffiffiffiffiffi
J2

p
versus I1
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Fig. 6 One-dimensional compression loading with associative cap

plasticity. Plastic volumetric strain profile at various time steps with

loading rate c = 1.5 m/h
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5.2 Unconfined drained shear loading

The purpose of introducing the unconfined drained shear

loading simulation is (1) to analyze how local pore fluid

diffusion may affect the formation of a shear band and (2) to

provide a numerical assessment of the rate effect induced by

the seepage on the mechanical responses. Previously, sim-

ilar studies on the effects of boundary conditions and local

drainage have been conducted in Prevost and Høeg [29],

Wang et al. [50]. In this numerical example, we use the

non-associative cap-plasticity model and the corresponding

material parameters listed in Tables 2 and 3. The boundary

conditions are illustrated in Fig. 8. The excess pore pressure

at the top and bottom of the specimen is prescribed to be

zero to simulate surfaces that permit drainage, while zero-

flux boundary conditions are applied on the lateral sides.

Gravity is neglected. The vertical displacement of the top

and bottom of the specimen is fixed during the shear phase

[50], while horizontal displacement is accumulated at a

constant rate for a fixed period of time.

Fig. 8 Boundary conditions of the unconfined drained shear loading.

H = 10m in the numerical simulations. Structured mesh (fine) shown

in the undeformed configuration, where highlighted elements will be

selected to report stress paths

Fig. 9 Unconfined drained shear loading with non-associative cap plasticity. Excess pore pressure built-up at 10 % shear strain under different

loading rates. a 10-6 m/s loading rate, b 10-4 m/s loading rate, c 10-2 m/s loading rate
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5.2.1 Rate effect

In this section, we assess the importance of rate effects on

local excess pore pressure build-up and analyze whether

the non-uniformity of excess pore pressure causes signifi-

cant effects on the mechanical response. For comparison,

we prescribed the horizontal displacement of the top and

bottom of the specimens at three different rates—

10-6, 10-4, 10-2m/s. This difference in prescribed loading

rates leads to various amounts of shear-induced diffusion

and pore pressure build-up. Figure 9 demonstrates the

amount of excess pore pressure generated when the pre-

scribed shear strain reaches 10 %. Note that the simulations

are all globally drained. In an idealized situation where

local seepage is neglected, all simulations are expected to

yield the same result. However, these simulations indicate

that the local pore fluid diffusion may introduce

discrepancies in mechanical response if the ratio between

loading rate and hydraulic conductivity is sufficiently high.

In addition, the local pore pressure build-up during the

shear phase influences the effective stress path and elasto-

plastic responses. Figures 10 and 11 compare the equiva-

lent plastic strain and the volumetric plastic strain devel-

oped at various loading rates in fully saturated and dry

simulations. For illustration purposes, quantities such as

equivalent and volumetric plastic strains at integration

points are projected onto the nodes via a global L2 pro-

jection [26].

By comparing the plastic responses shown in Figs. 10

and 11, we observe that the two-way, hydro-mechanical

coupling effect is more substantial when the prescribed

loading rate is high. For instance, the equivalent plastic

strain and volumetric plastic strain profiles of the dry case

and the coupled simulation with a 10-6 m/s loading rate are

Fig. 10 Unconfined drained shear loading with non-associative cap plasticity. Equivalent plastic strain contours at 10 % shear strain for the dry

simulation and poromechanical coupling simulations under different loading rates. a Dry case, b 10-6 m/s loading rate, c 10-4 m/s loading rate,

d 10-2 m/s loading rate
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similar to each other, as shown in Figs. 10a, b and 11a, b.

While a shear band still forms in the 10-4 m/s loading case,

the specimen exhibits less equivalent plastic strain (from

0.75 to 0.4) and volumetric plastic strain (from 0.4 to 0.2)

in the shear band zone, as shown in Fig. 10c. When loading

rate reaches 10-2 m/s, the hydro-mechanical effect is found

to be sufficient to prevent the formation of shear band, as

shown in Fig. 10d.

In the highest loading rate case, 10-2 m/s, the pore fluid

trapped at the middle of the specimen causes a significant

pore pressure that prevents the formation of the shear band.

More importantly, it clearly shows that fully saturated

porous media under drained conditions may behave very

differently than the dry solid skeleton if the loading rate is

high. In other words, the results of the simulation indicate

that constant volume simulations can be used for speci-

mens under drained conditions only when the specimen is

loaded very slowly (e.g. 10-6 m/s) and gravity is neglected.

As demonstrated by the non-uniform plastic response in

Figs. 10 and 11, local stress paths at different locations

differ significantly. Figure 12 shows the relative stress

paths obtained from the center and the right bottom corner

of the specimen at various loading rates (locations of

selected elements highlighted in Fig. 8). At both locations,

the effective stress response of the slowest loading rate

(10-6 m/s) and the dry case coincide with each other. This

similarity in stress path and the small pore pressure shown

in Fig. 9 indicate that the hydro-mechanical coupling effect

is weak at a slow loading rate. However, when the loading

rate increases, more negative pore pressure is accumulated

Fig. 11 Unconfined drained shear loading with non-associative cap plasticity. Volumetric plastic strain contours at 10 % shear strain for the dry

simulation and poromechanical coupling simulations under different loading rates. a Dry case, b 10-6 m/s loading rate, c 10-4 m/s loading rate,

d 10-2 m/s loading rate
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and thus pushes the specimen closer to the undrained limit,

which ultimately leads to higher effective hydrostatic and

deviatoric stress in the center of the specimen.

5.2.2 Mesh sensitivity

The mechanical response of porous media is rate depen-

dent, as long as the flow regime is not at the fully drained

or the undrained limit. This rate dependence exists

regardless of whether the constitutive law of the solid

skeleton is rate sensitive or not, because rate dependence

can be introduced through the interaction of the pore fluid

and the solid skeleton.

A consequence of this rate dependence is the potential

regularization as discussed in Belytschko et al. [7], such

that the fully coupled hydro-mechanical field equations are

stable and free of mesh pathology if sufficient drainage

occurs. One interpretation is that the physical length scale

introduced by the pore fluid diffusion is independent of the

mesh size. This hypothesis is confirmed in one dimension

through a dynamic wave propagation analysis of saturated

porous media [1, 55]. Previously, Regueiro and Foster [30]

conducted a bifurcation analysis on the three-invariant cap

plasticity model incorporated in this study. Their findings

indicate that bifurcations may occur when the solid skeleton

response is non-associative and rate independent. However,

the role of pore fluid diffusion on mesh dependence was not

given consideration in Regueiro and Foster [30].

Figure 14 compares the equivalent plastic strain accu-

mulated from two uniform meshes consisting of 100 and

(a) (b)

Fig. 12 Unconfined drained shear loading with non-associative cap plasticity. Relative effective stress path in meridional stress space

ffiffiffiffiffi
J
n
2

q

versus I1 for structured fine mesh (locations of the selected elements shown in Fig. 8). The solid lines are the final yield surfaces, colored to

match different loading rates as marked in the figure. Notice that for the center element, the yield surface for loading rate 10-2 m/s is very close

to the original yield surface. a Center element, b corner element

(a) (b)

Fig. 13 Unconfined drained shear loading with non-associative cap plasticity. Effective stress path in meridional stress space
ffiffiffiffiffi
J2

p
versus I1 for

structured fine mesh (locations of the selected elements shown in Fig. 8). The dashed lines are the final failure surfaces, colored to match

different loading rates as marked in the figure. Notice that for the center element, the final failure surface for loading rate 10-2 m/s is very close

to the original failure surface. a Center element, b corner element
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400 hexahedral elements. As shown in Fig. 14b, d, we

observe that the plastic response of the shear band is sen-

sitive to mesh refinement in the dry case. In particular, the

plastic zone of the fine mesh accumulates significantly

more equivalent plastic strain than the coarse mesh coun-

terpart. While a similar discrepancy can still be observed in

the fully saturated specimen as shown in Fig. 14a, c, the

difference on equivalent plastic strain is smaller in the

shear band.

To accurately analyze how pore fluid diffusion affects

the onset of strain localization, algorithms that detect a

singularity in the acoustic tensor, such as those in Andrade

and Borja [2], Regueiro and Foster [30], are required. This

topic is out of the scope for this work, but will be con-

sidered in future studies.

5.3 Strip punch loading

The purpose of introducing this strip punch loading

example is twofold: (1) to examine how hydro-mechanical

coupling may affect the simulated mechanical and

hydraulic responses and (2) to analyze how pore fluid

diffusion affects the mechanical response of the shear band.

The finite element meshes and boundary conditions for

the strip punch loading problem are shown in Fig. 15. The

area subjected to the prescribed punch loading is 5 m wide

and the underlying domain has a side length of 10 m. We

assume that the plane strain condition holds and the

material is initially homogeneous. Body forces are

neglected. Both associative and non-associative constitu-

tive responses are simulated using the material parameters

Fig. 14 Unconfined drained shear loading with non-associative cap plasticity. Equivalent plastic strain contours of fully saturated (left) and dry

(right) specimens obtained from coarse and fine structured meshes at 10 % global shear strain. The loading rate of the fully saturated specimen is

10-4 m/s. a Fully saturated specimen, b dry specimen, c fully saturated specimen, d dry specimen
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listed in Tables 1 and 2, along with the hydro-mechanical

coupling parameters listed in Table 3. We prescribe two

loading rates, i.e., 10-6 and 10-4 m/s to analyze the rate

effect.

5.3.1 Associative hydro-mechanical response

In this section, we analyze the mesh sensitivity and the rate

effects of the associative constitutive response in coupled

hydro-mechanical simulations. Since there is no softening

in the post-yielding regime, the governing equation is

expected to remain well posed [30, 32]. Nevertheless, since

the prescribed displacement might cause severe distortion

near the tip of the strip, it is still important to quantify the

gain in accuracy when consecutive mesh refinements are

taken. Three finite element meshes are generated as shown

in Fig. 15.

Figure 16 compares the equivalent plastic strain con-

tours for three meshes at t = 686 s at a constant loading

rate of 10-4 m/s. In all three cases, a localized band starts

to form after the onset of plastic deformation. The shape

and orientation of the localized bands appear insensitive to

mesh refinement. Figure 17 compares the corresponding

volumetric plastic strain contours. Notice that the volu-

metric plastic strain right at the edge of the strip is

compactive (negative sign), while inside the band, it is

(a) (b)

(c)

Fig. 15 Finite element meshes of the strip punch loading problem with applied displacement dðtÞ: The top boundary is free except for the

applied displacement. The right vertical side and bottom have fixed normal displacement. The left vertical side is a free surface. The top free

surface has zero pressure boundary. All other surfaces have free flux boundary condition. Through thickness displacement, degrees of freedom

are fixed to achieve the plain strain condition. a Number of element: 800, b number of element: 6,400, c number of element: 51,200
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dilative (positive sign). Figure 18 compares the corre-

sponding pore pressure contours. All three meshes give

similar pore pressure distributions.

The global load-displacement response of the strip

punch loaded at a rate of 10-4 m/s for each mesh resolution

is shown in Fig. 19. It can be seen that the responses are

very similar, and as the mesh is refined, the resultant force

decreases slightly. Figure 20 shows the nodal pore pressure

time histories at the middle of the left vertical surface

obtained from the coarse and refined meshes. The pore

pressure time histories, as shown in Fig. 20, are practically

indistinguishable. According to the results shown in

Figs. 17 and 18, the size and location of the plastic zone

and the pore pressure distribution are both insensitive to

mesh refinement.

To analyze the local effective stress response at various

locations, we select three representative points, shown in

Fig. 21, and record the corresponding stress paths during

the simulations. Note that the predicted responses at the tip

of the punch loading are highly sensitive to the mesh size

as demonstrated previously in Van-Langen and Vermeer

[49]. While introducing a zero-thickness interface element

or other enhancements that enable strong discontinuity in

displacement may significantly improve the accuracy of the

responses at the tips, these enhancements are outside the

scope of this work. As a result, we do not analyze the

stress–strain response of the element adjacent to the punch

loading.

Figure 22 shows the effective stress path at the three

selected points at loading rate 10-4 m/s in two meridional

Fig. 16 Strip punch loading on a saturated limestone domain with associative cap plasticity. Equivalent plastic strain contours at time 686 s for

three meshes at a constant loading rate of 10-4 m/s. The displacement field is scaled by a factor of 5
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stress spaces, i.e. a

ffiffiffiffiffi
J
n
2

q
versus I1, and b

ffiffiffiffiffi
J2

p
versus I1.

According to Fig. 22a, all three locations initially yield at

the shear part of the yield surface. As the loading contin-

ues, Points 2 and 3 stay on the shear yield surface, while

Point 1 starts to move toward the compactive (cap) portion

of the yield surface. This indicates that the plastic defor-

mation of the material at Point 1 transitions from a shear-

dilatant dominated mechanism to a shear-compactive

dominated mechanism.

Figure 22b shows the failure surface of Point 1 at the

end of the simulation. Notice that the final stress state of

Point 1 is approaching the compactive part of the failure

surface. The corresponding shear stress–strain behavior of

the selected points is plotted in Fig. 23. Notice that Point 1

undergoes significantly larger shear stain compared to the

other two points. This observation is consistent with the

equivalent strain contours in Fig. 21 showing the concen-

tration of shear strain near the edge of the punch loading.

None of the points has reached the failure surface yet, and

thus, the perfect plasticity is not observed in the shear

stress–strain response.

Figure 24a compares the effective stress near the edge

of the strip for two loading rates. According to Fig. 24a,

plastic yielding occurred at lower mean effective stress

when loading is prescribed at a faster rate. This differ-

ence in initial yielding can be explained by the fact that

Fig. 17 Strip punch loading on a saturated limestone with associative cap plasticity. Volumetric plastic strain contour at t = 686 s for three

meshes at a constant loading rate of 10-4 m/s. The displacement field is scaled by a factor of 5
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the higher loading rate limits the dissipation of pore

pressure and causes more excess pore pressure induced

by skeleton deformation. This higher pore pressure,

which is shown in Fig. 25a, in turn leads to lower mean

effective stress and causes the geomaterial to yield on

the shear-dilatational side of the surface at a lower mean

effective stress.

Figure 24b compares the porosity evolution of the

material at Point 1. While the material at Point 1 exhibits

porosity reduction in both cases, the porosity reduction is

more significant in the fast loading rate case. As shown in

Fig. 25, this is attributed to both the compactive plastic

volumetric strain and the substantial amount of negative

pore pressure that lead to changes in densities of the

compressible solid and fluid constituents.

5.3.2 Non-associative hydro-mechanical response

As reported in [30], the associative version of the cap

plasticity model does not lead to the loss of ellipticity. As a

result, both the single-phase dry and hydro-mechanical

responses are not prone to exhibit mesh dependence.

In an attempt to analyze whether the hydro-mechanical

coupling regularizes the system, we repeat the previous

boundary value problems with non-associative cap plas-

ticity parameters, as listed in Table 2. Our objective is to

compare the non-associative response of the single-phase

dry simulations with the water-saturated counterparts and

analyze the effects of hydro-mechanical coupling.

Boundary conditions and geometry are identical with

those used in the previous associative plasticity example.

Fig. 18 Strip punch loading on a saturated limestone with associative cap plasticity. Pore pressure contour at t = 686 s for three meshes at a

constant loading rate of 10-4 m/s. The displacement field is scaled by a factor of 5
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The prescribed loading rate is 10-4 m/s. We first compare

the shear stress–strain responses of the three selected

points shown in Fig. 21. Interestingly, from Fig. 26, we

found that existence of pore fluid does not impose any

significant difference on the shear response in Points 2 and

3. By contrast, the shear stress–strain response at Point 1

(the tip) is more sensitive to the drainage condition. In

particular, we observe a slight shear stress drop after

reaching a local peak at 80 MPa. Notice that the shear

stress is monotonically increasing during the dry simula-

tion. Furthermore, the shear stress at the end of the fully

saturated simulation is approximately 10 % less than the

dry counterpart. Figure 27 shows the stress path at the tip

of the punch loading. The pore fluid diffusion, which is

prescribed by a zero pore pressure, is significant enough to

cause a noticeable shift of the initial yield point in both

the

ffiffiffiffiffi
J
n
2

q
versus I1 and

ffiffiffiffiffi
J2

p
versus I1 stress space. In turn,

this shift leads to less isotropic hardening in the fully

saturated material and therefore lowers the shear stress in

the post-yielding regime. In contrast, Fig. 28 shows the

stress path of Point 3, which is located inside the locali-

zation band. Unlike the stress path of Point 1, the stress of

Point 3 stays on the shear part of the yield surface. The

yield surface of Point 3 does not enlarge significantly.

This lack of significant hardening is also observed in the

octahedral shear stress versus octahedral shear strain

curves in Fig. 26. Since the prescribed loading is pro-

gressing at a constant rate, excess pore pressure is not

expected to be fully dissipated at Point 2 and Point 3. The

responses shown in Figs. 26 and 28 nevertheless indicate

that the excess pore pressure seems to have little effect in

regions far away from the edge of the punch load. On the

other hand, the excess pore pressure at Point 1 is expected

to be small due to its close proximity to the zero pore

pressure surface. However, we still observe a measurable

difference in octahedral shear stress of dry and fully sat-

urated materials, as shown in Figs. 26 and 27.
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Fig. 19 Strip punch loading on a saturated limestone domain with

associative cap plasticity. Global load-displacement responses with a

prescribed 10-4 m/s loading rate
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Fig. 20 Strip punch loading on a saturated limestone domain with

associative cap plasticity. Time histories of pore pressure (log scale)

for the node at the middle of the left vertical surface for loading rate

10-4 m/s

pt 1pt 2
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Fig. 21 Strip punch loading on a saturated limestone domain with

associative cap plasticity. Equivalent plastic strain contours showing

locations of three selected points (Gauss points within highlighted

elements) for reporting stress path. Contour plotted at t = 686 s at a

constant loading rate of 10-4 m/s
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To assess the mesh sensitivity of the hydro-mechanical

responses, we conduct refinement studies on both dry and

fully saturated cases. Figures 29 and 30 show the equiva-

lent plastic strain and volumetric plastic strain of the dry

and fully saturated materials with three levels of consecu-

tive mesh refinement. As pore fluid diffusion may dissipate

part of the energy, we find that the plastic zone developed

in the fully saturated simulations tends to be larger and

more diffusive.

Figure 31 compares the global force-displacement

responses for three meshes, in (a) dry and (b) fully satu-

rated conditions. Interestingly, we found that the global

force-displacement responses seem to be insensitive to the

refinement of the finite element meshes when only a small

amount of plastic strain accumulates in the plastic zone.

This insensitivity to mesh refinement is observed even

when plastic strain is concentrated in a localized region.

Presumably, the discrepancies among various meshes

could possibly be more apparent if the materials are further

loaded in the post-bifurcation regime. However, since the

simulations fail to converge when the prescribed dis-

placement is above 0.07m, our simulations stopped pre-

maturely before more plastic strain accumulates. Since loss

of ellipticity is not checked, it is unclear whether bifurca-

tion(s) occurs. Algorithms that detect bifurcations, such as

those in Andrade and Borja [2], Regueiro and Foster [30],

are outside the scope of this work, but will be considered in

future studies.

5.4 Three-dimensional rigid circular punch loading

The purpose of this three-dimensional simulation is to

examine the influence of the hydro-mechanical coupling

effect on the mechanical and hydraulic responses when the

porous medium is close to the drained limit. A three-

dimensional circular punch load with 3 m radius is applied

on saturated collapsible limestone block. The limestone

block is 30 m in radius and 30 m in height. Since the

circular domain allows the pore fluid to flow in more

directions than the strip domain, the rate of consolidation is

expected to be higher than those in the previous examples.

The mechanical and hydraulic responses of the limestone

are modeled via the associative version of the cap plasticity

model with material parameters listed in Tables 1 and 3.

The bottom of the limestone domain is fixed and a linear

ramp function d(t) is used to prescribe the vertical dis-

placement of the punch area at different loading rates.

Furthermore, displacements in the normal direction of the

(a) (b)

Fig. 22 Strip punch loading on a saturated limestone domain with the associative cap plasticity model. a Effective stress path in meridional

stress space

ffiffiffiffiffi
J
n
2

q
versus I1, solid lines (marked pt 1 and pt 3) showing final yield surfaces; b effective stress path in meridional stress space

ffiffiffiffiffi
J2

p

versus I1, dashed lines (marked pt 1 and pt 3) showing final failure surfaces; The prescribed loading rate is 10-4 m/s
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Fig. 23 Strip punch loading on a saturated limestone domain with

associative cap plasticity. Octahedral shear stress–strain responses at

the three selected points from simulations with a 10-4 m/s loading

rate
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(a) (b)

Fig. 24 Strip punch loading on a saturated limestone domain with associative cap plasticity. a Effective stress path in meridional stress spaceffiffiffiffiffi
J
n
2

q
versus I1 and b porosity evolution of a material point near the edge of the strip loading (pt 1 shown in Fig. 21) for two loading rates, denoted

as fast (10-4 m/s) and slow (10-6 m/s)

(a) (b)

Fig. 25 Strip punch loading on a saturated limestone domain with associative cap plasticity. a Pore pressure and b plastic volumetric strain of a

material point near the edge of the strip loading (pt 1 shown in Fig. 21) for two loading rates, denoted as fast (10-4 m/s) and slow (10-6 m/s)

(a) (b)

Fig. 26 Strip punch loading with non-associative cap plasticity. Octahedral shear stress–strain response at the three selected points (shown in

Fig. 21) from dry and fully saturated simulations with a 10-4 m/s loading rate. a Non-associative single-phase response, b non-associative hydro-

mechanical response
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two orthogonal surfaces of the limestone domain, at radius

r = 30 m, are prescribed to be zero, while the top free

surface is traction free.

For the pore pressure, the bottom of the limestone

domain is given a zero-flux boundary condition. The two

orthogonal surfaces of the limestone domain, at radius

r = 30 m, as well as the side of the cylindrical domain, are

also considered zero-flux boundaries. The pore pressure of

the top surface is prescribed as zero, except underneath the

punch area, to simulate the fully drained surface.

A non-uniform, equal-order finite element mesh, as

shown in Fig. 32, is used. Notice that a very fine discreti-

zation is used at the edge of the circular punch and is

necessary to adequately resolve the sharp stress gradient at

the edge. Figure 33 shows the effective vertical stress

along the two orthogonal edges of the circular punch,

where sharp gradients are observed. Different loading rates,

0.2, 0.02, and 0.002 m/day are prescribed in this example.

Figure 34 shows the pore pressure distribution for the three

different loading rates at the same applied displacement.

As expected, at higher loading rates higher pore pressure

accumulates near the tip of the punch. Unlike the 2D case,

the pore pressure build-up near the punch tip is several

orders lower than the effective stress for loading rates 0.02

and 0.002 m/day and therefore closer to the drained limit.

This result is attributed to the fact that the multiple flow

(a) (b)

Fig. 27 Strip punch loading with a non-associative cap plasticity model. a Effective stress path for pt 1 in meridional stress space

ffiffiffiffiffi
J
n
2

q
versus I1,

solid lines (marked dry and saturated) showing final yield surfaces; b effective stress path for pt 1 in meridional stress space
ffiffiffiffiffi
J2

p
versus I1,

dashed lines (marked dry and saturated) showing final failure surfaces. The prescribed loading rate is 10-4 m/s. Location of pt 1 is shown in

Fig. 21

(a) (b)

Fig. 28 Strip punch loading with a non-associative cap plasticity model. a Effective stress path for pt 3 in meridional stress space

ffiffiffiffiffi
J
n
2

q
versus I1,

solid lines (marked dry and saturated) showing final yield surfaces; b effective stress path for p 3 in meridional stress space
ffiffiffiffiffi
J2

p
versus I1, dashed

lines (marked dry and saturated) showing final failure surfaces. The prescribed loading rate is 10-4 m/s. Location of pt 3 is shown in Fig. 21
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Fig. 29 Strip punch loading on dry (left column) and saturated (right column) domains with non-associative cap plasticity. Equivalent plastic

strain contours at t = 642 s. The displacement field is scaled by a factor of 5. a Dry, mesh 1, b saturated, mesh 1, c dry, mesh 2, d saturated, mesh

2, e dry, mesh 3, f saturated, mesh 3
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Fig. 30 Strip punch loading on dry (left column) and saturated (right column) domains with non-associative cap plasticity. Volumetric plastic

strain contours at t = 642 s. The displacement field is scaled by a factor of 5. a Dry, mesh 1, b saturated, mesh 1, c dry, mesh 2, d saturated, mesh

2, e dry, mesh 3, f saturated, mesh 3
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directions available in the circular domain help dissipating

pore pressure.

Figure 35 compares the pore pressure along the edge of

the domain obtained at three prescribed loading rates.

Again, we observe that faster loading rates result in higher

pore pressure and also a sharper pore pressure gradient.

This sharper pore pressure gradient in turn leads to higher

pore fluid relative velocity. The substantial amount of

diffusion therefore prevents the low compressibility of the

pore fluid constituent from constraining the volumetric

deformation of the solid skeleton. Figure 36 plots the pore

pressure and porosity evolution for a selected Gauss point

at the edge of the punch (Point 1 in Fig. 38). In the fastest

case (0.2 m/day), the high pore pressure constrains the

volumetric deformation and hence results less porosity

reduction. In the slowest case (0.002 m/day), while the

presence of pore fluid may still reduce the volumetric

deformation of the solid skeleton, the porosity reduction is

more severe. This notable difference in porosity reduction
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Fig. 31 Strip punch loading with non-associative cap plasticity. Global load-displacement responses for: a saturated geomaterials; b dry

geomaterials. a Non-associative single-phase response, b non-associative hydro-mechanical response

Fig. 32 Finite element mesh of three-dimensional rigid circular

punch with applied displacement dðtÞ: The top boundary is free

except for applied displacement at the center. The sides have fixed

normal displacement due to symmetry, while the bottom has fixed

normal displacements

Fig. 33 Three-dimensional punch loading with associative cap

plasticity. Effective stress profile (vertical component) along the

two orthogonal edges of the circular punch for the 1-day loading rate.

Sharp stress gradients are captured using the refined discretization

close to the edge. Radial position r = 0 m is at the center of the

circular punch
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is an interesting result, given the fact that the pore pres-

sure is much smaller than the effective stress in all three

cases. Conventionally, this small excess pore pressure is

thought to have little influence on the mechanical

response. However, due to the plastic yielding on the cap

surface, as shown in Fig. 39, this apparently negligible

pore pressure difference near the drained limit may still

lead to significant changes in the mechanical response in

local areas.

Figure 37 shows the equivalent plastic strain contour

for the punch loading at 0.002 m/day. At this stage, a

clear localization zone is formed with plastic deformation

developing inside. Discerning the effect of the cap model

requires a closer look. To this end, we select four rep-

resentative Gauss points, three of which are inside the

localization band, while the fourth point is at the center

of the circular punch, as shown in Fig. 38. The stress

paths in meridional stress space

ffiffiffiffiffi
J
n
2

q
are recorded in

Fig. 39a.

Among the four selected points, Points 1, 2 and 3 exhibit

plastic deformation, while Point 4, which is far away from

the localization zone, remains in the elastic range. More-

over, Points 2 and 3, which are located inside the shear-

zone of the localization band, yield at the shear part of the

yield surface. In particular, Point 1, which is located near

the circular punch tip, yields at the compactive (cap) por-

tion of the yield surface. This feature is due to the high

Fig. 34 Three-dimensional punch loading with associative cap plasticity. Pore pressure contours for three different loading rates at prescribed

displacement d = 9.52 9 10-3] m. Units in the figures are Pa. a 0.2 m/day loading rate, b 0.02 m/day loading rate, c 0.002 m/day loading rate
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Fig. 35 Three-dimensional punch loading with associative cap

plasticity. Pore pressure along the edge developed at three different

loading rates. Prescribed displacement d = 9.52 9 10-3 m. Units in

the figures are Pa. Radial position 0 m is at the center of the punch
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hydrostatic stress at Point 1. Collapsible porous media at

such a high hydrostatic stress are likely to develop inelastic

compaction due to the pore collapse. This mechanical

characteristic is accurately captured by the cap plasticity

model.

Figure 39b shows the stress paths of Point 1 in meridi-

onal stress space
ffiffiffiffiffi
J2

p
versus I1. Although a small amount

of plastic equivalent strain (\0.0002) has been observed,

the volumetric plastic strain is still dominant, as indicated

by the porosity reduction in Fig. 36. This trend is consis-

tent with the predicted stress path of Point 1 in Fig. 39b

where the stress first lies on the cap part of the yield surface

and approaches the cap part of the failure surface at the end

of the loading.

In Fig. 40, we examine the porosity evolution for the

four selected points, which illustrate the relation between

the stress response and the underlying pore changes. We

note that Point 1, which undergoes compactive
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Fig. 36 Three-dimensional punch loading with associative cap plasticity. Pore pressure (left) and porosity (right) versus time (in log scale) for

three different loading rates at edge of the circular punch (pt 1 in Fig. 38). Units in the figures are Pa. a 0.2 m/day loading rate, b 0.02 m/day

loading rate, c 0.002 m/day loading rate

Fig. 37 Equivalent plastic strain contours of the rigid circular punch

at d = 1.56 9 10-2, with prescribed loading rate equals to 0.002

m/day
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deformation, experiences a rapid decrease in porosity

compared with the other three points. Note that the

porosity of Points 2 and 3 slightly decreases, even though

both points are on the yield surface and experiencing

plastic dilation. This porosity reduction is captured by the

porosity evolution equation (52). According to (52),

porosity reduction can be caused by the compression of

the solid skeleton, shrinkages of pores and the volumetric

expansion of the solid constituent. However, since pore

pressure is small (as shown in Fig. 34) and the com-

pressibilities of both constituents are low, the porosity

reductions in Points 2 and 3 are mainly due to the elastic

compression of the solid skeleton.

6 Conclusion

We examine the fully coupled hydro-mechanical response

of water-saturated limestone subjected to loadings with

various rates. Both non-associative and associative cap-

plasticity models are incorporated into a stabilized

monolithic mixed finite element method to simulate the

fully coupled deformation–diffusion process of collapsible

porous media. We found that hydro-mechanical couplings

may impose various degrees of influence on the

mechanical responses, depending on the loading rate,

geometry of the domain, and the permeability of the

porous medium. While this result is largely expected, we

found that yielding of the punch tip often occurs on the

cap surface, causing significant volumetric plastic strain

accumulated. Despite the pore pressure build-up near the

tip limiting the volumetric deformation, we still observe a

considerable amount of compressive plastic strain under

various combinations of loading rates and geometries.

This accumulation of volumetric plastic strain leads to

porosity and permeability reductions, hence affecting both

the mechanical and hydraulic responses of the porous

pt 4

pt 1

pt 2

pt 3

Fig. 38 Three-dimensional punch loading with associative cap

plasticity. Equivalent plastic strain contour of the rigid circular punch

at d = 1.56 9 10-2 m with prescribed loading rate equals to 0.002

m/da. The stress paths of the four selected elements shown in this

figure are recorded

(a) (b)

Fig. 39 Three-dimensional punch loading with associative cap plasticity. Stress path in the meridional stress space, a

ffiffiffiffiffi
J
n
2

q
versus I1, and b

ffiffiffiffiffi
J2

p

versus I1, for constant rate of 0.002 m/day. Locations of the four selected points are highlighted in Fig. 38
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rock. The numerical examples demonstrate that the cap

surface of the plasticity model is important for determin-

ing the stability of the rock regardless of the drainage

condition.
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