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A lack of gravity experienced during space flight has been shown to have profound

effects on human physiology including muscle atrophy, reductions in bone density and

immune function, and endocrine disorders. At present, these physiological changes

present major obstacles to long-term space missions. What is not clear is which

pathophysiological disruptions reflect changes at the cellular level versus changes

that occur due to the impact of weightlessness on the entire body. This review

focuses on current research investigating the impact of microgravity at the cellular level

including cellular morphology, proliferation, and adhesion. As direct research in space

is currently cost prohibitive, we describe here the use of microgravity simulators for

studies at the cellular level. Such instruments provide valuable tools for cost-effective

research to better discern the impact of weightlessness on cellular function. Despite

recent advances in understanding the relationship between extracellular forces and

cell behavior, very little is understood about cellular biology and mechanotransduction

under microgravity conditions. This review will examine recent insights into the impact of

simulated microgravity on cell biology and how this technology may provide new insight

into advancing our understanding of mechanically driven biology and disease.
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INTRODUCTION

Humans are subjected to persistent gravitational force and the importance of gravity for
maintaining physiological function has been revealed by the detrimental impacts of space travel
on human health. During space flight, astronauts are exposed to a prolonged state of microgravity
and develop a myriad of physiological disruptions including a loss of muscle mass and bone
density, impaired vision, decreased kidney function, diminished neurological responses, and a
compromised immune system (White and Averner, 2001; Horneck et al., 2003; Crucian et al., 2014;
White et al., 2016). This review will discuss recent data that highlight the impact of microgravity
at the cellular level. Additionally, this review addresses how such research can be conducted on
earth by simulating the microgravity state. These studies are not only important for understanding
how humans are affected by microgravity but have the potential to elucidate the role of mechanical
stimuli on cellular function and the development of mechanically driven disease states.

Mechanobiology is the study of how cells are influenced by their physical environment.
This emerging field of research provides an important perspective on understanding
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many aspects of cellular function and dysfunction. Cells
can convert mechanical inputs into biochemical signals to
initiate downstream signaling cascades in process known as
mechanotransduction. Gravitational force is presumed to play a
crucial role in regulating cell and tissue homeostasis by inducing
mechanical stresses experienced at the cellular level. Thus, the
concept of mechanical unloading (a decrease in mechanical
stress) is associated with the weightlessness of space and can
be replicated by simulating microgravity conditions, allowing
for investigation of the mechanobiology aspects of cell function.
The mechanical unloading of cells under microgravity conditions
shifts the balance between physiology and pathophysiology,
accelerating the progression and development of some disease
states. For example, kidney stone formation is accelerated
under microgravity conditions compared to Earth’s gravity (1 g)
(Pavlakou et al., 2018). Similarly, osteoporosis can take decades to
develop under normal gravitational loading, yet this disease can
be modeled under microgravity over shorter time scales (Pajevic
et al., 2013). The mechanisms by which human physiology are
disrupted in microgravity remain unknown, rendering numerous
open questions regarding the adaptive changes that occur at the
cellular and molecular level in response to microgravity.

SIMULATING MICROGRAVITY

One of the key challenges in using microgravity as an
investigative tool is creating a microgravity condition that
can be applied at a cellular level, on Earth. The process of
conducting space researchmissions is costly and time consuming,
thereby limiting the advancement of microgravity research and
widespread application of this approach. Currently, there are
a number of microgravity devices available for purchase that
are designed to achieve microgravity conditions. Microgravity
simulators specific to cellular studies include strong magnetic
field-induced levitation (i.e., diamagnetic simulation), as well
as two-dimensional and three-dimensional clinostats, rotating
wall vessels and random positioning machines (RPMs) (Huijser,
2000; Russomano et al., 2005; Herranz et al., 2012; Ikeda et al.,
2017). Each of the simulation techniques has shown advantages
and disadvantages however, when chosen correctly for a given
experiment, the results obtained are similar to those observed in
Space flight studies (Stamenkovic et al., 2010; Herranz et al., 2013;
Martinez et al., 2015; Krüger et al., 2019b). For cell culture studies,
the use of RPM is common as the system achieves microgravity
by continually providing random changes in orientation relative
to the gravity vector and thus an averaging of the impact of
the gravity vector to zero occurs over time (Beysens and van
Loon, 2015). This averaging is achieved by the independent, yet
simultaneous, rotation of two axes – with one axis rotating in
the X-plane, and the second axis rotating in the Y-plane. It
is important that the cell culture flask/sample be placed at the
midpoint of the x-axis, cell culture flasks placed at a distance
from the center of the x-axis will be subjected to a greater
rotational force resulting in cells experiencing both centrifugal
force and an increased gravity load (Beysens and van Loon,
2015). Furthermore, the RPM is designed to subject the cells to

10−3 g (or as close to this value as possible) but cannot achieve
complete zero gravity and hence termed microgravity (Huijser,
2000; Beysens and van Loon, 2015).

THE IMPACT OF MICROGRAVITY OF
CELL CYTOSKELETON

Cellular response to mechanical loading has been well
documented over the decades however, the response that
occurs when cells are placed under conditions of mechanical
unloading remains in its infancy. The most apparent cellular
changes that occur following exposure to a microgravity
environment are alterations to cell shape, size, volume, and
adherence properties (Buken et al., 2019; Dietz et al., 2019; Thiel
et al., 2019b). These microgravity induced changes to cellular
morphology reflect modifications to cytoskeletal structures,
namely microtubules and actin filaments (F-actin), as cells sense
a reduced gravitational load and therefore mechanical unloading
(Crawford-Young, 2006; Corydon et al., 2016a; Thiel et al.,
2019a). Microgravity, whether in Space or simulated in the
laboratory, offers a unique mechanical unloading environment
to explore cellular mechanotransduction by providing an
unparalleled research environment to investigate the relationship
between mechanical unloading and cellular response.

Numerous studies have been conducted on a myriad of cell
types highlighting morphological sensitivity to microgravity
(Ingber, 1999; Vorselen et al., 2014), with the first documented
morphological change reported by Rijken et al. (1991).
Morphological changes as a result of microgravity conditions,
either real or simulated, have been shown to have altered
transcription, translation, and organization of cytoskeletal
proteins (Vassy et al., 2001; Infanger et al., 2006b; Tauber et al.,
2017). Fundamental work carried out by Tabony, Pochon,
and Papaseit showed that while tubulin self-assembly into
microtubules occurs independent of gravity, the assembly and
organization of the microtubule network is gravity dependent
(Papaseit et al., 2000; Tabony et al., 2002). Importantly, this
gravity-dependent organization of the microtubule network
has since been described in multiple cell lines during both real
and simulated microgravity exposures (Vassy et al., 2001; Uva
et al., 2002; Hughes-Fulford, 2003; Rosner et al., 2006; Janmaleki
et al., 2016) and possibly be the result of a poorly defined
microtubule organizing center (MTOC) (Lewis et al., 1998).
Taken together these data highlight an important regulatory role
for the microtubule network and the MTOC following exposure
to a microgravity environment. However, the data surrounding
the response of the actin cytoskeleton to microgravity exposure
are less clear. Many studies have reported that microgravity
exposure had decreased expression of actin and actin-associated
proteins, namely Arp2/3 and RhoA, subsequently resulting in
the disorganization of the actin cytoskeleton (Carlsson et al.,
2003; Higashibata et al., 2006; Corydon et al., 2016a,b; Louis
et al., 2017; Tan et al., 2018). However, other studies have showed
increased F-actin and stress fiber formation that accompanied the
development of lamellipodia protrusions following exposure to
microgravity (Gruener et al., 1994; Nassef et al., 2019). Contrary
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to this, Rosner et al. (2006) reported no changes to actin structure
or organization and further suggested that the actin cytoskeleton
is only regulated in a hyper-gravity environment. Thus, the
data surrounding cellular morphological changes in response
to microgravity and the role of actin is confounding and at
times contradictory.

The actin cytoskeleton, its organization and ability to generate
force are critical for cellular mechanosensing and importantly
any changes to these processes can initiate pathophysiological
disruption. Transduction of mechanical forces by integrins
requires clustering of these transmembrane receptors and the
subsequent formation of focal contacts and adhesions that
physically link the extracellular matrix (ECM) to the cytoskeleton
(Wang et al., 1993; Ingber, 1997; Maniotis et al., 1997).
Binding of integrins to matrix proteins promotes the bundling
of F-actin at the cell-matrix adhesion and the subsequent
maturation of both the focal adhesion and the actin stress
fiber (Zaidel-Bar et al., 2003; Wolfenson et al., 2009, 2011)
to generate the tension required for cell adherence, migration,
and tissue homeostasis. Exposure to microgravity reduces the
formation, number, and total area of focal adhesions per
cell (Guignandon et al., 2003; Tan et al., 2018) consequently
affecting cellular adherence, migration capacity, and viability
(Plett et al., 2004; Nabavi et al., 2011; Shi et al., 2015;
Ahn et al., 2019; Dietz et al., 2019), albeit with contradictory
results. Mechanical unloading has been shown to significantly
reduce gene expression of a number of focal adhesion proteins,
including FAK, DOCK1, and PTEN, while caveolin and
p130Cas expression were shown to be increased (Grenon
et al., 2013; Ratushnyy and Buravkova, 2017). Thus, the
activity of the downstream signaling pathways that govern
the microgravity-induced cytoskeletal changes are significantly
impaired and are at least in part due to the microgravity-
triggered inhibition of FAK and/or RhoA signaling (Higashibata
et al., 2006; Li et al., 2009; Tan et al., 2018). Furthermore,
recent data suggest that changes to the cytoskeleton may
also impact signaling via mechanically activated ion channels
and contacts in response to both cell-generated (Nourse and
Pathak, 2017; Ellefsen et al., 2019) and externally applied
mechanical inputs (Bavi et al., 2019). Thus, downstream signaling
of the numerous mechanotransduction pathways depend on
the concerted interaction of the cytoskeleton, cell adhesion
molecules, and force sensing proteins, including mechanically
activated ion channels. To date, there is little information
regarding the role of mechanically activated ion channels in
microgravity environments.

MICROGRAVITY IMPACT BONE CELL
SIGNALING RESPONSE AND
CARTILAGE ECM SYNTHESIS

The accelerated loss of bone and muscle mass as a result
of microgravity has been well documented over the decades
(Burger and Klein-Nulend, 1998; Harris et al., 2000; Fitts et al.,
2001). Osteocytes and osteoblasts are known mechanosensitive
bone cells responsible for maintaining the balance of bone

absorption and resorption – a process that is coordinated by
both the actin cytoskeleton and microtubule network (Okumura
et al., 2006). Bone cell morphology is significantly modified
following exposure to microgravity when compared to control
cells (Guignandon et al., 1995; Hughes-Fulford, 2003). To adapt
to the new mechanical environment the bone cells have reduced
transcription and translation of cytoskeletal and cytoskeletal-
associated proteins (Xu et al., 2017; Mann et al., 2019), decreased
focal adhesion formation, together resulting in the increased
formation of osteoclast resorption pits (Nabavi et al., 2011).
Furthermore, the actin cytoskeleton of osteoblasts subjected to
4 days of microgravity exposure completely collapsed (Hughes-
Fulford, 2003), significantly impacting multiple downstream
signaling pathways, most notably, the inhibition of bone
morphogenic protein (BMP) signaling axis (Patel et al., 2007;
Xu et al., 2017). The BMP family of proteins regulates the
expression of an important mechanosensing protein, sclerostin,
found exclusively in osteocytes (Poole et al., 2005; Kamiya
et al., 2016), whereby mechanical unloading increases sclerostin
protein expression to promote bone resorption and cause a
loss of bone density (Robling et al., 2008) – a phenotype that
closely mimics both osteoporosis and osteonecrosis. Thus by
applying the unique mechanical unloading environment offered
by both real and simulated-microgravity to bone (specifically,
osteoporosis) research has led to the introduction of the FDA
approved drug, Evenity, a monoclonal antibody that works as an
anabolic agent to increase bone mass via the sclerostin pathway
(Scheiber et al., 2019).

While a significant number of studies have identified
the importance of mechanical unloading in regulating bone
structure and function, the articular cartilage (AC) is also
particularly susceptible to the effects of mechanical loading and
unloading (Sanchez-Adams et al., 2014). The cells found in
AC, chondrocytes, sense and respond to changing mechanical
loads in order to maintain the balanced production of ECM
molecules ensuring that the tissue maintains the ability to
resist tensile and compressive forces. Both mechanical unloading
and overloading of chondrocytes can disrupt the homeostatic
balance in the cartilage leading to cartilage degradation and
osteoarthritis thereby tipping the balance from homeostatic
maintenance to pathophysiology, leading to cartilage degradation
and osteoarthritis (Vanwanseele et al., 2002; Kurz et al.,
2005). To study the effect of extended microgravity on AC
specifically on the joint tissue, mice were exposed to 30 days
of spaceflight during the Bion-M1 mission (Fitzgerald et al.,
2019). Interestingly, tissue degradation was observed only in the
AC of load-bearing joints, but not in minimally loaded sternal
fibrocartilage highlighting a differential response to mechanical
unloading and the predisposition of load bearing joints,
but not structural joints, to mechanical stimuli. Additionally,
decreased proteoglycan levels were found in the AC of the
mice after the 30 days (Vanwanseele et al., 2002) further
characterizing a mechanical unloading pathology specific to
AC atrophy. Importantly, reduced proteoglycan levels have also
been reported in hindlimb unloading and limb immobilization
studies in various animals (Salter et al., 1980; Haapala et al., 1996;
O’Connor, 1997). The reduced proteoglycan levels paired with
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FIGURE 1 | The morphology and physiology alterations of adherently growing cells after microgravity exposure. Cytoskeleton components of actin, microtubules

and intermediate filament are displayed in inset circles. In adherent cells, microtubules form radiation arrangement near nuclear. Actin fibers anchor to cell

membranes. Intermediate filament forms loose network around nuclear. Among cells under microgravity influence, the microtubules are shortened and curved. Less

actin fibers but more condense intermediate filament are observed. This illustration was inspired by long-term thyroid cells culture in simulated microgravity

environment (Kopp et al., 2015; Krüger et al., 2019a) .

the augmented regulation of ECM-associated genes and proteins
that help protect against osteoarthritic changes, including
collagen type I, II, and X, β1integrin, vimentin, and chondrocyte
sulfate (Ulbrich et al., 2010; Aleshcheva et al., 2013, 2015), suggest
that while the microgravity-induced osteoarthritic pathology is
observed cartilage recovery of the AC is possible. Further to this,
cell-based studies have shown that primary chondrocytes are to
adapt to a microgravity environment within 24 h (Aleshcheva
et al., 2013). There is a clear need for more research into the
response of AC and specifically chondrocytes as elucidation
of the molecular mechanism that underpins chondrocytes
mechanoadaptation to a microgravity environment, holds great
promise for novel osteoarthritic treatments.

MICROGRAVITY-INDUCED
CYTOSKELETAL REGULATION OF
IMMUNE AND CANCER CELLS

The function of the immune system is strongly impacted
(Frippiat et al., 2016; Smith, 2018) with several studies reporting
dysregulation or immunosuppression following simulated or
real microgravity conditions (Boonyaratanakornkit et al., 2005;
Crucian et al., 2015; Martinez et al., 2015; Thiel et al., 2017).
Peripheral monocytes collected from astronauts post short-
duration Space missions (13–16 days) showed that there was no
change in the numbers of circulating monocytes indicating that
the change to an immunosuppressive phenotype was not due a
reduced cell number (Crucian et al., 2011). However, peripheral
monocytes showed a significantly decreased expression of surface

markers CD26L and HLA-DR, known regulators of lymphocyte-
endothelial cell adhesion and tissue migration (Crucian et al.,
2011). In vitro studies performed during Space flights have
revealed that lymphocytes exhibit important changes in their
cytoskeletal properties, suggesting that T cell activation may
be compromised at the level of the T cell receptor (TCR)
interaction (Sonnenfeld et al., 1992). It has been hypothesized
that immunosuppression produced in microgravity is due to
impaired TCR activation resulting from cytoskeletal disruption
(Bradley et al., 2019); however, the underlying molecular
mechanisms remain unknown.

When applied to tumor cells microgravity has been found
to impact tumor cell adhesion, proliferation, migration, and
viability (Grimm et al., 2002; Plett et al., 2004; Infanger et al.,
2006a; Shi et al., 2015; Tan et al., 2018), and to induce cell
autophagy (Jeong et al., 2018). Changes in apoptotic rate
were also observed in colorectal cancer cells (DLD-1) and
a lymphoblast leukemic cell line (MOLT-4), accompanied by
reduced transcription of the genes involved in colony formation,
oncogenic progression, and metastatic potential (Vidyasekar
et al., 2015). The foremost changes to tumor cell following
exposure to microgravity are alterations of cell shape, size,
and adhesion, indicating changes in cytoskeletal organization
(Figure 1). Modulation of the cytoskeletal network have been
demonstrated to occur after just minutes (Rijken et al., 1992;
Sciola et al., 1999) or hours (Lewis et al., 1998; Vassy et al.,
2001) in microgravity. Microtubule disorganization was observed
in both the breast cancer MCF-7 cells and the thyroid cancer
cell line FTC-133 when exposed to real microgravity (Kopp
et al., 2018a,b). In contrast, no changes in Rac-controlled F-actin
were detected in the neuroblastoma cell line, SH-Y-5Y (Rosner
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TABLE 1 | Effects of sub-cellular functions concerning various cell types and exposure duration in microgravity environment.

Cell type Effects of cells Microgravity exposure time References

Osteosarcoma cells (ROS 17/2.8) Cell morphological change to rounded shape with long

cytoplasmic extensions

4 days and 6 days Guignandon et al., 1997

Osteosarcoma cells (ROS 17/2.8) Reduction in cell spread area and vinculin spot area, actin

and focal adhesion, and stress fibers

12 and 24 h Guignandon et al., 2003

Breast cancer (MCF-7) Disoriented microtubule 1.5 h Vassy et al., 2003

Thyroid cancer (ML-1) Actin fiber reorganization Parabola flight Ulbrich et al., 2011

Human macrophages No effect on cytoskeletal structure 11 days Tauber et al., 2017

Human chondrocytes Effect on cell cytoplasm, microtubule network disruption,

loss of stress fibers, actin fiber reorganization.

Parabola flight Aleshcheva et al., 2015

Osteoblasts (MC3T3-E1) Reduction in actin cytoskeletal stress fibers and reduction

of nuclei size by 30%

4 days Hughes-Fulford and Lewis, 1996

Primary mouse osteoblasts Thicker microtubule, smaller focal adhesion spots,

reduction in actin stress fibers, and increase in cell spread

area

5 days Nabavi et al., 2011

Osteocytes Increase in cellular organelles including Golgi complex,

vacuoles, and vesicles

14 days Rodionova et al., 2002

et al., 2006), highlighting the differing responses of distinct cell
types to mechanical unloading. The expression of focal adhesion
proteins, moesin and ezrin, was found to be significantly down-
regulated after 24-h ofmicrogravity exposure (Kopp et al., 2018a).
There remains a gap in the understanding of the molecular
mechanisms that drive changes in the cytoskeleton in response
to mechanical unloading and the physiological systems that will
be impacted by microgravity. Thus, there is a dual potential
of microgravity studies in both elucidating the underlying
importance of mechanical signaling in human physiology and
in developing understanding and countermeasures for long-
duration space flights.

DISCUSSION

Microgravity research conducted on the International Space
Station (ISS) and in simulated microgravity has highlighted the
importance of cellular mechanotransduction in human health
and disease (Table 1). Understanding the molecular mechanisms
by which cells respond to mechanical unloading will not only
be important for preparing humans for longer-term space
exploration but may also contribute to therapeutics for the
treatment of diseases that depend on mechanical interactions,
highlighting opportunities to manipulate and correct certain
disease states. The discovery of sclerostin and the subsequent
generation and use of the sclerostin monoclonal antibody to
treat both osteoporotic patients has been a major outcome of
the field (Martin et al., 2020). Thus, Space and microgravity
biological research constitute extreme environments in which
novel mechanotransduction molecules and mechanosensing
mechanisms can be identified and may prove helpful in better
designing immunotherapies or developing better and more
targeted anti-cancer therapies. Studies that leverage these low
gravity environments have the unique potential to unveil
important physiological changes that occur in response to
changing mechanical loads and are of considerable importance
in expanding our understanding of mechanobiology.

With the privatization and commercialization of the ISS and
a global push toward the exploration of space, the gateway for
conducting research under simulated and Space microgravity
is becoming more accessible. In particular the development of
different variations of the RPM device provides a simulated
microgravity environment on Earth for investigating the changes
in cellular function due to mechanical unloading. Over the last
several years, experiments involving the use of microgravity
to study cellular mechanobiology and disease mechanisms
have continued to rise, reinforcing the importance of this
platform. This area of research has highlighted the importance of
mechanical cues in maintaining cell and tissue homeostasis. The
emergence of Space mechanobiology will continue to rise in the
foreseeable future as it is evident that the benefits of such research
can catapult survival of astronauts in space for extended duration
as well as developing understanding and better treatments for
Earth-borne diseases.
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