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Human listeners are better able to identify two simultaneous vowels if the fundamental 

frequencies of the vowels are different. A computational model is presented which, for the first 
time, is able to simulate this phenomenon at least qualitatively. The first stage of the model is 
based upon a bank of bandpass filters and inner hair-cell simulators that simulate 

approximately the most relevant characteristics of the human auditory periphery. The output 
of each filter/hair-cell channel is then autocorrelated to extract pitch and timbre information. 
The pooled autocorrelation function (ACF) based on all channels is used to derive a pitch 
estimate for one of the component vowels from a signal composed of two vowels. Individual 
channel ACFs showing a pitch peak at this value are combined and used to identify the first 
vowel using a template matching procedure. The ACFs in the remaining channels are then 
combined and used to identify the second vowel. Model recognition performance shows a rapid 
improvement in correct vowel identification as the difference between the fundamental 

frequencies of two simultaneous vowels increases from zero to one semitone in a manner 

closely resembling human performance. As this difference increases up to four semitones, 
performance improves further only slowly, if at all. 

PACS numbers: 43.66.Ba, 43.66.Hg, 43.71.Cq, 43.71.Es 

INTRODUCTION 

The human ability to attend selectively to one speech 

signal in a mixture of speech sounds has received considera- 

ble attention (e.g., Broadbent, 1952; Brokx and Nooteboom, 

1982; Cherry, 1953; Darwin, 1981, 1984; Egan et al., 1954; 

Gardner et al., 1989; Halikia and Bregman, 1984; Hart- 
mann, 1988; Parsons, 1976; Stubbs and Summerfield, 1988, 

1990; Triesman, 1960; Weintraub, 1985, 1987). Various fac- 

tors have been shown to influence this ability. We consider 

here only the role of voice pitch. A consistent finding is that 

listeners are able to separately identify two simultaneously 

presented synthesized vowels significantly better than 
chance even when they have approximately the same ampli- 

tude, when they start and stop at the same time, are both 

presented to the same ear and both have the same fundamen- 

tal frequency (fo) (Assmann and Summerfield, 1989, 1990; 

Chalikia and Bregman, 1989; Scheffers, 1983a; Zwicker, 

1984). Also, all investigators find that performance im- 

proves substantially if a difference in fo is introduced 

between the two vowels. Figure 1 shows that correct identifi- 

cation of both vowels shows an improvement of 18% for fo 

differences up to four semitones. Most of the improvement, 

however, is restricted to the first semitone fo separation. 

The problem for the modeler is to devise conceptual 
schemes that can give an account of this process. Both 
Scheffers (1983a) and Assmann and Summerfield (1990) 

have developed sophisticated models capable of identifying 
simultaneously presented vowels at approximately the same 
level of success as human listeners. Despite this achieve- 

ment, both models have experienced difficulty in reproduc- 
ing the gradual improvement in performance with increas- 
ing fo separation as shown in Fig. 1. In this article, we 

present an example of a model which does show this impor- 
tant property. 

The vowel identification systems of both Scheffers 
(1983a) and Assmann and Summerfield (1990) extract 

pitch and use this to assist the generation of two separate 
templates for matching purposes. However, their difficulty 
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FIG. 1. Listeners' ability to correctly identify both vowels of a pair of simul- 
taneous presented vowels as a function of the separation of thefo of the two 

vowels. Results taken from Scheffers (1983a), Zwicker (1984), and Ass- 
mann and Summerfield (1990). 
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in showing an improvement in performance with increasing 

fo separation cannot be explained in terms of any inadequacy 

in the pitch extraction algorithms because the difficulty per- 
sists even when the models are given explicit information 

about the true pitch values. Nor can the problem be assigned 

to any failure of the vowel identification algorithms because 

these work adequately when there is no fo separation 

between the vowels. The problem must lie elsewhere. 

Scheffers used a variant of the harmonic sieve technique 

based on work by Goldstein (1973) and Gerson and Gold- 

stein (1978) and explicitly modeled by Duifhuis et al. 

(1982) and Scheffers (1983b). In this method, the input 

signal is passed through a bank of bandpass filters confi- 

gured to simulate many of the known mechanical filtering 

properties of the auditory periphery. The power output of 

the filters is passed to an algorithm which attempts to iden- 

tify the fundamental or fundamentals which might give rise 

to the observed pattern of peaks and valleys in the spectral 

profile. Each low-frequency peak is assumed to be a resolved 

harmonic of one or both of the tWOfo'S and is assigned to one 

or both groups on this basis or, alternatively, it might be 

rejected altogether. Two new spectral profiles are recon- 

structed on the basis of these two sets of peaks using a pro- 

cess of interpolation. Another algorithm, then estimates the 

formant frequencies for each reconstructed spectral profile. 

These frequencies are used in a template-matching algor- 
ithm which indicates the optimum classification for the two 
vowels. 

Assmann and Summerfield (1990) followed Scheffer's 

basic plan but introduced a number of variations which, in 

effect, constituted four different models. Two "place" mo- 

dels estimated pitch using an analysis of the distribution of 

power output across the channels of the filter bank as did 

Scheffers' model. Two "place-time" models achieved the 

same goals using a periodicity analysis of the waveforms in 

each channel. To do this, they computed the autocorrelation 

function (ACF) for each channel separately before pooling 

the functions by summing across channels. Major peaks in 

the pooled ACF were, with certain restrictions, identified 

with component pitches. 

Each place and place-time method was studied in two 

versions. The "linear" version operated directly on the wa- 

veform emerging from the filters as did Scheffer's model. 

The "nonlinear" version applied a compressive nonlinearity 

to the output of the filters to simulate one of the properties of 
the mechanical-to-neural transduction process at the hair 
cell in the cochlea. Their results showed that the nonlinear, 

place-time model produced the most satisfactory perfor- 

mance in terms of (a) accuracy of predicting pitches, (b) 

overall mean accuracy in identifying both component 
vowels, and (c) the ability to specify the pattern of correct 
responses and confusions for individual stimuli. While these 

two innovations (nonlinearity and time domain periodicity 
analysis) represent important advances in sophistication in 

this context, none of their models was able to show a gradual 
monotonic improvement in performance with increasing se- 
paration offo. 

The work to be described below seeks to build on the 

modeling work of Assmann and Summerfield and uses, for 

comparison purposes, the human performance data they 
collected. Like their system, our model simulates a number 

of aspects of peripheral auditory processing (middle/outer 
ear frequency effects, cochlea filtering and mechanical-to- 

neural conversion at the inner hair cell). We also use a digi- 
tal-bandpass simulation of the basilar membrane mechani- 

cal frequency selectivity. Another common feature was the 

inner hair cell model developed in our laboratory (Meddis, 

1986, 1988; Meddis et al., 1990). In the next stage, our mo- 

del also extracts the pitches of the two sounds using a perio- 
dicity analysis method similar in many respects to Lick- 
lider's (1951, 1959) early suggestion (see, also, Gardner, 
1989; Lazzaro and Mead, 1989; Moore, 1982). 

The important difference occurs later in the system. One 

difference involves using the decision concerning pitch va- 
lues to segregate frequency-selective channels into two mu- 

tually exclusive sets of channels, one for each vowel. An- 

other difference involves the use of periodicity information 

(combined across channels belonging to a subgroup of chan- 
nels) to produce a pooled ACF for each vowel. Identifica- 

tion of the component vowels is then based on these two 

separate periodicity profiles. Both innovations represent de- 

partures from current models. In the first case, component 
vowels are characterized using information from only one of 

two mutually exclusive subsets of channels identified on the 

basis of pitch. The segregation of channels into two sets only 

becomes possible as the fundamental frequencies of the two 
vowels diverge. Moreover, the segregation becomes more se- 

cure as the difference info increases. This is what gives rise to 

the gradual improvement in performance. 

In the second major departure, the identification is 

based entirely on the pooled periodicity profiles which are 

summed across channels. At this stage, place information is 

entirely abandoned. We do not maintain that only periodi- 

city information is relevant to hearing. On the contrary, we 
recognize that there are strict limitations to the ability of the 

nervous system to extract and preserve periodicity informa- 

tion concerning individual frequencies above 4-5 kHz. 
However, in the case of speech, most of the relevant informa- 

tion is carried by lower frequencies. For the synthesized sti- 

muli used, the model performs very adequately using only 

periodicity information. 

I. THE MODEL 

The early stages of the model are exactly the same as 

those used in our exploration of pitch phenomena (Meddis 

and Hewitt, 1991 ). It has already been shown to give good 

estimates of pitch which are consistent with a wide range of 

psychophysical studies of human pitch perception. Two new 
modules have been added to deal with vowel identification. 

These are (i) a procedure for using pitch information to 

segregate channels into two sets corresponding to the two 

sound sources and (ii) a template matching procedure for 

the purpose of identifying the vowels. 
The total system now consists of a concatenation of 

eight modules which: (1) simulate middle- and outer-ear, 

low- and high-frequency frequency attenuation effects, (2) 

simulate the mechanical frequency-selectivity of the basilar 
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membrane, (3) simulate mechanical to neural transduction 

at the inner hair cell, (4) calculate running ACFs in indivi- 

dual channels, (5) perform cross-channel summation of the 

ACFs to form a pooled ACF, (6) perform pitch identifica- 
tion using peaks in the pooled ACF, (7) segregate channels 

into two mutually exclusive subsets, (8) perform vowel 

identification using a template-matching procedure applied 
to the pooled ACF of each subset of channels. 

Stages ( 1 )-(6) are summarized in Fig. 2 and a detailed 

specification of the peripheral processing aspects of the mo- 
del is given in Meddis and Hewitt ( 1991 ). However, in the 

interests of clarity, the following account illustrates the first 

six stages of the model's response to one of the five single 

synthesized vowels as used by Assmann and Summerfield. 

The stimulus shown in Fig. 3 (a) is a 30-ms segment of 

the vowel "ah" (fo = 100 Hz) at amplitude 50 dB 1 • just 
before the end of the 200-ms duration of the stimulus. In Fig. 

3(b), the stimulus has been passed through a 100 bandpass 

digital-filter system. The equivalent rectangular bandwidth 

(ERB) of each filter is based on measures of the psychophy- 

sical critical bandwidth in human subjects which, in turn, 

correspond reasonably closely (at least, at moderate ampli- 

tudes) with the tuning curves of individual auditory-nerve 

fibers (Moore, 1986). The center frequencies of the overlap- 

ping filters in the filterbank are equally spaced on an ERB 
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FIG. 2. Processing sequence for the computational model. See text for ex- 

planation of numbered steps. Channel separation and vowel identification 
algorithms are represented in Fig. 8. 

scale 0.24 ERBs apart between 80 Hz and 4 kHz (Moore and 

Glasberg, 1987). For clarity in reproducing the figures, only 

one in four of the channels are shown. The vertical graph to 

the right shows the power output from each channel and 

represents the excitation function. The amplitude responses 
of the filters, as well as their ERBs, are based on human 

psychophysical studies. However, at the presentation levels 
used here, these functions are a reasonable approximation to 

the frequency tuning curves when measured electrophysio- 

logically in other mammals. 

Figure 3 (c) shows the response of the inner hair cells 

within each channel in terms of the probability of an action 

potential in the corresponding auditory-nerve fiber. We as- 

sume that a large number of inner hair cells are active within 

a single channel and that the aggregate within channel fir- 

ing-rate will be similar to the probability function for a single 
fiber. The model calculates the amount of transmitter in the 

hair-cell/nerve-fiber synapse and assumes that the probabi- 

lity of firing is a linear function of that amount. At low inten- 

sities (less than 20 dB 1 ), the firing-probability function fol- 

lows the filtered input function fairly closely, At higher 

intensities, the output is increasingly half-wave rectified in 

character. This model of hair-cell functioning is only one of 

many and the relative merits are thoroughly discussed in 
Hewitt and Meddis ( 1991 ). 

The vertical graph at the right-hand side of Fig. 3 (c) 

shows the average event rate for each channel (calculated 

over the 30-ms interval shown) and represents the "rate- 

place" profile for this vowel. 
A running ACF was generated separately for each chan- 

nel. Licklider (1951) suggested that the summation over 

time should be limited by a time constant, f•, of approxima- 

tely 2.5 ms: 

h(hOt) = • p(t - T)p(t -- T-- Ot)e- r/tz 
i=1 

(T= idt). (1) 

Here Ot is the autocorrelation lag, dt is the sample period, 
and t is the time at which the ACF is sampled. Licklider does 
not explain why the time constant should be 2.5 ms but more 

recent work by Viemeister (1979) on the temporal modula- 
tion transfer function suggests a similar value (3 ms). Re- 

cent work on the "temporal window" by Plack and Moore 

(1990) suggests a window width of 8-10 ms but a somewhat 

different function from the exponential decay implied above. 
In the context of double vowel separation, we found that a 

time constant between 10 and 25 ms was more satisfactory. 
For T> 312 expression (1) returns only very small va- 

lues. Accordingly, the ACF was, in practice, computed only 
over a period equal to three times the time constant. 

Figure 3(d) shows the running autocorrelation func- 
tion for each channel, immediately before the end of the 200- 

ms presentation. The function is computed with a time con- 
stant of 10 ms. As a consequence, the more distant the event 

in time, the less influence it has on the running autocorrela- 

tion function. The function is computed over time lags from 
0.1 to 12.5 ms in steps of 0.1 ms. For pure tone inputs this 
represents a range from 10 kHz to 80 Hz. The ACFs reveal 

the periodicities present in each channel. 
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FIG. 3. Output of the model at intermediate stages. The figures show the last 30 ms of the model's operation in response to a 200 ms signal. (a) Stimulus input 
consisting of the single synthesised vowel "ah." (b) Cochleogram; response of individual channel bandpass filters. The vertical function to the right is the 
power output across channels. (c) Response of the simulated hair cells. Each function represents the probability of firing in a group of auditory-nerve fibers 
responding to a single location on the basilar membrane. The vertical function to the right is the firing rate in each channel over the period shown. (d) 
Channel running autocorrelation functions (ACF) and the pooled ACF formed by vertical summation across channels. The "timbre region" of the pooled 
ACF lies between periods 0.0001 and 0.0045 s. The "pitch region" lies between periods 0.0045 and 0.0125 s. Note that the very first point in each ACF is used 
to mark the baseline for that channel. 

At the foot of Fig. 3 (d), the pooled ACF is shown. This 

is computed by summing vertically all of the functions in the 
figure. Its main purpose is to highlight common features in 

the individual channels. A strong peak at 10 ms (100 Hz) 

shows that a common periodicity corresponding to the pitch 
of the stimulus is present in many channels. We define the 
region between 0.0125 and 0.0045 s (80 to 222 Hz) of the 

pooled ACF as the "pitch region" and use peaks in this re- 

gion to identify possible pitches in the stimulus. 
To the left of this region, between 0.0045 and 0.0001 s 

(222 Hz to 10 kHz), the pooled ACF gives information 

about the higher-frequency components or "timbre" of the 
stimulus. This "timbre region" is used by the model to iden- 

tify the stimulus. The pitch region is excluded because it 
shows variation between different utterances of the same 

vowel. This algorithm compares the timbre region of the 

pooled ACF of the stimulus with a set of five templates, one 
for each of the five single vowels used in the study. 

We accept that the values which define the pitch and 
timbre regions are somewhat arbitrary and will need to be 

given more attention in future studies. Our present concern 
here was to establish the general principle of using pitch esti- 
mates to segregate channels when separating sound sources. 
When dealing with the voices of children and some women, 

it will clearly be necessary to allow these to regions to over- 

lap. For the moment, we have set this important issue to one 
side. We have also temporarily ignored the problem of "sub- 
octave" pitch estimates. When using the autocorrelation 
method of estimating pitch, a prominent peak in the ACF is 
always accompanied by similar peaks at half, third, etc. of 
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FIG. 4. Templates for single vowels. Templates are based on the "timbre 
region" of the pooled autocorrelation function ( periods between 0.0001 and 

0.0045 s). Each template is the average of six pooled ACFs for that vowel 
synthesised at pitches of 100, 101.5, 103, 106, 112, and 126 Hz. 

FIG. 5. ACFs and pooled ACF for a stimulus consisting of two vowels 
("or" and "er") where both vowels are synthesised with the same fo ( 100 

Hz). Eighty nine channels showed a pitch peak at the dominant pitch of 100 
Hz. The inset values show the results of the matching algorithm. The 

starred values show the two best matching vowels. 

the frequency of the first peak. In this implementation, we 
have simply taken the highest frequency peak in such a ser- 
ies. We achieve this automatically by restricting the ACF to 

values greater than 80 Hz while using pitches close to 100 
Hz. 

The template for for each vowel is created by averaging 

the pooled ACFs for six presentations of the vowel. Each 
vowel was presented in isolation with fo's 100, 101.5, 103, 

106, 112, and 126 Hz. Only the timbre region of the pooled 

ACF was used in the template. These pooled ACFs were 
then standardized so that 

•t 2 
i 

•t•-0 and ••1, (2) 
N 

where N is 40 (the number of points in the timbre region of 

the running autocorrelation function), and ti are the points 

in the template corresponding to the timbre region of the 

pooled ACFs. 

The five templates used are shown in Fig. 4. In the 100- 

Hz condition for a single vowel, the target vowel was always 

correctly recognized using these templ.ates which is slightly 
better than the subjects of Assman and Summerfield who 

averaged 96% correct. The templates contain only periodi- 
city information and do not refer in any direct way to the 

individual places (channels) where those periodicities were 
generated. They do not, therefore, necessarily show any 

pronounced peaks at periods corresponding to formants. 

This representation is not a simple transform of a spectral 
analysis of the stimuli. 

The template matching was carried out using an inverse 
Euclidian distance measure 

( )_l m = ,• (ti -- s, ) 2 , (3) 

where ti is the/th element of the standardized template and 

si is the/th element of the timbre region of the standardized 

pooled ACF for the stimulus. A larger value of m represents 

a better match to the template. We use m l to represent the 

best match and m2 to represent the second best match. 

A. Single fo double vowel example 

Figure 5 shows the response of the model to a double 
vowel ("or" and "er") where both vowels have the same 

fundamental frequency of 100 Hz. A dominant pitch peak 

can be seen at the 10-ms period in the pooled ACF. A peak is 

regarded as dominant when it is the highest peak in the pitch 

region of the ACF. 

The next stage in the recognition algorithm requires 

that all channels which do not show a peak at this pitch be 

excluded by setting the channel ACF to zero along its length. 

However, 89 channels do have such a pitch peak and only 11 
channels have had to be excluded. This is taken as evidence 

that only one pitch is present by using the following decision 

rule: Rule 1: one pitch is judged to be present in the stimulus 

when more than 80% of channels show apeak in theirACFat 
theperiod of the dominantpitch ('at the highestpitch peakJ in 
the pooled A CF. 

The parameter 80% was chosen because it results in 

error-free performance in discriminating single-fo from dou- 

ble-fo stimuli. This was a clear-cut discrimination and a 

range of criteria between 79% and 84% would have all 

served equally well. 
Next it must be decided if there are one or two vowels 

present in this utterance. Figure 5 shows the result of match- 

ing the timbre region of the pooled ACF with all five tem- 

plates. Vowels "er" and "or" have the best matches and 

would be chosen by the model as its best estimate of the two 

vowels. We accept that there are two vowels rather than one 

using decision rule 2: Rule 2: In the singlepitch condition ('see 
rule l J, only one vowel is judged to be present if the match 
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FIG. 6. ACFs and pooled ACF for a stimulus consisting of a single vowel 
("ee") synthesized with a pitch of ( 100 Hz). Eighty eight channels showed 
a pitch peak at 100 Hz. The inset values show the results of the matching 
algorithm. The starred values show the two best matching vowels. Because , 
the highest matching statistic ("ee"--27.2) is more than twice as great as 
the next highest ("oo"--10.1 ), the algorithm judges only one vowel to be 
present. 

statistic for the second best match was less than half the 

matching statistic for the best match. 

In our example, the match statistic for the second best 
match ("or"; m2 = 11.7) is greater than half of the best 

match ("er"; m, = 20.3) and we, therefore accept that two 

vowels are present. 

The choice of the ratio 2:1 was a somewhat arbitrary 

value and some fine tuning of the model might be attempted 

by changing it. However, rule 2 only applies to the case 

where a single pitch was found (20% of all stimuli). The 
balance between "hits" and "false positives" was such that 

modest changes in the ratio had little effect on the final re- 
sults. 

B. Single fo, single-vowel example 

Figure 6 shows the response of the model to a single 

vowel, "ee," presented at afo of 100 Hz. The highest peak in 

the pooled ACF is at 0.01 s ( 100 Hz). Here, 88% of channels 

have peaks in their ACFs at this period. Rule 1 dictates that 

only one pitch b, ejudged to be present. Figure 6 also indicates 
the match stati{tics of the five candidate vowels. Vowel "ee" 

is the best match because the value of its matching statistic is 
the highest of the five. Rule 2 dictates that only one vowel 

sound be judged to be present because the matching statistic 

for "ee" (rn• = 27.2) is greater than twice that for "er" 

(m 2: 10.1). 

C. Two fo s, two-vowel example 

Figure 7 shows a case where the two vowels ("er" and 

"ah") are presented with different fundamentals (100 and 

112 Hz, respectively). To find the first vowel, we take the 

dominant pitch peak in the pooled ACF and note all chan- 

nels which have a peak at the same period in their ACFs. The 

highest pitch peak in Fig. 7 (a) is at 112 Hz and it can be seen 
that the ACF in some channels shows a peak at this value. In 

fact, 49% of channels show such peaks and we decide, using 

rule 1, that a second pitch must be present. 
We retain these channels but set all other channel ACFs 

to zero and we obtain the representation shown in Fig. 7 (b) 
which contains only channels characterized by a peak at 112 

Hz. We presume that these channels are maximally excited 
by only one vowel. The pooled ACF at the bottom of the 
figure is based on these channels only and is used to identify 
the first of the component vowels. Figure 7 (b) shows that 
"ah" is the best match. 

The next step, therefore, is to return to the original set of 

ACFs and remove those channels associated with the highest 

pitch peak so as to investigate the identity of the second 

vowel. We set to zero all channel ACFs which have a pitch 

peak at the same value as the highest peak in the pooled ACF 

[ Fig. 7 (c) ]. The remaining channels are the complement of 
the set used for the identification of the first vowel. The 

pooled ACF derived from these channels is presumed to re- 
late to the second vowel and is used as the basis for the tem- 

plate matching procedure. The best match statistics in the 
figure show that vowel "er" must be chosen as the best candi- 
date for the second vowel. 

The steps involved in the separation and matching al- 
gorithm are summarized in the flow diagram given in Fig. 8. 
Clearly, the above account describes only successful exam- 

ples for the purpose of illustration; performance was typical- 
ly in the region of 45%-75% correct identification of both 

vowels in a pair. 

II. MODEL EVALUATION 

The model was evaluated by. simulating an experiment 
involving human identification of double vowels (Assmann 

and Summerfield, 1990). They presented two vowels simul- 

taneously to three subjects who were required to identify 

both vowels. The vowels were synthesised using Klatt's 

(1980) algorithm for cascade formant synthesis at a sam- 

pling rate of 10 kHz and lasted 200 ms (see footnote 2). Five 

different monophthongal (British) English vowels were 
used referred to here as "ah," "ee, .... er," "oo," and "or." 

The ASCII approximations to IPA notation are/o/,/i/, 
/3/,/u/,/,/. ' 

A version of each vowel was prepared at each of six 
fundamental frequencies of 100, 101.45, 102.93, 105.95, 

112.25, and 125.99 Hz (representing differences from 100 
Hz of 0, 0.25, 0.5, 1, 2, and 4 semitones). Each stimulus 

consisted of a pair of these vowels. All possible pairs were 
used except that one vowel of the pair always had afo of 100 
Hz. The stimuli included double versions of the same vowel. 

For equal fo'S these are referred to as "single vowels" be- 
cause they were physically indistinguishable from a single 
vowel (except for amplitude). There were 150 stimuli. Vow- 
els began and ended simultaneously. Assmann and Summer- 

field supplied their full range of double-vowel stimuli to us in 

digitized form, exactly as used in their experiment. 

Figure 9 shows the results obtained by Assmann and 
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FIG. 7. (a) ACFs and pooled ACF for a stimulus consisting of two vowels 
("er" and "ah") where both vowels are synthesised with two different fo 

( 100 and 112 Hz, respectively). The first pitch is correctly judged to be 112 
Hz using the highest peak in the pooled ACF. Forty nine channels showed a 
pitch peak at 112 Hz. (b) As in (a) but all channels which do not show a 
peak at 112 Hz have been set to zero. The inset values show the results of the 
matching algorithm using the new pooled ACF. The starred value shows 
the best matching vowel which is "ah." ( c ) As in (a) but all channels which 
do show a peak at 112 Hz have been set to zero; i.e. (c) is the complement of 
(b). The best match to the new pooled ACF is seen to be "er." 

Summerfield (1990). Subjects were able to identify correctly 
both vowels of a pair on approximately half of the presenta- 
tions even when both vowels had the same fo- On a chance 

basis, only 7% double-correct responses would be expected. 

As the fo difference between the vowels was increased, the 
number of correct double identifications also increased. At a 

separation of four semitones, performance was 18% higher 
than at nolo separation. This improvement was restricted to 
the condition where vowels were 200 ms long; a second con- 

dition where the stimuli were 51.2 ms long showed no im- 

provement. It is the longer condition which is simulated in 
this study. 

The five templates were prepared in the manner de- 
scribed above and stored. Each of the 150 stimuli were pro- 

cessed by the model which generated estimates of the iden- 

tity of the two component vowels of each pair. The model's 
response was judged to be correct only if both of the vowels 
of a pair were correctly identified, otherwise it was deemed 
to be in error. 

The performance of a 173-channel version of the model 
is shown in Fig. 9 (a) along with the data for Assmann and 
Summerfield's human listeners for comparison purposes. 

The overall level of correct responding is broadly compara- 
ble for the model and the human listeners. This correspon- 
dence should not be overemphasized, however, because of 

the many opportunities which the modeler has to optimize 
performance on a small data set. The important feature of 
the results, however, is the gradual rise in performance as the 

fo difference is increased. 
A small dip at two semitones spoils the overall appear- 

ance of the model results but this is not a reliable feature. 

Small changes in the parameters can produce minor fluctua- 
tions because some decisions are very nicely balanced and a 

small change in the number of correct decisions has a large 
effect on the appearance of the graph. However, the overall 
picture is one of improvement as fo difference increases. In 
Fig. 9(b), we show the effect of varying the number of chan- 
nels and all three show an' overall trend of an increasing 
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FIG. 8. Flow diagram for the steps and decision processes associated with 
the identification of the pairs of vowels. Rule 1 decides whether we have one 
pitch or two. When only one pitch is found, rule 2 (see text) decides if we 
have one vowel or two. 

number of correct decisions as the fo difference increases. 

It is interesting to note that the model does almost as 
well with 28 channels as it does with 173 channels. The pat- 

tern of improvement is, in fact, clearer with this reduced 
number of channels. We shall consider the number of chan- 

nels again below when we look at the effect of introducing a 
random element into the firing of the simulated auditory- 
nerve fibers. 

We considered the possibility that the results would 
have shown the improvement with fo difference even if the 
model had not used fo information; i.e., a simple matching 
stratagem based on the initial pooled ACF could have 
proved equally satisfactory. To check this, we forced the 
173-channel version [see Fig. 9(a) ] of the model to assume 

that only one pitch could be found; i.e., we forced it to take 
the left-hand path in Fig. 8. Rule 2, used for deciding 
whether there was one or two vowels, was left in place. These 

results are given in Fig. 10. These do not show a consistent 
rise in success as thefo of the second vowel rises. It is clear 
that the gradual improvement with fo separation in the mo- 
del results was due to the channel separation procedure. 

The algorithm almost always estimated thefo of the first 
vowel correctly (97%)mi.e., the first ACF value chosen 

was the closest possible value (given a bin width of 0.1 ms) to 

100 (a) 

8O 

so 

.o 
I Summerfield listeners 
I -9- model (173 channels) 

2 

0 I 2 3 4 5 

f0 difference (semitones) 

Identification of concurrent vowels 

lOO 

2O 

173 channels 

= 100 channels 

-- 28 channels 

(b) 

ß I ' I ' I ' I ' I 

0 I 2 3 4 5 

fo difference (semitones) 

FIG. 9. (a) Response of a 173-channel version of the model to 150 paired 
vowels at various degrees offo separation. Results for Assmann and Sum- 

merfield's (1990) listeners are given for comparison. The measure used is 
the percentage of vowel pairs where both vowels were correctly identified. 
(b) Model performance compared using 173, 100, and 28 channels. 

the truefo of one of the vowels--which is a result similar to 
that of Scheffers (1983a). The recognition algorithm does 

not require that the second pitch be estimated which is for- 
tunate because it was typically much poorer ( < 50% ). The 

separation of channels into two subsets requires only one 
pitch estimate. Channels are segregated into those which do 
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FIG. 10. Response of the model to the same stimuli as Fig. 9(a) except that 
the model was forced to respond without using any pitch information (i.e., 
rule 1 was set to judge only one pitch present for all stimuli). Results from 

Fig. 9 (a) are included for comparison purposes. 

FIG. l l. Percentage correct estimation of the vowel fundamental fre- 

quency. The value for the second vowel is based only on those cases where 
the first vowel fundamental was estimated correctly. 

and those which do not show an activity peak at this periodi- 

city. Figure 11 shows the pitch estimation success as a func- 

tion offo separation. It does not improve as the twOfo'S are 
more widely separated. We may infer that the improvement 
in recognition performance is not related to success in pitch 
estimation. It is more reasonable to assume that the separa- 
tion of channels into two subsets becomes more clear cut as 

the fo separation increases because, at low separations, it is 
more likely that a given channel will be misclassified. 

The model segregates the channels into two groups on 
the basis of its estimate offo for the first vowel only. It does 

not attempt to estimate thefo of the second vowel. For inter- 
est we explored the model's accuracy in estimating the pitch 
of the second vowel. Figure 11 shows the likelihood of esti- 

mating the fundamental frequency of the second vowel cor- 
rectly assuming that the model had correctly estimated the 
fundamental of the first vowel. Performance is relatively 

poor and it would appear that the estimate of the fo of the 
second vowel would form an inadequate basis for segregat- 

ing channels and the model does not attempt to do so. Unfor- 
tunately, we have no human data concerning the ability of 

human listeners to estimate the pitch of a second simultan- 
eous harmonic sound and the model's performance in this 

respect cannot be fully evaluated. Although, Beerends and 
Houtsma (1989) have reported that listeners can often iden- 
tify the pitches of simultaneous two-tone complexes correct- 

ly for fo differences of two semitones or more. 
The results shown above were calculated using an ACF 

time constant of 10 ms. Licklider ( 1951 ) had originally sug- 

gested a time constant of 2.5 ms in connection with pitch 
extraction. Figure 12 compares the time constants of 2.5, 10, 

and 25 ms using a 173-channel version of the model. The 
model is more accurate for equal fo vowel pairs when the 

Identification of concurrent vowels 

lOO 

8o 

6o 

4o 

2o 

2.5 ms 

; 10 ms 

: 25 ms 

0 I 2 3 4 5 
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FIG. 12. A comparison of model performance for three running ACF time 
constants. 
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FIG. 13. A comparison of model performance for two methods of segregat- 
ing channels. The standard method of attenuating a channel completely 
when it does not have a pitch peak in the appropriate location is compared 
with an attenuation of 0.5 in the height of the ACF values for that channel. 

FIG. 14. A comparison of the performance of a 100-channel version of the 
model for two levels of tolerance for including individual channel autocor- 
relation functions within the first of two complementary sets of channels 
used for recognizing component vowels (see text). 

time constant is lengthened. At greater fo separations this 
improvement is less consistent. 

In an effort to keep the model simple, we had adopted 

the drastic expedient of dividing the channels into two quite 

separate groups on the basis of the first pitch found. In the 

event, this proved satisfactory but we considered the less 
drastic option of attenuating channels to 50% of their ori- 

ginal strength rather than eliminating them altogether. We 

ran the computer program twice using a time constant of 25 

ms; the first run was the same as that reported in Fig. 12; the 

second run was the same but involved an attenuation of only 

0.5 of "rejected" channels. Figure 13 shows that this had 

very little effect on the results. It may be that the less extreme 

model will have advantages in some situations but this can 
only be tested when we have more data for human listeners 

to be used as a basis for comparison. 

When assigning channels to one of the two sets, we 

adopted the rule that a channel would only be included in the 

first set if it had a peak in its autocorrelation function in the 

same bin as the highest peak in the pooled autocorrelation 
function. Otherwise, it was assigned to the complementary 

set. To study the effect of varying this rule, we relaxed the 

inclusion criterion to allow peaks within 1% (_+ 1 bin 

width) of the main pitch peak to qualify the channel for 

inclusion in the first set. The performance of a 100-channel 

version of the model is given in Fig. 14 along with the corre- 
sponding results for the zero tolerance condition [see Fig. 

9(b) ]. Performance drops markedly at 0.25 semitones be- 

fore recovering to a raised performance at higher fo differ- 
ences. Clearly, the increased tolerance does not improve the 
model's performance. 

Unfortunately, the 10-kHz sampling of the model does 
not permit us to make intermediate tolerance levels. The 

average of the two functions (zero tolerance and 1% toler- 

ance) is given for interest as a possible indication of what 
might have resulted if an intermediate tolerance had been 

possible. It is interesting that the average function gives simi- 
lar values for 0 and 0.25 semitone fo differences which is a 

feature of the listeners' data [ see Fig. 9 (a) ] suggesting that 
an intermediate tolerance would have given us a better fit 

between the model performance and the empirical results. 

All the above demonstrations of the model's perfor- 
mance have been deterministic in nature in the sense that 

repeated runs of the program will give exactly the same re- 

sult as long as no parameter has been changed. However, we 

do know that the firing of the auditory nerve is essentially 

stochastic in nature. To study this, we assigned a number of 

auditory-nerve fibers to each channel and, using the probabi- 
lity of firing function in combination with a random number 

generator, we were able to characterize the activity of each 

fiber in terms of action potentials. The output from each 

channel was then characterized as the number of action po- 
tentials which actually occurred within each time step. This 
was closely linked to the firing probability but had a random 
element associated with it which meant that each run was 

unique. 

Human beings have approximately 30000 afferent 

nerve fibers and we estimated that about 17 000 would pro- 
bably be involved between center frequencies of 80 Hz and 4 
kHz. Assuming that we had 100 channels, this would allow 

us 170 fibers per channel. Preliminary trials with this 

number of fibers showed that performance was abysmal both 
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FIG. 15. (a) Performance of a stochastic version of the model (see text) 

compared for 100 channels with 170 fibers per channel, 50 channels with 
340 fibers, and 28 channels with 600 fibers based on a single run for each. 
(b) Results for four runs of a 28 channel model with 600 fibers. 

in terms of the recognition success which was only a little 
better than chance and the overall trend which was opposite 

to that expected [ Fig. 15 (a) ]. This occurred because the 
individual channel autocorrelation functions were so noisy 

that the pitch peaks were rarely aligned appropriately. 
Increasing the number of fibers per channel was capable 

of solving the problem but this was contrary to the known 

physiological limits. However, with only 28 channels and 

600 fibers per channel the results were much better while 

remaining physiologically plausible by using 16 800 fibers. 

Using 50 channels with 340 fibers produced results which 
are intermediate and these are also shown in Fig. 15 (a). 

Figure 15 (b) shows the results of four different runs 

using 28 channels and 600 fibers per channel. Each run is 
different and deviates somewhat from the expected pattern 

but the overall picture shows a sharp improvement over the 

first-half semitone with little improvement thereafter. 

III. DISCUSSION 

The model successfully simulates an important aspect of 

the perceptual data of Assmann and Summerfield (1990), 
i.e., the tendency to improved performance with increased 

fundamental frequency bro ) difference between the two 
vowel components of the stimuli. The ability to capitalize on 

the presence of two different pitches is a structural feature of 
the model. Neither Scheffers (1983a) nor 

Assmann and Summerfield (1990) were able to model this 

crucial aspect of the data. 

It is important to stress that our model is merely intend- 
ed to illustrate one possible approach to the problem of iden- 

tifying two simultaneous vowels. It is not a general purpose 

vowel recognizer. The template matching procedure was in- 
troduced merely to allow the model to demonstrate that it 

had segregated the information appertaining to the two 
vowels. Moreover, the two rules used for deciding whether 

the number of vowels present was one or two are manifestly 
ad hoc. It is also true that the rate of successful identifica- 

tions obtained by the model is subject to fine tuning by the 

authors. The purpose of the article was to show that a princi- 

ple has been uncovered whereby two simultaneously pre- 
sented vowels can be segregated using pitch information 
such that the success rate increases as a function of the fo 

difference between the two vowels. To our knowledge, this is 

the only model of this process which has been successfully 
simulated numerically. 

The speculative intuition guiding our investigation was 
that individual frequency-selective physiological channels 

have the capacity to inhibit one another but do not do so if 
they are responding to the same sound source. Evidence for a 
common sound source would arise if stimulus onset, offset, 

or other kind of amplitude modulation were correlated in 
two or more channels. Pitch is a particular example of an 

amplitude modulation which may be simultaneously present 
in a number of channels. Yost et al. (1989) have recently 

suggested a similar idea in the context of infrapitch ( 1-100 
Hz) sinusoidal amplitude-modulation of signals. 

In the case of a double vowel with two different steady 

pitches, we might expect two mutually inhibitory sets of 
channels to emerge. When one set dominates the other, we 

expect a single vowel to be more easily identifiable against 
the background of a competing vowel. A key question arises 
as to how the second vowel can be identified if one subset 

dominates and inhibits the other. This may be made possible 

by switching from one set to the other by applying a positive 
bias to the inhibited set before the stimulus has ceased. Ass- 

mann and Summerfield (1990) note that recognition is not 

assisted by separating the fundamentals of the two vowels if 
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the stimulus is very short (51.2 ms) even though the recogni- 

tion rate for double vowels with the samefo is just as good. In 

this case, we might suppose that the switch could not take 

place quickly enough. The challenge for the future is to es- 

tablish this idea as a functioning neural network. The cur- 

rent study has mainly served to show that, in principle, it 

may be possible. This concept of mutual inhibition between 
channels is not essential to the model. It is mentioned here 

simply to give the reader some insight into the model's ori- 

gin. In future work, we intend to explore the detailed impli- 
cations of mutually inhibitory channels in a model which is 

more explicitly physiological. 

Although most of the early testing of the model used 173 

channels, we were surprised to note that a reduction to 28 

channels did not seriously affect recognition accuracy and, if 

anything, produced a more faithful reproduction of the lis- 

tener's improvement with increasingfo difference. When we 
later introduced stochastic effects into the auditory-nerve 

fiber activity, we again found that the best results were ob- 

tained with small numbers of channels. Large numbers of 

fibers per channel were required to give useful results and the 

restriction to approximately 17 000 fibers meant that these 

were better deployed in large groups over a small number of 

channels than in small groups over a large number of chan- 

nels. Whether this is a pointer to the actual number of chan- 

nels in the system, it is, of course, too early to say. 

An interesting feature of the model is its sole reliance on 

periodicity information to achieve acceptable levels of vowel 

identification in the testing context of simultaneous vowels. 

We are not proposing that the nervous system uses only per- 

iodicity information in hearing, but we believe that this 

study shows that a great deal can be achieved when using 

only such information particularly when the sounds are har- 

monically structured. The tonotopic organization of the au- 

ditory system is exploited by the model to help separate in- 
formation from different sound sources but the final 

identification is achieved on the basis of cross-channel aggre- 

gation of periodicity information. However, this identifica- 

tion takes place without direct reference to any place infor- 
mation whatsoever. 

The model relies on two kinds of periodicity informa- 

tion; one related to pitch or amplitude information and the 
other related to timbre or short-term effects closely linked 

with the frequency components of the signal. Both have been 

extracted from our autocorrelation functions and pooled au- 
tocorrelation functions but we suspect that they are handled 

quite separately in the nervous system. Pitch information 
may be extracted by neurons in the cochlea nucleus (Frisina, 

1983; Kim and Leonard, 1988). These cells can respond to 

and follow amplitude modulations between about 50 Hz and 

500 Hz. In the inferior colliculus, units respond similarly but 

to a more restricted range of frequencies (Rees and Palmer, 

1989; Rees, 1988). It is not known how higher-frequency 

periodicity information might be extracted although short- 

duration interval extraction represents less of a challenge to 

the modeling of nervous processing than the slower ampli- 
tude modulations involved in pitch. 

Assmann and Summerfield (1990) have already shown 

that place-time models are superior to place models in the 

context of vowel identification. We have built upon their 
work by incorporating these principles. The innovation of 

the present model is to use a periodicity representation of the 

sounds as part of the identification process. This has allowed 

us to segregate the individual filtered channels into two 

groups in a way which would create difficulties if we were 

using a place representation of the sounds; to remove chan- 

nels would produce gaps in a place representation. None of 

this establishes that place methods are inappropriate or not 
viable. Ingenuity alone may be required to create a suitably 

successful alternative place theory. That would be a useful 

development and spur to the development of crucial tests of 

these two opposing approaches. 

IV. CONCLUSIONS 

The model has shown that the segregation of simulta- 

neous vowels can be assisted by a system of tonotopic chan- 

nel segregation with vowel recognition taking place sepa- 

rately within the two complementary sets of channels. The 

explorations of the model have also shown that the number 
of channels can be as low as 28 and still show the basic phe- 

nomenon of improved recognition with an increase info dif- 
ference. The basic result can be reproduced using either a 

deterministic model or a stochastic variant which respects 

the total number of fibers available in the human auditory 
nerve. 
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