OPEN 8 ACCESS Freely available online PLOS COMPUTATIONAL BIOLOGY

Modeling the Impact of Lesions in the Human Brain
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Abstract

Lesions of anatomical brain networks result in functional disturbances of brain systems and behavior which depend
sensitively, often unpredictably, on the lesion site. The availability of whole-brain maps of structural connections within the
human cerebrum and our increased understanding of the physiology and large-scale dynamics of cortical networks allow us
to investigate the functional consequences of focal brain lesions in a computational model. We simulate the dynamic effects
of lesions placed in different regions of the cerebral cortex by recording changes in the pattern of endogenous (“resting-
state”) neural activity. We find that lesions produce specific patterns of altered functional connectivity among distant
regions of cortex, often affecting both cortical hemispheres. The magnitude of these dynamic effects depends on the lesion
location and is partly predicted by structural network properties of the lesion site. In the model, lesions along the cortical
midline and in the vicinity of the temporo-parietal junction result in large and widely distributed changes in functional
connectivity, while lesions of primary sensory or motor regions remain more localized. The model suggests that dynamic
lesion effects can be predicted on the basis of specific network measures of structural brain networks and that these effects
may be related to known behavioral and cognitive consequences of brain lesions.

Citation: Alstott J, Breakspear M, Hagmann P, Cammoun L, Sporns O (2009) Modeling the Impact of Lesions in the Human Brain. PLoS Comput Biol 5(6):
€1000408. doi:10.1371/journal.pcbi.1000408

Editor: Karl J. Friston, University College London, United Kingdom
Received March 16, 2009; Accepted May 6, 2009; Published June 12, 2009

Copyright: © 2009 Alstott et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: OS, MB and JA were supported by the JS McDonnell Foundation. LC was supported by a grant for interdisciplinary biomedical research by the
University of Lausanne. PH was supported by the Swiss National Science Foundation and the Department of Radiology of University Hospital Center in Lausanne.

* E-mail: osporns@indiana.edu

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Introduction

Recent advances in noninvasive imaging technology have
allowed the creation of comprehensive whole-brain maps of the
structural connections of the human cerebrum [1-7]. These maps
have led to the quantitative characterization of various aspects of
the network architecture of the brain, including degree distribu-
tions, small-world attributes, centrality and modularity. Compar-
ative studies of structural and functional connectivity indicate that
the presence of structural links between pairs of cortical regions is
predictive of the occurrence of endogenously driven (resting-state)
functional connectivity [4,8,9]. The mapping of structural
connectivity has also enabled the construction of computational
models of resting state activity [10,11]. The direct comparison of
empirically observed and computationally modeled resting state
functional connectivity revealed a high degree of overlap,
supporting the idea that large-scale structural brain networks do
indeed shape and constrain endogenous patterns of functional
connectivity [8].

The structural or functional robustness of networks has been
investigated in a number of complex systems [12,13], including
biological networks [14—16] In the case of the brain, acute injuries
from trauma, tumor, or stroke, as well as chronic or degenerative
disturbances due to disease, correspond to node and edge deletions
in the structural brain network. Many of the cognitive and
behavioral effects of brain lesions are highly variable and their
mechanistic origins remain difficult to discern. Nevertheless,
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lesions of specific brain regions are often associated with specific
cognitive and behavioral disturbances, and lesions of some areas
tend to have more severe effects than others [17-19]. Vulnerability
analyses [20-24] of several non-human primate cortical networks
suggest that lesion effects show regional specificity as well as non-
local and distributed effects.

We describe a model of lesion effects in the human brain, based
on a previously published map of structural connections [4] and a
biophysical model of endogenous neural dynamics [8]. We
investigate the effects of focal lesions (removing a spatially
localized set of nodes and connections) on the endogenous
dynamics of the remaining brain. We identify structural measures
of brain connectivity that are predictive of the magnitude of the
perturbations in the endogenous neural dynamics. We discuss our
results in light of known behavioral and cognitive lesion effects.
The computational and complex network approach taken in this
paper provides a new link between localized structural damage of
brain networks and global disruptions of dynamic interactions.

Methods

Connectivity Data Set

The structural connectivity (SC) data set used in the present
paper is identical to the one described and displayed in ref [8],
based on diffusion MRI data first described in ref [4]. Briefly,
structural connections were derived from diffusion spectrum
imaging (DSI) of five healthy right handed male participants.
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Author Summary

Every year, millions of people suffer the consequences of
brain damage, as a result of stroke, traumatic brain injury,
cancer or degenerative brain disease. The cognitive and
behavioral symptoms of focal lesions of the brain are
highly variable and in many cases depend on the location
of the lesion site. Can we predict the functional impact of
such lesions on the basis of a computational model of the
brain’s structure and dynamics? Numerous other systems
that form complex networks have been analyzed for their
vulnerability to structural damage. In many cases, the
degree to which such systems are perturbed depends on
network attributes of the deleted nodes and connections.
We apply this network approach to investigate the
structural and functional impact of localized lesions of a
model of the cerebral cortex. When we delete nodes that
occupy, in the intact brain, a highly central position, we
find that the dynamic interactions between nodes in the
remaining brain are greatly disturbed. In contrast, deletion
of less central nodes has relatively little effect. In the
model, some of the most disruptive lesion sites correspond
to locations in the brain where lesions produce complex
cognitive disturbances. Our modeling approach aims
towards linking disturbances of structural brain networks
to specific clinical outcomes.

The segmented cortical gray matter was partitioned into 66
anatomical regions according to anatomical landmarks using
Freesurfer (surfer.nmr.mgh.harvard.edu) and 998 regions of
mnterest (ROIs). The 998 ROIs were chosen to provide a roughly
uniform tiling of the cerebral cortex (each ROI~1.5 em?) so that
their borders aligned with those of the 66 anatomical regions.
White matter tractography was performed with a custom
streamline algorithm and fiber connectivity was aggregated across
all voxels within each of the 998 predefined ROIs. The fiber
strengths produced by the streamline tractography algorithm were
exponentially distributed and spanned several orders of magni-
tude. Since connection weights in our model are meant to express
physiological efficacy rather than fiber counts or the thickness of
fiber tracts, we resampled the raw fiber strengths into a Gaussian
distribution with a mean of 0.5 and a standard deviation of 0.1
dimensionless units. This transformation does not alter the rank-
ordering of strong to weak pathways, but it compresses the scale of
physiological efficacies (connection strengths). We created an
“average SC matrix” from the resampled connection maps of
individual participants. In this average SC map, structural
connections were deemed absent overall, i.e. set to zero, if they
were absent in more than 3 participants.

Modeled Neural Dynamics

Neuronal dynamics were simulated using a system of neural
masses coupled to one another with strengths linearly proportional
to the resampled fiber strengths at each edge. Each neural mass
represents a population of densely interconnected excitatory and
inhibitory neurons, in which the effects of both ligand- and
voltage-gated membrane channels are accounted for. This model
was first developed in [25] and has previously been employed in an
anatomically-informed model of large-scale functional connectivity
in the macaque monkey [10] as well as for modeling human
resting-state functional connectivity [8]. The model was simulated
in Matlab R2007a (Mathworks, Natick, MA) at a time resolution
of 0.2 msec. Before data analysis, resulting data sets are down-
sampled to a time resolution of 1 millisecond. After an initial
transient of 2 minutes which was discarded, runs proceeded for a
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total of 8 minutes. Simulated BOLD signals were computed by
using a nonlinear hemodynamic model as previously described
[8,10,26]. While all simulations were carried out with the same set
of haemodynamic parameters, future studies may incorporate
individual variations, e.g. to take into account effects of disease
state on blood vessel compliance, or regional variations of the
haemodynamic response across different brain regions. Cross-
correlation matrices of BOLD time-series (functional connectivity,
FC) were derived without regressing out the global signal average,
as this procedure may affect correlation pattern and magnitude.
For each lesion, as well as for unlesioned controls, we conducted
five simulation runs starting from random initial conditions. Data
analyses were carried out on correlation matrices averaged over
these five runs. For more details see refs. [8,10,25].

Lesions

The structural connectivity matrix was lesioned in two ways:
sequential single node deletions and localized area removal. The
first method was aiming at a structural failure analysis, and
included both “random” and “targeted” node deletions, involving
the sequential removal of nodes (ROIs), one by one, until the
network had shrunk to a single remaining node. For random node
removal, we removed a single randomly chosen node at each step.
This process was repeated 25 times. For targeted node removal,
we first computed the node degree (defined as the number of
connections at each node), node strength (defined as the sum of all
the weights of the connections at each node) or the node
betweenness centrality [27] for all nodes in the network. Then we
removed the single node with the highest degree, strength or
centrality. Degree, strength and centrality were then re-computed
and the next node was selected for removal, until one last node
remained. At each step during random and targeted node removal
we calculated several structural network measures, including the
size of the largest connected component of the remaining network
and the global efficiency. Global efficiency is computed as the
average of the inverse distance between all nodes and captures the
network’s capacity for communication along short paths [28].

The second lesion type, localized lesions, was aiming at dynamic
and functional failure analysis. These lesions were carried out by
removing all nodes and their connections within a spatially defined
region around a central location. The central location was defined
by a standard x,y,z Talairach coordinate and a fixed number of
ROIs closest to this central location were deleted. Closeness was
determined by the Euclidean distance. Lesions involved the
deletion of nodes (“gray matter”) and their afferent/efferent
connections only — we did not attempt to model “white matter”
volume, for example by including lesions of “fibers of passage”.
Computational considerations prevented us from simulating
lesions centered on all 998 ROIs, and from varying the lesion
extent. We selected a lesion size of 50 ROls, corresponding to
about 5% of the cortical surface, which was large enough to have
significant effects on neural dynamics, and small enough to
preserve the regional specificity of the lesions. A complete list of all
lesions, their central locations, spatial coordinates, and affected
anatomical subregions are provided in Table 1. The spatial
location and extent of all lesions is depicted in Figure 1. Jointly, all
lesions described in this paper cover about 80 percent of the
cortical surface. Figure 1 also illustrates the relation of all lesions to
the default mode network (DMN). The DMN was comprised of
200 ROIs which had earlier been determined from empirical
fMRI studies [8], and contained portions of the precuneus/
posterior cingulate cortex, medial and superior frontal cortex, and
lateral parietal cortex.
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All graph-theoretical measures (path length, centrality, efficien-
cy) reported in this study were computed from a structural network
that preserved edge weights, as previously described [4].

Measures of Lesion Effects

The nature of the computational model does not allow us to
probe directly for behavioral or cognitive lesion effects. Thus, our
measures of lesion effects are confined to estimates of the lesion’s
immediate structural and dynamic impact. Examples of structural
(SC) and BOLD cross-correlation matrices (FC) before and after a
lesion are shown in Figure 2. Lesion effects were quantified in
several ways, all of which produced similar patterns of results
(Table 2). The distance between the unlesioned and lesioned FC
matrix was calculated as

2
— unlesioned lesioned
dFC= \/ E (rij ri >
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Table 1. Modeled lesions and lesion locations.
Right Hemisphere
Lesion name ROI center Talairach coordinate Center region Lesioned regions
Cortical midline L323 323 (6, —56, 38) rPCUN rCUN, rISTC, rPCUN
L194 194 (516 31) rCAC rCAC, rCMF, rSF
Parietal and temporal cortex L308 308 (47 =51 22) rlP BSTS, rIP, ISMAR
L247 247 (62 —31 28) rSMAR rPSTC, rSMAR, rTT
L472 472 (65 —32 10) ST rBSTS, rMT, rST, ISMAR, rTT
L439 439 (50 =11 —29) T rENT, rIT, rST, (TP
Frontal cortex L86 86 (7 48 21) rSF rCAC, rFP, rRAC, rRMF, rSF
L138 138 (39 951) rCMF rCMF, rPREC
L57 57 (40 9 21) rPOPE rCMF, rPOPE
Sensory, motor L360 360 (26 —94 —6) rLOCC rLOCGC, rLING, rPCAL
L162 162 (34 —23 46) rPREC rPSTC
Left Hemisphere
Lesion name ROI center Talairach coordinate Center region Lesioned regions
Cortical midline L821 821 (—8 —57 47) IPCUN IISTC, IPCUN, ISP
L692 692 (—7 26 26) ICAC ICAC, IRAC, ISF
Parietal and temporal cortex L810 810 (=45 —50 20) P IBSTS, IIP
L746 746 (—58 —25 28) ISMAR IPSTC, ISMAR
L971 971 (=61 —36 12) IST IBSTS, IMT, ISMAR, ITT
L938 938 (—44 —10 —26) I IENT, IIT, IMT, IPARH, IST, ITP
Frontal cortex L584 584 (—85217) ISF ICAC, IFP, IRAC, IRMF
L636 636 (—39742) ICMF ICMF, IPREC
L555 555 (—42 22 18) IPOPE ICMF, IPOPE, IPTRI, IRMF
Sensory, motor L856 856 (=25 —93 —7) ILOCC ILOCC, ILING, IPCAL
L661 661 (—34 -9 52) IPREC IPREC
Lesions are named after the number of the central ROl and all lesions comprise a total of 50 ROIs. “Center region” refers to the name of the anatomical subdivision to
which the central ROI belongs. “Lesioned regions” lists all anatomical subdivisions that are removed by at least 50% or their constituent ROIs. Anatomical subdivisions
are named as follows: each label consists of two parts, a prefix for the cortical hemisphere (r=right hemisphere, | =left hemisphere) and one of 33 designators:
BSTS = bank of the superior temporal sulcus, CAC = caudal anterior cingulate cortex, CMF = caudal middle frontal cortex, CUN = cuneus, ENT = entorhinal cortex,
FP =frontal pole, FUS =fusiform gyrus, IP =inferior parietal cortex, IT =inferior temporal cortex, ISTC =isthmus of the cingulate cortex, LOCC = lateral occipital cortex,
LOF =lateral orbitofrontal cortex, LING =lingual gyrus, MOF = medial orbitofrontal cortex, MT =middle temporal cortex, PARC = paracentral lobule,
PARH = parahippocampal cortex, POPE = pars opercularis, PORB = pars orbitalis, PTRI = pars triangularis, PCAL = pericalcarine cortex, PSTS = postcentral gyrus,
PC = posterior cingulate cortex, PREC = precentral gyrus, PCUN = precuneus, RAC =rostral anterior cingulate cortex, RMF =rostral middle frontal cortex, SF = superior
frontal cortex, SP = superior parietal cortex, ST =superior temporal cortex, SMAR = supramarginal gyrus, TP =temporal pole, TT =transverse temporal cortex.
doi:10.1371/journal.pcbi.1000408.t001

Where rj is the functional connectivity measure (cross-correlation)
between nodes 1 and j. This distance dFC was computed for both
the high-resolution FC matrices (998 ROIs) and for the regionally
averaged FC matrix (66 regions). We computed two distances, one
of which included functional connections of all ROIs (dFC), while
the other only measured the distance between ROI pairs that were
not involved in the lesion itself (dFC").

A second way to measure the difference between two
correlation matrices was computed as follows. First, we converted
the two correlation matrices (before and after lesioning) to a
normal distribution by using Fisher’s z-transform. To test the
hypothesis that the two sets of correlations were drawn from
different distributions we computed z-scores, according to

o= (rzunlesiuned7r§sioned>/\/(l/(df73)+ 1/(df*3))

where df corresponds to the effective degrees of freedom. The
value for df was estimated following procedures used for analyzing
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Figure 1. Lesion locations. Diagrams show a rendering of a standard cortical surface, with ROIs that form part of the DMN indicated in light red.
Outlines indicate approximate lesion locations. All lesions are comprised of 50 ROIs. Lesion labels correspond to lesion names in Table 1 and 2.

doi:10.1371/journal.pcbi.1000408.g001

empirically obtained correlation matrices (e.g. ref [29]). Using a
correction factor for independent frames (estimated according to
Bartlett’s theory [30]) of 3, and computing correlations from 5
independent runs of 8 minutes each, with 30 data samples/
minute, we obtained df=400. We then counted the number of
functional connections that exceeded a significance threshold of
|z|>3.3. To test the validity of this threshold we compared two
correlation matrices computed from independent sets of 5
unlesioned runs against each other. After normalization, z-score
transformation and thresholding at |z|>3.3, we detected 91 false
positives out of nearly 500,000 comparisons (Figure 2D), indicat-
ing that the error rate is p<0.001. We concluded that for
simulations of lesions the occurrence of a large number of
functional connections with |z]|>3.3 reflected specific lesion
effects with very high probability. Choosing higher thresholds (e.g.
|z|>5) did not affect the main conclusions of the study (data not
shown).

Results

Several previous studies have examined the direct effects of
node deletions on network structure and connectivity. Thus, we
first examined the effects of random and targeted node removal on
the structural integrity of the network, measured as the size of the
largest connected component (Figure 3). Random removal of
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nodes did not affect network integrity until almost all of the nodes
had been deleted. Targeted removal of nodes on the basis of node
degree or node strength disconnected the network only after
approximately three quarters of all nodes had been deleted. In
contrast, targeting nodes on the basis of their centrality resulted in
the appearance of disconnected components after deletion of only
164 nodes. Targeting highly central nodes also resulted in a rapid
decrease in the network’s global efficiency, while targeted removal
of nodes with high degree or high strength resulted in a more
gradual decline in efficiency.. We performed identical analyses on
a set of control networks whose global topology had been
randomized while preserving the sequence of node degrees. These
randomized controls were highly resilient to removal of nodes
based on centrality or strength, remaining strongly connected until
more than 700 nodes had been deleted (results not shown). These
results indicate that the structural network is relatively insensitive
to random node deletion, or to node deletion targeting nodes
according to their degree or strength, while showing much greater
vulnerability to targeted node deletion on the basis of centrality.
The potential dynamic effects of focal brain lesions on neural
activity have remained relatively unexplored. Here, we compared
functional connectivity patterns due to endogenous neural
dynamics before and after a lesion was made. Despite equal
lesion size (50 nodes) dynamic lesion effects exhibited marked
differences depending on lesion location. These differences
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Figure 2. Structural connectivity, functional connectivity, and measurement of lesion effects. (A) Top: Intact “unlesioned” structural
connectivity (SC). Bottom: lesioned SC. The lesion shown here is L194 and the lesioned portion of the matrix is indicated in light yellow. (B) Top:
Unlesioned functional connectivity (FC) matrix, obtained after averaging BOLD cross-correlations from 5 simulation runs. Bottom: lesioned FC matrix
(L194), averaged over 5 runs. (C) z-score matrix after subtraction of normalized cross-correlations. (D) Cumulative distribution of z-scores of functional
connections after subtraction of lesioned (L194) from unlesioned FC (blue dots) and after subtraction of two sets of 5 unlesioned runs (black dots).
The dashed line marks z=3.3, and the number of functional connections at this threshold was taken as one measure of lesion impact.

doi:10.1371/journal.pcbi.1000408.g002

involved both the magnitude and the spatial pattern of changed
functional connections (Table 2). Posterior and anterior lesions
along the cortical midline, as well as a subset of lesions in frontal,
parietal and temporal cortex, had extensive effects. With few
exceptions lesion effects were stronger in the ipsilateral hemi-
sphere, and mostly involved weakening of functional coupling.
Lesions closer to the midline tended to be more disruptive of cross-
hemispheric coupling than more lateral lesions. A subset of lesions
in frontal cortex and in the anterior cingulate had disproportion-
ately strong effects on functional connections involving the default
mode network.

Figures 4, 5 and 6 show the spatial distribution of functional
connections that exhibited significant differences for a selection of
lesion locations many of which were highly impactful overall,
including lesions along the cortical midline (Figure 4), the
temporo-parietal junction (Figure 5) and the frontal cortex
(Figure 6). Other lesions altered functional connectivity less, for
example lesions in primary sensory and motor regions (Figure S1).

Lesions along the cortical midline were characterized by
widespread effects involving both cerebral hemispheres and all
major cortical lobes. L194 (Figure 4A), centered in the right caudal
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anterior cingulate cortex resulted in lower functional connectivity
between most ipsilateral subregions of right medial cortex,
extending from orbitofrontal cortex to the cuneus. Some
functional connections along the contralateral midline were also
weakened, but to a lesser extent. Interhemispheric functional
connections were profoundly suppressed. Lesions placed in the
posterior medial cortex, e.g. L821 (Figure 4B) also affected
functional connectivity in both hemispheres but had less
widespread effects. Contralateral effects consisted of increasing
coupling between several regions, including between superior
parietal and anterior cingulate cortex.

Lesions near the temporo-parietal junction were highly
disruptive of functional connectivity within their own cortical
hemisphere as well as between hemispheres. 1472 (Figure 5A) was
centered 1in right superior temporal cortex and resulted in sharply
lowered functional connectivity among all subdivisions of the
ipsilateral parietal and posterior temporal cortex. In addition,
coupling between regions in posterior medial cortex and frontal
cortex were decreased in both hemispheres. A lesion in the left
inferior parietal cortex in the vicinity of the left angular gyrus
(L810, Figure 5B) significantly increased functional coupling
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Table 2. Magnitude and pattern of dynamic lesion effects.

Modeling Lesions in Human Brain

Right Hemisphere

Lesion
TERTE Magnitude of Lesion Effects Pattern of Lesion Effects
z' top 50% RH>LH CC>(RH+LH) DMN>non-DMN w>s

Cortical midline L323 8694

L194 26384 [ ] [ ] [ ]
Parietal and temporal cortex L308 2636 . . .

L247 830 . .

L472 11253 [ ] [ ] [ ]

L439 1369 . . .
Frontal cortex L86 21448

L138 9255 °

L57 7077 [ ] [ ] [ ]
Sensory, motor L360 1621 . . .

L162 1851 . .

Left Hemisphere

Lesion

name Magnitude of Lesion Effects Pattern of Lesion Effects

z' top 50% LH>RH CC>(RH+LH) DMN>non-DMN w>s

Cortical midline L821 7614 [ [ [

L692 10518 [ ] [ ] [ ]
Parietal and temporal cortex L810 22630 [} [} [}

L746 4799 .

L971 24560 ° o ) °

L938 331 . . .
Frontal cortex L584 15627 [ [ [ [ [

L636 2639 .

L555 1925 . . .
Sensory, motor L856 358 . .

L661 1655 . .

doi:10.1371/journal.pcbi.1000408.t002

within the left hemisphere, while suppressing cross-hemispheric
functional connectivity.

Lesions involving parts of frontal cortex resulted in pronounced
and widespread loss of functional coupling within the lesioned
hemisphere as well as across hemispheres. A lesion of right
superior frontal cortex (L86, Iigure 6A) strongly reduced
functional coupling of many right hemispheric brain regions,
including interactions between frontal, temporal, and parietal
cortex, extending over the entire length of the anterior-posterior
axis. Weaker, but significant, suppression of functional connectiv-
ity 1s also seen in the contralateral hemisphere, including reduced
coupling between the posterior cingulated/precuneus and the
superior and middle frontal cortex. Lesioning left lateral frontal
cortex centering on the pars opercularis (L5553, Figure 6B) reduces
functional coupling more locally.

Lesions of primary sensory and motor cortices (Figure S1) leave
the functional connectivity of the remainder of the brain largely
unchanged. Lesions centered in visual cortex (L360) or somato-
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Lesions are tabulated as in Table 1. Magnitude of lesion effects measures: z’' = sum of all significantly altered functional connections (|z|>3.3), excluding functional
connections of lesioned nodes; top 50% = lesions whose z’ is in the top half. Pattern of lesion effects measures: RH>LH, LH>RH = number of significant functional
connections in the left versus right cerebral hemisphere; CC>(RH+LH) = greater number of significant cross-hemispheric versus intra-hemispheric functional
connections; DMN>non-DMN = greater proportion of significantly changed functional connections at ROIs that are part of the DMN versus ROIs that are not part of the
DMN; W>S greater number of significantly weakened versus significantly strengthened functional connections; @ =yes (large-effect lesion); « =yes (small-effect lesion).

motor cortex (L.L162) have little effect on functional connectivity
outside of the immediate vicinity of the lesion itself.

In addition to node removal, lesions may be modeled as edge
deletions, i.e. disruptions of white matter pathways. One of the
most dramatic examples is the complete transection of the corpus
callosum. We performed simulations after deleting all cross-
hemispheric connections and compared the resulting functional
connectivity patterns to those obtained from the intact brain
(Figure S2). In the model, callosal transection resulted in the
complete loss of all inter-hemispheric functional connectivity, as
well as a more restricted pattern of significant changes in intra-
hemispheric functional coupling.

Finally, we examined whether the extent of dynamic lesion
effects could be predicted on the basis of the impact of the lesion
on structural network measures. Specifically, we asked if dynamic
lesion effects were more pronounced if the lesion lengthened
network paths, removed a larger number of long-range connec-
tions, or removed more highly connected or more highly central

June 2009 | Volume 5 | Issue 6 | 1000408
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Figure 3. Analysis of robustness on the basis of random/targeted node deletions. The plots show the size of the largest network
component (A) and the global efficiency (B) as a function of the number of deleted nodes. The curve for random node deletion is an average of 25
different random sequences. The other three curves represent unique sequences of node deletion determined by node degree (blue) strength
(green) or node centrality (red).

doi:10.1371/journal.pcbi.1000408.g003
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Figure 4. Dynamic effects of lesions along the brain’s midline. (A) L194. (B) L821. In this plot, as well as in Figures 5, 6 and S1, a dorsal view of the
brain (middle panel) and two lateral views of the left hemisphere (left panels) and the right hemisphere (right panels) are shown. The middle panel plots
all significantly different functional connections, while the left and right panels only show significantly different functional connections within the left
and right hemispheres, respectively. The 998 ROI z-score FC matrix was aggregated to 66 subregions, and pathways between these 66 subregions are
plotted if at least 10% of their constituent connections linking ROI pairs are significantly changed (|z|>3.3) as a result of the lesion. Pathways are plotted
in red or blue, if their coupling has been weakened or strengthened, respectively. The approximate lesion center is marked with a green “+".
doi:10.1371/journal.pcbi.1000408.9004
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Figure 5. Dynamic effects of lesions near the temporo-parietal junction. (A) L472. (B) L810. For plotting conventions see legend to Figure 4.

doi:10.1371/journal.pcbi.1000408.g005

nodes. Table 3 and Figure 7 summarize the relationship between
these structural measures and several measures of the dynamic
impact of the lesion. The reported correlations are calculated for a
subset of 22 lesion sites covering about 80 percent of the cortical
surface, and for a single lesion size (50 nodes). The extent of
dynamic lesion effects was only weakly predicted (r=0.4-0.5) by
the degree or strength of the nodes within each lesion. A better
predictor was the number of connections between the lesion site
and the rest of the brain (these connections are lost as a result of
the lesion), and how much the lesion increased the path length of
the remaining network (r=0.45-0.7). Node and edge centrality of
the lesioned nodes or edges predicted functional lesion impact
about equally well (r=0.45-0.7). The most robust prediction was
made by the extent to which the lesion damaged the default mode
network (r=0.6-0.85).

Discussion

The availability of whole-brain structural connectivity data sets
[3-7], for the first time, allows for the computational study of the
effects of localized structural lesions on neural dynamics. In this
study, lesions are modeled as structural perturbations with specific
dynamic effects. We find that lesions in different regions of the
cerebral cortex have specific effects on the pattern of endogenous
functional connectivity of the remaining brain that differ in both
extent and spatial pattern. Generally, lesions along the cortical
midline, the temporo-parietal junction and the frontal cortex result
in the largest and most widespread effects on functional
connectivity. Many lesions affect the functional coupling of brain
regions outside of the lesion itself, including effects in the
hemisphere contralateral to the lesion site.
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The first part of our study involved random and targeted node
deletions and their impact on the structural integrity of the
network (Figure 3). Some of our results expanded upon
observations made by other investigators who examined the
vulnerability or robustness of brain networks [21-23]. Our
structural network is relatively resilient against random node
removal and against targeting of nodes on the basis of their high
degree or high strength, a finding also reported for human
functional networks [21]. However, the network is much less well
protected against loss of nodes that are highly central, a finding
that is consistent with the overall network architecture which
consists of modules linked by hubs [4]. Targeted node removal by
centrality may have a physiological basis. There is a potential link
between node centrality and baseline metabolic activity [4] and it
has been suggested that a high rate of metabolism may render
neurons vulnerable to neurodegenerative processes [31,32]. We
hypothesize that at least some forms of degenerative brain disease
may involve the “targeted” removal of network components.

Confirming earlier results obtained from a much smaller
connection matrix of macaque cortex [24], modeling lesions in
the human brain resulted in non-local dynamic effects. Several
empirical studies have demonstrated such non-local effects, for
example changes a distributed pattern of functional connectivity
following in patients with focal brain lesions due to tumor or stroke
[33-35]. Early theoretical accounts had predicted and attempted
to explain such nonlocal effects, invoking concepts such as
“diaschisis™ [36] or “disconnection” [37]. The complex network
approach adopted in this paper supports these concepts and
provides a new opportunity to establish links between physical
brain damage and functional disturbances. As suggested by studies
of structural network measures [23,38], including our own results
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Figure 6. Dynamic effects of lesions in frontal cortex. (A) L86. (B) L555. For plotting conventions see legend to Figure 4.
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regarding the effects of targeted node removal (Figure 3), we found
that dynamic lesion effects were particularly large and widespread
when lesions included nodes or edges of high centrality (Figure 7,
Table 3). Another good predictor of functional change was the
number of connections between the lesion site and the rest of the
brain that were lost. This result underscores that “disconnection”
may occur not only for areas that are directly anatomically linked
but also account for changes in dynamic coupling among remote
and structurally unconnected areas of cortex. Dynamic lesion
effects were especially pronounced for several highly connected
hub nodes within the brain’s default mode network, for example in
medial parietal and cingulate cortex. We believe that this result
applies generally to the type of network and neural dynamics
investigated here, and will hold even as the human connectome
[39] continues to be refined.

The significant computational requirements involved in con-
ducting large-scale simulations of endogenous brain activity
necessitated we limit our analysis to a set of brain lesions selected
for their neurological interest (Figure 1, Table 1). In the model,
lesions of regions along the cortical midline were particularly
disruptive. In patients, lesions of posterior medial cortex (in the
vicinity of L.323 and L821) are described as rare but resulting in
profound disorders of consciousness [40], while lesions of the
anterior cingulate cortex result in severe disruptions of personality
and emotional processing, apathy and inattention [41]. In the
model, lesions centered on the temporo-parietal junction also
resulted in widespread changes in functional coupling. Empirical-
ly, the left angular gyrus (near L810) has been implicated in
dyslexia [42], while lesions centered on the posterior portion of the
right superior temporal cortex (near 1.472) often result in spatial
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hemineglect [43]. In contrast to these large effects of midline and
temporo-parietal lesions, modeled lesions of primary visual and
somatomotor cortex had little effect outside of their respective
target regions. In patients, lesions of visual cortex or motor cortex
result in deficits that are severe, but largely limited to loss of
function within a specific modality. While our study does not
provide complete coverage of all possible lesion sizes and locations
in cortex we note that the magnitude and dispersion of the lesion’s
dynamic impact is correlated with the clinically observed severity
and range of cognitive deficits.

In the current model we did not attempt to include the effects of
lesions of brain nodes on white matter “fibers of passage”, and
neither did we a