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Abstract. Optical interferometers on the ground, like
ESO’s Very Large Telescope Interferometer (VLTI)
and the Keck Interferometer, and in space, like the
InfraRed Space Interferometer (IRSI/Darwin) and the
Space Interferometry Mission (SIM), will bring a major
breakthrough in optical and near-infrared high angular
resolution astronomy at the beginning of the next mil-
lennium. These instruments are complex systems with
an exceptionally interdisciplinary character involving
active/adaptive optics, structural mechanics, control
engineering, electronics and various environmental dis-
turbances (e.g. atmospheric turbulence and absorption,
wind, seismic noise). For their design and development
an approach from two sides is appropriate: laboratory
testbeds are used for experimental investigations while
numerical modeling tools perform an End-to-End instru-
ment simulation. We have developed a set of numerical
modeling tools to simulate the dynamic imaging pro-
cess of an interferometer. The time-dependent point
spread function (PSF) mainly characterizes the imaging
performance of the instrument. It is computed by an
optomechanical model. Based on the knowledge of the
PSF the image of an incoherently radiating extended
object is computed using a Fourier optical method. This
article describes the modeling approach including an
extension to more than two interferometric beams. Some
results of simulations on the VLTI as a representative
example are shown.
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1. Introduction

Over the last decade optical interferometry has grown
out of its pure experimental state. Optical interferome-
ters are running routinely now, producing excellent science
(Baldwin et al. 1998; Mourard et al. 1998; Traub 1998;
Townes et al. 1998; Johnston 1998; Wallace et al. 1998;
Davis et al. 1998). Soon new object classes will become
observable with interferometers which provide large aper-
tures as VLTI and Keck (Mariotti et al. 1998; Colavita
et al. 1998). Within the next ten years space borne in-
terferometry will offer many advantages including the
absence of atmospheric absorption and turbulence, and
the possibility to achieve very long baselines (Shao 1998;
Penny et al. 1998).

Modern interferometers are highly complex systems
combining subsystems of different engineering disciplines,
mainly active/adaptive optics, control engineering,
electronics and structural mechanics. They typically
include a set of nested control loops for various tasks,
e.g. image tracking, tip-tilt control, higher-order adaptive
optics, fringe tracking, laser metrology or attitude and
orbit control system (AOCS). Most of these loops depend
intimately on the object observed, and it is very difficult,
if not impossible, to calibrate all their effects by observing
unresolved stars (Colavita 1999). In combination with
experimental work numerical modeling is a powerful
technique to study the interactions between the subsys-
tems mentioned above. Furthermore it can be used for
preparation of astronomical observations.

The work presented here is a versatile approach to
model the imaging process of an interferometer. A com-
puter program package for simulating the dynamic be-
havior of the VLTI has been developed at ESO. Though
targeting mainly at the VLTI the open and flexible struc-
ture of the program modules allows their application to
a wide range of astronomical interferometers. The total
process of imaging an extended astronomical object in the
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aperture synthesis observational mode under the influence
of various perturbations can be simulated.

In Sect. 2 we describe the philosophy behind our mod-
eling approach. The description of an interferometer by
the incoherent space invariant imaging equation is ana-
lyzed, taking pupil mapping under special consideration.
Following in Sect. 3 is the description of how the dynamic
response of an interferometer is calculated. Building on
this result Sect. 4 investigates the computation of the in-
terferometer’s point spread function, taking into account
multiaxial and coaxial beam combination, and looking
into temporal coherence and observation of polarized ob-
jects. Imaging of extended objects is explained in Sect. 5,
followed by some illustrative examples from the model
(Sect. 6) and the summary (Sect. 7).

2. Modeling approach

The modeling approach is based on the incoherent space-
invariant imaging equation describing the imaging of an
incoherently radiating object through an optical system:

iPol(x) = oPol(x) ∗ PSFPol(x);Pol ≡ s, p (1)

where iPol(x) and oPol(x) denote the intensity distribu-
tions of the image and object respectively, PSFPol(x) the
point spread function, x a two dimensional vector in image
space. The equation holds for the two uncorrelated orthog-
onal source polarizations of the naturally polarized source
specified by the superscript Pol ≡ s, p. In the spatial fre-
quency domain the convolution (“∗”) in Eq. (1) becomes
a multiplication:

IPol(u) = OPol(u) OTFPol(u);Pol ≡ s, p (2)

with IPol(u), OPol(u), OTFPol(u) being the Fourier
transforms of iPol(x), oPol(x), PSFPol(x). u is a two di-
mensional vector in Fourier space. The components of u
are usually called u and v, spanning the uv-plane.OPol(u)
is the object complex visibility of the object for each
source polarization (Pol ≡ s, p). OTFPol(u) is the op-
tical transfer function (OTF ). The OTF is the normal-
ized autocorrelation of the electric field distribution in
the exit pupil (“pupil function”, see Eq. 8). The modulus
of the optical transfer function is called the modulation
transfer function (MTF). Equation (2) is the basis for all
our modeling algorithms. The calculation of OPol(u) and
OTFPol(u) enables us to obtain the fringe pattern as seen
by an optical interferometer. Equations (1) and (2) hold
for a single wavelength λ (“monochromatic light”).

Figure 1 illustrates the basic modeling approach. As
response to a point source an optomechanical End-to-End
model computes the time-dependent electric field distribu-
tion (“pupil function”) in the exit pupils of the different
interferometer arms (at the entrance of the beam com-
biner). We assume observation of the source in a narrow
spectral band (bandwidth ∆λ � center wavelength λ)

EXTENDED
OBJECT

PLANE WAVE

POINT
SOURCE

EXIT OTF
(MULTIAX.)

EXIT OTF
(COAX.)

PUPIL
FUNCTION
(MULTIAX.)

PUPIL
FUNCTION

(COAX.)

MEASURABLE
VISIBILITY

OPTOMECHANICAL

END-TO-END MODEL
F

PH PH

IF1
IF2IF1 IF2

F 
-1

F 
-1

VISIBILITY
FOR

GIVEN
BASELINE

INTERFER.
IMAGE

INTERFER.
IMAGE

INTERFER.
BASELINE

PH

IF2

IF1

OBJECT
VISIBILITY

ENTRANCE
OTF

PH

IF2

IF1

AC

AC AC

SELECT
ACCESSIBLE

VISIBILITY
REGION

Fig. 1. The modeling approach is based on an optomechani-
cal End-to-End model computing the dynamic instrument re-
sponse to a point source and a beam combination/imaging
model which simulates the imaging of an extended object us-
ing a Fourier optical formalism. Note that the peaks in the en-
trance OTF and in the two exit OTF s have different spacings
In case of multiaxial beam combination the three peaks of the
exit OTF are not necessarily adjacent to each other. The mul-
tiplication of the object complex visibility and the exit OTF
is done after shifting the selected visibility regions onto the
three OTF peaks appropriately. The interferometric image in
the coaxial mode has to be modulated in time to retrieve any
object visibility
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(“quasimonochromatic approach”). The OTF which in
general is wavelength-dependent is computed for the cen-
ter wavelength of the quasimonochromatic band. The
End-to-End model includes models for mechanical struc-
ture, control system, environmental disturbances and – as
core part – an optical model based on a hybrid ray tracing
and diffraction propagation code (Denise & Koehler 1998;
Wilhelm et al. 1998; Wilhelm & Johann 1999). The output
of the optomechanical model serves as input to a separate
Fourier optical model which computes the time-dependent
optical transfer function at the exit pupil (“exit OTF”)
for coaxial (“pupil-plane”) and multiaxial (“image-plane”)
beam combination (Schöller et al. 1998). The exit OTF
combines the interferometer OTF and atmospheric effects
in a single quantity. For a given baselineB (projected per-
pendicular to the direction of observation) the accessible
regions of the object visibility in the spatial frequency do-
main are determined by the “non-zero” domains of the
“entrance OTF” which itself is given by the autocorre-
lation (denoted by “AC” in Fig. 1) of the electric field
distribution in the entrance pupil corresponding to the
interferometer baseline (“entrance baseline”).

Both, exit and entrance OTF consist of three cone-
shaped peaks in the spatial frequency plane (“uv-plane”):
a central “photometric peak” (denoted by “PH” in Fig. 1)
around zero spatial frequency u = 0 and two “interfer-
ometric peaks” (denoted by “IF1” and “IF2” in Fig. 1),
symmetric with respect to the origin of the spatial fre-
quency plane. The photometric peak holds only the infor-
mation of the single apertures, including the total flux.
The interferometric peaks hold the interferometric sig-
nal, which results from the coherent superposition of the
beams related to the two interferometer arms. In the case
of a “source visibility” of 1 the interferometric peaks reach
their maximum height equal to half the height of the pho-
tometric peak, leading to maximum fringe contrast. The
interferometric peaks are located at the spatial frequen-
cies corresponding to the entrance and exit baseline, re-
spectively (u = ±B/λ for entrance OTF , u = ±B′/λ for
exit OTF ). The exit baseline B′ is given by the distance
of the two interferometric beams before superposition (in
the beam combiner). In case of coaxial beam combina-
tion the exit baseline is zero (B′ = 0). For a Fizeau-type
interferometer which always uses multiaxial beam combi-
nation the entrance and exit baseline coincide (B′ = B,
in all three coordinates (u, v, w)), i.e. there is no differ-
ence between entrance and exit OTF . On the other hand,
in case of a Michelson-type interferometer the exit base-
line typically is much shorter than the entrance baseline
(|B′| � |B|), hence entrance and exit OTF are different.

The interferometric image for the selected baseline is
obtained as follows: The three distinct measurable parts
of the object visibility map are multiplied with the corre-
sponding peaks of the exit OTF (“IF1”, “PH” and “IF2”)
(Tallon & Tallon-Bosc 1992). Inverse Fourier transform
of the resulting visibility map yields the interferometric

image. For both beam combination modes the envelope of
the image is given by the diffraction pattern corresponding
to the individual pupils before their combination. While
in the multiaxial mode spatial fringes are directly visible
in the image a detection in the coaxial mode requires a
modulation of the optical path in one interferometer arm
to create a temporal fringe pattern. The spacing of the
fringes is determined by the exit baseline B′ or the op-
tical path modulation function for multiaxial or coaxial
beam combination, respectively. For both beam combi-
nation schemes the fringe contrast is determined by the
source visibility map sampled at the spatial frequencies
±B/λ. Various algorithms exist for estimating the com-
plex visibility (contrast and phase of the fringe pattern)
from a measured spatial or temporal fringe pattern.

The regrouping of the pupils in a Michelson inter-
ferometer results in a PSF which is changing over the
field-of-view. Tallon & Tallon-Bosc (1992) describe the
object-image relationship for a Michelson interferometer
in the monochromatic case. The description of a Michelson
interferometer by the incoherent space invariant imaging
equation is an approximation which is only correct for a
sufficiently small interferometric field-of-view. Outside of
this interferometric field-of-view the fringe contrast is de-
teriorated until there are no fringes anymore. The object
intensity distribution has to be convoluted with a field de-
pendent PSF to describe the image intensity distribution.
This PSF is not changing in the direction perpendicular
to the baseline.

In our simulations we are still using the description
by the incoherent space invariant imaging equation, lim-
iting ourselves to a field-of-view with the size of an Airy
disk, corresponding to a single subaperture of the inter-
ferometer. This is a valid way to describe observations
with an interferometer, if the instruments use a spatial
filter, thus limiting their field-of-view, anyway. According
to Hofmann (1997) (following Tallon-Bosc & Tallon 1991),
the interferometric field-of-view for a given dynamic range
is:

FOV = R
λ

B −B′

√
1
Q

(3)

with R(= λ/∆λ) the spectral resolution, B the length of
the entrance baseline, B′ the length of the exit baseline,
and 1/Q the dynamic range. One can easily see that the
contrast loss can be decreased by using small band filters
or dispersion of the signal, enlarging the interferometric
field-of-view.

For example, a measurement with the MIDI instru-
ment on VLTI’s telescopes UT1 and UT4 (130 m baseline)
at 10µm in coaxial beam combination, with a dynamic
range of 1/100 and a field-of-view with the size of an Airy
disk requires a spectral resolution of R = 150, smaller
than the one which the instrument provides (R ≥ 200).
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3. Computing the dynamic instrument response

For the simulation of the aperture synthesis imaging pro-
cess of an interferometer the knowledge of the time-
dependent optical transfer function (OTF ) is of central
importance. The OTF is given by the autocorrelation of
the pupil function, i.e. the two-dimensional distribution of
the complex electric field in the interferometer pupil plane
when observing an point source. The task of computing
the time-dependent electric field output of the different in-
terferometer arms for a given baseline is performed by an
optomechanical End-to-End model (EM). An EM contains
models for structural mechanics, control system, sensors,
actuators, various perturbations (e.g. atmospheric turbu-
lence, wind), and – as a core part – an optical model which
computes the optical signal flow through the instrument.
For realistic simulation of the control loop sensors the
source intensity in the respective wavelength range has
to be taken into account. Modeling the fringe sensor per-
formance requires the knowledge of the object visibility
for the given baseline.

3.1. Modeling interferometer optics

We have developed a novel optical modeling tool (OM)
which is specifically designed to meet the requirements for
simulation of ground- and space-based astronomical inter-
ferometers (Wilhelm et al. 1998; Wilhelm & Johann 1999).
A fast coordinate-free ray tracing algorithm (Redding &
Breckenridge 1991) forms the basis of the OM. Diffraction
propagation is handled either by numerical approximation
of the Rayleigh-Sommerfeld integral or by Fourier-optical
methods based on the Fast Fourier Transform (FFT). A
Jones matrix formalism keeps track of the vectorial electric
field. The OM includes a photometry algorithm which cal-
culates the calibrated power flux through the instrument.
In contrast to stochastic ray tracing methods of some com-
mercial optical design programs our method makes use of
a triangle grid interconnecting the rays. Each triangle is
interpreted as an energy-carrying surface element of a lo-
cally planar wavefront. Beam propagation is modeled by a
sequence of geometrical and physical-optical propagations.
The choice of the adequate propagation model (geometri-
cal/physical optics) for a single propagation step between
two optical surfaces is made with respect to the respec-
tive “beam geometry”, i.e. the relative sizes of beam di-
ameter, wavefront curvature, optical element aperture and
wavelength.

Figures 2 and 3 show scaled models of a VLT Unit
Telescope and a VLTI optical delay line, both established
with the OM.
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Fig. 2. Scaled model of a VLT unit telescope established with
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Fig. 3. Scaled model of a VLTI cat’s-eye optical delay line es-
tablished with the optical modeling tool. The optical design
is of the “Ritchey-Chretien” type: a telescope with a tertiary
mirror at the focus which sends the beam back in a direction
parallel to the one it came from. Apart from equalization of
the optical path differences the delay line serves the purpose of
imaging the exit pupil of a telescope to a fixed location inside
the beam combination laboratory. Technically this is accom-
plished by actively controlling the curvature of the tertiary
mirror (M15)

3.2. Computing the static electric field maps in the pupil
plane

The observation of a point source is simulated by prop-
agating a plane wave through each interferometer arm
using a sequence of geometrical and physical-optical prop-
agations. To simulate a naturally polarized starlight beam
the computation is done sequentially for two uncorrelated,
linearly polarized beams with mutually perpendicular po-
larization directions (“s” and “p”) defined in the plane



M. Schöller et al.: Modeling the imaging process in optical stellar interferometers 545

of the incident wavefront. The vectorial electric field dis-
tribution in the pupil plane is computed for each “star
polarization” (s, p):

P Pol(x) = EPol
1 (x) +EPol

2 (x);Pol ≡ s, p (4)

where x denotes a position in the pupil plane and the sub-
scripts “1” and “2” correspond to the two interferometer
arms. The function P Pol is the vectorial pupil function
which is used to compute the static OTF (see Sect. 4).

Figure 4 shows the distribution of the electric field am-
plitude and phase (one Cartesian component) in the exit
pupil plane of a single VLTI arm (one interferometric
beam). The field maps result from a hybrid propagation
model combining geometrical- and physical-optical propa-
gations. As the propagation of the starlight beam is within
the near-field regime the beam diameter at the exit pupil
does not substantially deviate from the 8 cm geometrical-
optical footprint (indicated by the white circle in the am-
plitude map). 92.8% of the optical power is received within
the 8 cm circular footprint for a wavelength of 2µm. On
the other hand the amplitude pattern shows significant
diffraction effects (typical “near-field ripples”). The phase
variation across the 8 cm diameter corresponds to approx-
imately one wavelength (phase difference ≈ 2π). Outside
the 8 cm circle the slope of the phase map is significantly
bigger leading to a rapid oscillation between 0 and 2π.

3.3. Computing the time-dependent electric field maps in
the pupil plane

Up to this point we have described the computation
of the static electric field distributions. The calculation
of the dynamic OTF s requires the knowledge of the
time-dependent electric field distributions EPol

1 (x, t) and
EPol

2 (x, t). Therefore the OM is integrated into an EM.
We have implemented the OM described above within
the VLTI End-to-End Model, developed at ESO (Denise
& Koehler 1998; Wilhelm & Koehler 1998). It simulates
the dynamic response of the VLTI to a point source.
Engineering objectives include the analysis of collective
effects of disturbances and the study of interaction of op-
tics and control loops. Eventually, the model is planned to
be used as a diagnosis tool during the commissioning of
the instrument. Simulated disturbances are wind load on
telescopes, atmospheric wavefront piston and tip/tilt, and
seismic noise. Atmospheric scintillation and high-spatial
frequency corrugations of the wavefront are not taken into
account. Mechanical structure modeling is done off-line
using finite element software. The response of the interfer-
ometer to disturbances is then modeled in the End-to-End
model using transfer functions between the disturbances
(e.g. wind load) and optical parameters (e.g. optical path
length (OPL)). The dynamic control environment model
uses a “linear optical model” (“small-motion model”). A
linear optical model is represented by a sensitivity matrix
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two-dimensional field amplitude distribution is plotted in a
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shows a cut through the two-dimensional phase map in the
u-direction. In both plots the 8 cm geometrical-optical foot-
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characterizing the dynamic behavior of a set of optical
output parameters in the presence of perturbations acting
on the optical system. Examples for optical output pa-
rameters are the changes in the position or optical path
of a ray or the changes in the Zernike coefficients repre-
senting the optical path distribution of a wavefront. The
usage of a linear optical model assumes that the pertur-
bations (translations and rotations) of the optical surfaces
are small enough to ensure proportionality between the
changes in output parameters and the perturbations.

For computation of the dynamic pupil function it
is assumed that the time-dependent electric vector field
EPol
i (x, t) in the exit pupil of an interferometer arm i is

given by the product of a static vector field EPol
i (x) and

a time-dependent phase factor
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EPol
i (x, t) = EPol

i (x) ej∆φi(x,t) (5)
(i ≡ 1, 2;Pol ≡ s, p).

The time-dependent “phase error” ∆φi(x, t) arises from
fluctuations of the optical path in the exit pupil with re-
spect to the static situation. As the displacements of the
optical elements due to the disturbances and active con-
trol are sufficiently small the resulting phase error can be
regarded as polarization-independent, i.e. the same fac-
tor exp(j∆φi(x, t)) is applied to all Cartesian compo-
nents of the electric vector field. The equation ∆φi(x, t) =
(2π/λ) ∆OP (x, t) links the phase error for a given inter-
ferometric arm i to an “optical path error” ∆OP which
itself can be expressed as a Zernike polynomial decomposi-
tion using M orthogonal Zernike polynomials Ψm (typical
number M = 15):

∆OP (x, t) =
M∑
m=1

dZm(t)Ψm(x). (6)

TheM time-dependent coefficients dZm are the deviations
of the M Zernike coefficients with respect to the static
situation. Within the dynamic simulation the coefficients
dZm are computed by a linear optical model represented
by a sensitivity matrix A:

dZ(t) = A ∗ dp(t) (7)

where dZ(t) is a vector of size M × 1 holding the devi-
ations of the M Zernike coefficients, dp(t) is a vector of
size 6N×1 holding the perturbations (rotation and trans-
lation; 6 degrees of freedom per surface) of the N optical
surfaces along a beam train and A is a M × 6N sensitiv-
ity matrix. The computation of the sensitivity matrices for
the different interferometer arms is done in the preprocess-
ing phase of the EM by sequentially applying small pertur-
bations to the optical surfaces, propagating the starlight
beam and watching the changes in the Zernike coefficients
in the respective exit pupils.

If the displacement of the exit pupils has to be taken
into account appropriate sensitivity matrices can be de-
fined analogously.

4. The time dependent point spread function of the
interferometer

4.1. Building the optical transfer function

This section describes the computation of the point spread
function (PSF). As the PSF is the image of a point source
the function o(x) in Eq. (1) becomes a δ-function corre-
sponding to a constant spectrum O(u).

The spacing of the fringes that one obtains with an in-
terferometer depends only on the shape of the exit pupil,
or better, its autocorrelation, the OTF . In Fig. 5 we show
three different one dimensional pupil functions and their
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Fig. 5. One dimensional pupil functions (left) and modulation
transfer functions (right) for exit pupil separations of 2, 1, and
0 (pupil separation being the distance between the two pupil
centers in pupil diameters). The solid lines in the MTFs show
the three single parts of the MTF, the dashed lines (where
visible) show the total MTF

corresponding MTFs. The first two pupil functions show
multiaxial beam combination, the last coaxial beam com-
bination. If the pupils are so close together that the peaks
in the OTF are overlapping, the information in the in-
terferometric peaks cannot be fully retrieved. A loss of
information in the interferometric peaks means a limit in
the interferometric field-of-view. This can be understood
if one remembers that an extended object leads to varia-
tions on small scales in the object complex visibility, which
are not retrievable anymore in the entangled peaks. Using
coaxial beam combination, one cannot disentangle the in-
terferometric signal from the photometric signal anymore,
since all peaks fall on top of each other (see Sect. 4.3).

In our approach we construct the pupil function and
then calculate the OTF from the output of the interferom-
eter simulations described in Sect. 3. Since we must have
access to all parts of the OTF separately without mix-
ing them, we are internally computing the OTF always
with well separated pupils and rearrange the peaks later to
match the real OTF . A simulated two dimensional MTF
for image plane beam combination with two telescopes
and well separated exit pupils can be seen in Fig. 6.

The outputs from the optomechanical model are static
electric field maps, dynamic Zernike coefficients for the
time-dependent OPL maps, and the dynamic lateral pupil
positions. For each of the two input polarizations there
are three static electric field maps, corresponding to the
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Fig. 6. Modulation transfer function (MTF) for a multiaxial
beam combiner. The structure of the MTF is mainly given by
the autocorrelation of two uniform disks

three Cartesian components of the electric fielda. To recon-
struct the exit pupil function from this output for a certain
point in time, we take the static electric field maps and
multiply them with the dynamic phasors exp(j∆φi(x, t))
(see Eq. 5). To simulate the combination of beams of differ-
ent sizes (e.g. VLTI beams related to UT and AT) we use
a virtual beam expander/compressor adjusting the beams
to the same diameter.

From the vectorial pupil function P Pol (Eq. 4) one gets
the internally used OTFPol by computing its autocorre-
lation (Goodman 1968):

OTFPol(u) =
P Pol(λu) ∗P Pol∗(λu)∫ ∫∞
−∞ |P Pol(λu)|2 du

;Pol ≡ s, p (8)

where u is a two-dimensional, dimensionless vector in the
spatial frequency domain (u = x/λ). Within the model,
the calculation of the OTF is performed using two Fourier
transforms:

OTFPol = AC[P Pol] = F{
∣∣F−1{P Pol}

∣∣2}. (9)

The simulation of the imaging process as described in
Sect. 2 is done independently for the two star polariza-
tions (s, p) using the two transfer functions OTF s(u) and
OTF p(u).

This way we construct an OTFi for every timestep ti of
the dynamic simulation. The length of a single simulation
interval ∆t = ti − ti−1 is chosen to ensure stationarity of
the atmospheric perturbations. Over an exposure time T
we have typically a few OTF s. It is the change of the OTF
with time, which is degrading the interferometric signal,
and in which we are interested. One gets the OTF for the
whole exposure time when averaging the OTFi.

Since the dimension of the electric field is [V/m],
the autocorrelation above has the dimension V2/m2].
One retrieves intensities in [W/m2] when multiplying by
0.5
√
µ0/ε0 with µ0 and ε0 being the dielectric constant

and the permeability in vacuum. From here one comes
to energies (and finally photons) by multiplying with the
area of the beam A and the length in time of the single
simulation interval ∆t.

a The component in the direction perpendicular to the pupil
plane can be neglected as the outcoming beams are close to
plane waves.

1 2 3

spatial
interferogram

Fig. 7. Multiaxial beam combination with fringe detection in
an image plane

The OTF constructed in this way is not dimensionless
as described in Eq. (8), but already holds the photometric
information. The object complex visibility we are multi-
plying with this OTF thus has to be dimensionless and
normalized to one. Since we are using one object complex
visibility for each polarization, the sum of these two vis-
ibilities has to be normalized. For an unpolarized object
these two visibilities are identical and normalized to 0.5.

Since the OTF s already hold the intensity informa-
tion, one can directly read the correlated flux for a point
source from the OTF . It is the sum of the maxima of the
interferometric peaks (or twice the height of one peak).
The total flux is the maximum of the photometric peak,
the uncorrelated flux is then the difference between the
total flux and the correlated flux. It should be kept in
mind that the two interferometric peaks are symmetric
and carry exactly the same information. An extension of
the described method to the case of extended objects is
given in Sect. 5.

The combination of more than two beams is performed
by using the same method as for two beams. To compute
the OTF , the N beams have to be arranged in a non-
redundant way allowing to retrieve the photometric peak
and the N(N−1)/2 interferometric peaks. Afterwards one
has to rearrange them according to the exit pupil.

4.2. Multiaxial (“image plane”) beam combination

For combining the beams in the image plane the exit
pupils of two or more interferometer arms are aligned side
by side in the pupil plane (see Fig. 7). Imaging this plane
by an optical subsystem results in a spatial fringe pattern.
The exit pupils have to be aligned so there is no redun-
dancy in the distances between them. Usually the exit
pupils are set on a line, with non redundant spacing, leav-
ing the perpendicular axis available for spectroscopy (see
Fig. 8). A more compact setup can be achieved by using
two dimensions, taking for example a trapezium structure
with four exit pupils (Fig. 9).
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Fig. 8. Non-redundant pupil function and the corresponding
modulation transfer function for four beams and a linear setup

Fig. 9. Non-redundant pupil function and the corresponding
modulation transfer function for four beams and a compact
setup

When observing in multiaxial mode one frame per at-
mospheric coherence time is taken. A usual method for
estimation of the visibility amplitude V for an interfer-
ometer combining two beams, which have been spatially
filtered to the extent of a single aperture Airy disk, is
given in Roddier & Léna (1984): By taking the Fourier
transform and squaring it one computes the power spec-
trum (squared MTF) of the spatial fringe pattern. The
power spectrum has non-overlapping low and high-spatial
frequency terms (the single photometric peak and the two
interferometric peaks). The ratio of the high to low fre-
quency energies gives a good estimation of the term 1

2 V
2.

For observations with a field-of-view exceeding the size
of an Airy disk, one has to evaluate the values at every
single spatial frequency within the interferometric peaks
of the power spectrum.

This mode will be used by the AMBER beam combiner
for the VLTI (Petrov et al. 1998). In Fig. 10 a simulated
image plane combined interferogram can be seen.

4.3. Coaxial (“pupil plane”) beam combination

Most interferometers are combining the beams coming
from the arms of the interferometer in the pupil plane.
This means that the exit pupils are aligned pairwise on
top of each other. Afterwards usually an optical subsys-
tem focuses the pupil on a detector (see Fig. 11).

To measure the fringe, the observer has to step through
the fringe in time, namely modulating the optical path in
one of the interferometer arms. One way to achieve this
is to take four frames per atmospheric coherence time,
each of which has (0, 1, 2, 3)×λ/4 optical path difference
(OPD) added to one beam. The visibility is estimated
by determining the energy in each of the four frames
(A, B, C, D) and computing the modulus of the object
complex visibility according to: 1

2

√
(A− C)2 + (D −B)2.

Fig. 10. Image plane combined interferogram as observed in
the focal plane of a Fizeau interferometer with three circular
1.8 m subapertures (wavelength 550 nm, effective focal length
34.65 m, logarithmic dB-scale (relative to maximum)). The
baselines have a length of 1.8 m, 3.6 m, and 5.4 m

Beamsplitter

Detector

1 2

1+2

PSF

Pupil Plane

Fig. 11. Coaxial beam combination with fringe detection in an
image plane

The phase of the object complex visibility can also be
computed from the four energy bins A, B, C, D (Shao
& Staelin 1977).

For the beam combination in the model this means
that one has to add 0, π/2, π, 3π/2 to the phase in one
of the interferometric OTF peaks, and subtract the same
value in the other interferometric peak. Figures 12 and 13
illustrate what consequence this additional phase has on
the OTF .

This beam combination mode is foreseen with the
MIDI instrument for VLTI (Leinert & Graser 1998). Four
Airy disks of varying intensities, which form a typical in-
terferogram can be seen in Fig. 14.

When combining more than two beams in coaxial beam
combination it is necessary to sample the fringe with more
than four steps in time. This leads to different steps in
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∆ϕ = 0 ∆ϕ = π/2

∆ϕ = 3π/2∆ϕ = π

Fig. 12. Optical transfer function for two rectangular apertures
(multiaxial beam combination, exit baseline has the length of
twice the pupil diameter), where a phase of 0, π/2, π, and 3π/2
is added to one of the beams. The interferometric peaks of
the OTF are rotating around the complex axis. (Shown just
for illustration since there is no path modulation necessary in
multiaxial beam combination)

∆ϕ = 0 ∆ϕ = π/2

∆ϕ = π ∆ϕ = 3π/2

resulting
peak

Fig. 13. Same as Fig. 12, but for a coaxial beam combination.
In the upper left the two interferometric peaks are enhancing
the height of the photometric peak (no phase shift), in the two
right drawings the interferometric peaks cancel, leaving only
the photometric peak (phase shifts π/2 and 3π/2), while in
the lower left the two interferometric peaks cancel the photo-
metric peak, leaving no signal (phase shift π)

phase for the interferometric peaks, which are now rotat-
ing around the imaginary axis with different speed. One
of the beams is not delayed at all as another beam has
to be delayed by steps of λ/4, just like in the case of two
beam combination. The third beam has to be delayed with
steps of λ/12. A total of 12 exposures has to be taken. For
the six interferometric peaks of the OTF follows that two
have to rotate by steps of π/2, two with π/3, and the last
two with π/6. The first make three rotations during one
fringe acquisition, the second two rotations, and the latter
one rotation.

4.4. Taking temporal coherence into account

Within the modeling software we assume the validity of
the quasi monochromatic approximation. A finite band-

Fig. 14. Pupil plane combined interferograms at 10µm for de-
lays of 0, λ/4, λ/2, and 3λ/4 (square root display). The
lower left interferogram should be 0 over the whole image
for a perfect interferometer and an unresolved object. This
is not the case because of non-zero optical path difference
(OPD) between the two arms of the interferometer and optical
aberrations. Since the interferometric information is the total
intensity on the detector, in real applications only one pixel is
needed to record the data

width of the source which is much smaller than the center
wavelength/frequency can however be taken into consid-
eration. This leads to a degradation of the visibility. In the
picture of correlated versus uncorrelated flux this means
that the correlated flux becomes less. Thus one has to
lower the interferometric peaks in the OTF by a gen-
erally complex factor γ (0 ≤ |γ| ≤ 1). γ is the degree
of temporal coherence. It is a function of the OPD be-
tween the two interfering wavefronts and is computed as
the Fourier transform of the power spectral density of the
source (Goodman 1985). As a first approach we average
the OPD between the beams across their areas and multi-
ply the interferometric peaks in the OTF with this value.
If the average OPD substantially exceeds the coherence
length of the starlight the degradation factor |γ| becomes
zero and the fringes disappear. This computing approach
does not consider a variation of the OPD across the beam
areas.

4.5. Simulating polarized objects

A polarized object can be characterized in every pixel of
the intensity distribution by three quantities: the flux, the
degree of polarization, and the direction of polarization. In
the model the polarized and the unpolarized flux are sep-
arated. The polarized flux is projected on the two polar-
ization axes used within the optomechanical model. The
unpolarized flux of the object is divided by two and added
to the two polarization maps. From these two maps we cal-
culate two object complex visibilities. Both are multiplied



550 M. Schöller et al.: Modeling the imaging process in optical stellar interferometers

Fig. 15. Modulus of the object complex visibility of a uniform
ellipse. The encircled areas are the parts of the object complex
visibility picked up by VLTI’s UT1 and UT3 for an object at
declination −30◦ and hour angles −3, 0, and 3

with their correspondingOTF s. Now the two different vis-
ibilities have to be added to retrieve the measured signal.

5. Imaging extended objects

As soon as the individual apertures are not placed on a
single steering mount, the entrance pupil of earth bound
interferometers is different for objects with different de-
clinations and varies with hour angle. Thus the part of
the object complex visibility which is measured with the
interferometer varies with time (see Fig. 15).

From the object complex visibility we have to cut out
the parts which are picked up by the entrance pupil of
the interferometer. These are just the parts which lie in
the uv-coverage belonging to the current array configura-
tion for the observed object. The object complex visibility
patches are now multiplied on their respective parts in the
OTF , as illustrated in Fig. 1.

For an earth-bound interferometer the baseline is
changing with time with respect to the object. Thus
the interferometer is sensitive to different parts of the
object complex visibility. The projected baseline of an
earth-bound interferometer can be calculated by

(u, v, w) = Rot(x, δ)Rot(y,H)Rot(x, l) (x, y, z) (10)

with Rot(a, α) being a rotation around axis a with angle
α, δ the declination of the object, H the hour angle of
the observation, and l the latitude of the observatory. x
is pointing to the east, y to the north, and z to zenith. u
and v are coordinates in the (u, v)-plane and w is giving
the sidereal optical path delay.
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Fig. 16. Time-dependent visibility amplitude computed for an
idealized pupil plane instrument combining two beams of the
VLTI. The visibility has been computed for three different
wavelengths (10µm, 2.2µm, and 0.6µm) with the exposure
times Texp matching the atmospheric coherence time τ0 for
each wavelength (τ0 = 290 ms, 50 ms, 10 ms, respectively)

A value of the object complex visibility is estimated
for every timestep of the aperture synthesis imaging pro-
cess, i.e. for every orientation of the interferometer base-
line with respect to the observed object. Using the Van
Cittert Zernike theorem the object intensity distribution
(in the sky) can be partially reconstructed from the mea-
sured visibilities.

6. Illustrative examples from the model

In this section we show some results of the simulations
of the VLTI. These are based on ESO’s optomechanical
End-to-End model.

Figure 16 shows the global instrumental visibility as
measured by an idealized pupil plane instrument. The vis-
ibility measured by a true instrument will be severely ef-
fected by thermal background at 10 µm and high spatial
frequency wavefront corrugations due to the turbulent at-
mosphere at the shorter wavelengths which are both not
included here. The peaks with a period of 0.5 seconds in
the 0.6µm visibilities arise from the residual tracking er-
rors of the telescopes under wind load, which lets the two
Airy disks overlap only from time to time. These residual
errors can be corrected by increasing the gain of the fast
tracking loop which has been set to low values here on pur-
pose. The first 100 ms of each time series are dominated
by the model initialization phase and are not usable.

Residual tilt is dominating the degradation of the vis-
ibility at short wavelengths. Figure 17 shows the effect of
residual tilt present in the exit pupil plane on the result-
ing interferometric image for three different wavelengths.
While for 10µm the Airy disks overlap perfectly, at 2µm
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a b c

Fig. 17. Coaxially combined interferograms at a) 10µm,
b) 2µm, and c) 500 nm (see text)

Fig. 18. Fourier spectrum of an image plane combined interfer-
ogram at 2µm with 10 000 photons and 20 e− readout noise
(square root display)

one can see a slight elongation, and for 500 nm the Airy
disks are separated.

Another aspect that we studied is the influence of the
detector when using the interferometer at low light levels.
We added noise to a multiaxially combined interferogram,
corresponding to 10 000 photons and 20 e− readout noise.
In Fig. 18 the modulus of the corresponding Fourier spec-
trum can be seen. The interferometric peaks which carry
the signal we want to measure are blurred, thus degrading
the visibility significantly.

7. Summary and outlook

The purpose of this article is to present a powerful and
versatile approach to dynamic modeling of the imaging
process of an optical stellar interferometer operating in
aperture synthesis mode. Therefore a set of numerical
models has been developed and linked together to form a
comprehensive analysis tool covering the various engineer-
ing disciplines of astronomical interferometry. Although
most of the model components were specifically devel-
oped for the VLTI their modular and open structure al-
lows their application to other related instruments. The
modeling tool can be divided into two main components:
(1) An optomechanical End-to-End model computes the
time-dependent instrument response to an point source,
i.e. the complex electric field distribution at the entrance
of the interferometric beam combiner. This serves as input
to (2) a Fourier optical model which simulates the imag-
ing of extended objects. The final output of the complete
model is the dynamic complex fringe visibility for a given
baseline. The article describes the modeling approach il-

lustrated by examples and some didactic simulation re-
sults obtained for the VLTI.

Future work intends a refinement of the opti-
cal modeling algorithms including support for de-
formable/segmented mirrors (adaptive optics) and
further enhancement of the models for diffraction prop-
agations. An atmospheric turbulence model will be
included to supplement the existing disturbance models
for atmospheric wavefront piston and tip/tilt, wind load
and seismic noise. The various optical detectors and
sensors have to be modeled in a realistic way taking
sensitivity and noise aspects into account.

Eventually the program package can be useful during
all preparatory and operational phases of a stellar interfer-
ometry project. In the planning phase it can be used for
detailed demonstration of instrument feasibility. During
the design and analysis phase the program enables a grad-
ual refinement of the subsystem layouts (control, optics,
structure) by studying their mutual interaction. Finally,
in the operational phase it can be used for preparation
of observations. A preceding simulation run can deter-
mine optimum values of instrument parameters (e.g. base-
line configuration, integration time) for a given scientific
objective.
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Abstracts of Contributed Talks and Posters presented
at the Annual Scientific Meeting of the Astronomische
Gesellschaft at Heidelberg, September 14–19, 1998,
Astronomische Gesellschaft Meeting Abstracts, talk #L4

Wilhelm R., Koehler B., 1998, BeamWarrior optical kernel and
its implementation within the VLTI End-to-End Model,
User Manual VLT-MAN-ESO-15000-1673, European
Southern Observatory

Wilhelm R., Johann U., 1999, in: Merkle F. (ed.) Proc. SPIE
EUROPTO Series 3737, Design and Engineering of Optical
Systems, p. 45


