
Portland State University Portland State University 

PDXScholar PDXScholar 

Systems Science Faculty Publications and 
Presentations Systems Science 

10-2013 

Modeling the Impact of Simulated Educational Modeling the Impact of Simulated Educational 

Interventions on the Use and Abuse of Interventions on the Use and Abuse of 

Pharmaceutical Opioids in the United States: A Pharmaceutical Opioids in the United States: A 

Report on Initial Efforts Report on Initial Efforts 

Wayne Wakeland 
Portland State University, wakeland@pdx.edu 

Alexandra E. Nielsen 
Portland State University, alexan3@pdx.edu 

Teresa D. Schmidt 
Portland State University 

Dennis McCarty 
Oregon Health & Science University 

Lynn Webster 
LifeTree Medical 

See next page for additional authors 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/sysc_fac 

 Part of the Dynamics and Dynamical Systems Commons, and the Systems Engineering Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Wakeland, W., Nielsen, A., Schmidt, T. D., McCarty, D., Webster, L. R., Fitzgerald, J., & Haddox, J. D. (2013). 
Modeling the impact of simulated educational interventions on the use and abuse of pharmaceutical 
opioids in the United States: a report on initial efforts. Health Education & Behavior, 40(1_suppl), 74S-86S. 

This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Systems Science 
Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can 
make this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/sysc_fac
https://pdxscholar.library.pdx.edu/sysc_fac
https://pdxscholar.library.pdx.edu/sysc
https://pdxscholar.library.pdx.edu/sysc_fac?utm_source=pdxscholar.library.pdx.edu%2Fsysc_fac%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/281?utm_source=pdxscholar.library.pdx.edu%2Fsysc_fac%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=pdxscholar.library.pdx.edu%2Fsysc_fac%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/sysc_fac/139
mailto:pdxscholar@pdx.edu


Authors Authors 
Wayne Wakeland, Alexandra E. Nielsen, Teresa D. Schmidt, Dennis McCarty, Lynn Webster, John 
Fitzgerald, and J. David Haddox 

This post-print is available at PDXScholar: https://pdxscholar.library.pdx.edu/sysc_fac/139 

https://pdxscholar.library.pdx.edu/sysc_fac/139


Modeling the Impact of Simulated Educational Interventions on
the Use and Abuse of Pharmaceutical Opioids in the United
States: A Report on Initial Efforts

Wayne Wakeland, PhD1, Alexandra Nielsen, BS1, Teresa Schmidt, MA1, Dennis McCarty,
PhD2, Lynn Webster, MD3, John Fitzgerald, PhD4, and J. David Haddox, DDS, MD4

1Portland State University, Portland, OR, USA

2Oregon Health and Sciences University, Portland, OR, USA

3LifeSource Foundation, Salt Lake City, UT, USA

4Purdue Pharma LP, Stamford, CT, USA

Abstract

Three educational interventions were simulated in a system dynamics model of the medical use,

trafficking, and nonmedical use of pharmaceutical opioids. The study relied on secondary data

obtained in the literature for the period of 1995 to 2008 as well as expert panel recommendations

regarding model parameters and structure. The behavior of the resulting systems-level model was

tested for fit against reference behavior data. After the base model was tested, logic to represent

three educational interventions was added and the impact of each intervention on simulated

overdose deaths was evaluated over a 7-year evaluation period, 2008 to 2015. Principal findings

were that a prescriber education intervention not only reduced total overdose deaths in the model

but also reduced the total number of persons who receive opioid analgesic therapy, medical user

education not only reduced overdose deaths among medical users but also resulted in increased

deaths from nonmedical use, and a “popularity” intervention sharply reduced overdose deaths

among nonmedical users while having no effect on medical use. System dynamics modeling

shows promise for evaluating potential interventions to ameliorate the adverse outcomes

associated with the complex system surrounding the use of opioid analgesics to treat pain.
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A dramatic rise in the nonmedical use of pharmaceutical opioids has presented the United

States with a substantial public health problem (Compton & Volkow, 2006). Despite the

increasing prevalence of negative outcomes, such as fatal and nonfatal overdoses,

nonmedical use of pharmaceutical opioids remains largely unabated by current policies and

regulations (Fishman, Papazian, Gonzalez, Riches, & Gilson, 2004). Resistance to policy

interventions likely stems from the complexity of the medical and nonmedical use of

pharmaceutical opioids, as interactions among prescribers, pharmacists, persons obtaining

opioids for medical or nonmedical use, opioid traffickers, and public health advocates result

in chains of causal relationships and instances of information feedback in the system.

This article presents a system dynamics (SD) model of the U.S. opioid-related complex

system. This model is designed to foster a more complete understanding of how medical

use, trafficking, and nonmedical use are interrelated, and to identify points of high leverage

for educational interventions on the epidemic of nonmedical use. Three potential

interventions are simulated, relative costs and benefits are estimated, and possible

counterintuitive downstream effects are high-lighted. The term opioids is used to mean

pharmaceutically manufactured opioid (morphine-like) medicines, most of which are

indicated for use as analgesics, and does not include heroin or other illicit opioid drug

substances.

Background

The number of U.S. unintentional fatal poisonings involving opioid analgesics tripled

between 1999 and 2006 (Warner, Chen, Makuc, Anderson, & Miniño, 2011; see Figure 1),

increasing more than fivefold among those aged 15 to 24 years (Warner, Chen, & Makuc,

2009). Diversion of opioids is assumed to be a major source of supply for nonmedical use.

Among those survey respondents to the 2010-2011 National Surveys of Drug Use and

Health (NSDUH) who received opioids for free from friends or relatives, about 82%

reported that their source had originally received the drugs from one doctor (Substance

Abuse and Mental Health Services Administration [SAMHSA], 2012). Recent increases in

opioid prescribing stem in part from increases in the diagnosis and recognition of the need to

treat chronic noncancer pain. Data from NHANES (Hardt, Jacobsen, Goldberg, Nickel, &

Buchwald, 2008) support an estimate of 29 million Americans aged 20 years or older with

chronic pain in the period 1999-2002. Opioid treatment for chronic, noncancer pain is not

without controversy (Collett, 2001), but opioids have been found to be more effective at

ameliorating pain than alternative medications (see Furlan, Sandoval, Mailis-Gagnon, &

Tunks, 2006, for a review), and their prescription and medical use have become increasingly

common over the last decade (Governale, 2007, 2008a, 2008b).

In July 2012, the Food and Drug Administration (FDA) approved a shared Risk Evaluation

and Mitigation Strategy (REMS) for all Extended-Release and Long-Acting (herein-after

“long-acting”) opioid analgesics (FDA, 2012). Unfortunately, nonmedical use of

pharmaceutical opioids has tended to resist policy and regulation (Fishman et al., 2004), and

the effectiveness of many REMS interventions (e.g., medication guides and prescriber

training) remains inconclusive at this time (see Chou, Ballantyne, Fanciullo, Fine, &
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Miaskowski, 2009, for a review). Tools are needed to assess intervention alternatives for

their capacity to balance the benefits and risks of opioids in the United States. Policy

makers, striving to ameliorate the adverse outcomes associated with opioid analgesics, could

benefit from a systemslevel model that reflects the complexity of the system and that

incorporates the full range of available data.

An SD Simulation Model

The current work features an SD simulation model that represents the fundamental dynamics

of opioids as they are prescribed, unlawfully trafficked, used nonmedically, and involved in

overdose mortality. SD modeling uses a set of differential equations that are integrated

numerically to simulate system behavior over time. This allows researchers to incorporate

information on various factors into a single model that represents behaviors at a system

level.

SD models have been successfully applied to analysis of a number of public health issues,

including tobacco (Cavana & Tobias, 2008), cocaine (Homer, 1993), diabetes treatment

(Jones et al., 2006), and health care reform (Milstein, Homer, & Hirsch, 2010). The

approach is well-suited to health policy analyses involving complex chains of influence

(Sterman, 2006), as these often involve feedback loops and nonlinear relationships that are

beyond the capabilities of statistical models. The approach is especially useful for

identifying points of leverage for intervention and for indicating potential negative

consequences of those interventions (Sterman, 2000). This provides policy makers with

information that is not available from research focused on individual aspects of a system

(Sterman, 2006).

The current SD model was developed over a 2-year period through collaborative efforts of a

modeling team and a panel of experts in policy and the use/abuse of opioid analgesics. This

model complements and leverages results from an extensive amount of research on the use

and abuse of pharmaceutical opioids in the United States. Much of the current body of

knowledge regarding the interrelated public health problems of medical and nonmedical use

of opioid analgesics is based on surveys and inferential statistics. Because of limitations of

the surveys and differences in their methods, caution is required when defining populations

of interest and relationships between variables, especially variables that are similar but not

exactly the same across surveys. Guidance was often provided by the expert panel in

reconciling apparent differences between sources and making assumptions about how causal

relationships would be best represented in the model.

Dynamics of the Opioid System

The system model estimates overdose fatalities in which opioid analgesics were involved

based on the dynamics of medical treatment with opioids, initiation and prevalence of

nonmedical usage, and drug trafficking supply and demand. Discussion of each sector

includes a table of empirical support, a narrative of the model’s behavior, and a diagram

depicting model structure. Verbal descriptions contain bracketed numbers that correspond to

specific points in the diagrams. The model contains 40 parameters, 41 auxiliary variables,

and 7 state variables, as well as their associated equations and graphical functions.
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Medical Use Sector

Diagnostic criteria from DSM-IV have been used to differentiate persons who engage in

problematic substance use according to whether or not they meet the mutually exclusive

specific criteria for either opioid abuse or opioid dependence—the latter referred to by many

as addiction (American Psychiatric Association, 1994). Historically, increases in opioid

abuse and addiction have led to the implementation of regulatory policies for opioids (FDA,

2008). These have been shown to lead many physicians to avoid prescribing opioids out of

fear of overzealous regulatory scrutiny (Joranson, Gilson, Dahl, & Haddox, 2002) and may

also lead them to decrease the amount of opioids they prescribe, limit quantities and refills,

and shift prescribing to opioid analgesic drug products with a presumably lower risk of

abuse, addiction, or overdose (Wolfert, Gilson, Dahl & Cleary, 2010). Specifically,

physicians have been found to exhibit more caution in prescribing long-acting opioid

analgesics (Potter et al., 2001), due to greater concerns about the development of physical

dependence, tolerance, and addiction, and because most of them are classified in the most

restrictive schedule defined in the federal Controlled Substances Act. (See Table 1 for

additional empirical support for the medical use sector.)

As illustrated in Figure 2, the system model assumes that a proportion of the U.S. population

is diagnosed with a chronic pain condition each year {1}. A fraction of these people are

subsequently treated with either short-acting {2} or long-acting {3} opioid formulations, and

become members of one of the populations of patients under opioid treatment ostensibly for

chronic pain. Patients who begin treatment with short-acting formulations may cease

treatment if their condition improves, or some may switch to long-acting formulations if

their pain conditions appear to worsen {4}.

Each year some individuals move from the stocks of “individuals receiving opioids” {2-3}

to the stocks of “individuals receiving opioids with abuse or addiction” {5-6}. The fraction

of individuals with abuse or addiction {7} influences physicians’ perception of the risk

involved in opioid prescribing {8}, as does the total number of accidental overdose deaths

involving opioid analgesics among medical users each year {9}. As physicians perceive

higher levels of risk {8} they become increasingly biased toward prescribing short-acting

formulations {10}, and their overall rates of opioid prescribing decrease {11}. This response

slows the amount of abuse, addiction, and overdoses {7}, which tends to stabilize the

medical use sector of the model.

Trafficking Sector

Findings from Manchikanti et al. (2006) indicate that 5% of chronic pain patients engage in

doctor shopping and around 4% engage in forgery. (See Table 2 for additional empirical

support.) As shown in Figure 3, a fixed proportion of the persons with abuse or addiction are

assumed to engage in trafficking each year, including doctor shopping {1} and forgery {2}

of prescriptions for long-acting and/or short-acting medications. The number of extra

prescriptions acquired {3} is assumed to be a product of the total number of individuals

engaging in trafficking and the number of extra prescriptions obtained per trafficker {11}.

Some proportion of these excess prescriptions is assumed to be kept by the traffickers

themselves rather than transferred to others {4}. The amount kept for personal use is a
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product of the number of traffickers with abuse or addiction and the average number of extra

prescriptions used per year by them. The number of prescriptions used by the trafficker is

then subtracted from the number of extra prescriptions acquired. The remainder is converted

to dosage units {5}, representing opioid drug products dispensed from pharmacies from the

fraudulently obtained prescriptions, and diverted to nonmedical users {6}.

Trafficked opioids accumulate in a stock of dosage units {7} that are consumed according to

demand from the nonmedical use sector. The “months of supply available” {8} indicates the

extent to which the trafficked supply is able to meet the trafficking-oriented demand. When

the trafficked supply of opioids becomes limited, an increased profit motive emerges {9}

and motivation to forge prescriptions and doctor shop increases. When supply is large

compared with demand, the opposite is true. As this motivation fluctuates, the number of

extra prescriptions each trafficker would like to obtain {10} also changes. But the number of

trafficked prescriptions that can be successfully redeemed for opioid drug products is

attenuated by cautious dispensing when perceived risk is high among physicians and

pharmacies {11}, which tends to stabilize the amount of trafficking.

Nonmedical Use Sector

Around 12% to 14% of individuals who use opioids nonmedically meet the criteria for abuse

or dependence (Colliver, Kroutil Dai, & Gfroerer, 2006), and statistical analysis of the full

NSDUH (2009) data set indicated that respondents with abuse or dependence reported a

median frequency of opioid usage during the past year 38 times greater than respondents

without abuse or dependence. Extrapolation from heroin findings indicates that higher-

frequency opioid use is associated with a significantly higher all-cause mortality rate (WHO;

see Degenhardt, Hall, Warner-Smith, & Lynskey, 2004; Hser, Hoffman, Grella, & Anglis,

2001) and supports a distinction between two subpopulations of nonmedical users (low and

high frequency) in this sector of the model. (See Table 3 for additional empirical support for

this sector.)

As illustrated in Figure 4, within the model a percentage of the U.S. population {1} initiates

nonmedical use each year {2}, all of whom start out in a stock of “low-frequency

nonmedical users,” and a small percentage of whom then advance to a stock of “high-

frequency nonmedical users” {3} during each subsequent year. The total number of

individuals using opioids nonmedically {4} is divided by the current number of individuals

in the United States who are using other drugs nonmedically {5} to calculate the relative

popularity of opioids for nonmedical use {6}. As the popularity of using opioids

nonmedically increases, the rate of initiation increases, creating a positive feedback loop that

acting on its own would result in an exponential increase in the rate of initiation.

Nonmedically used opioids are obtained through a variety of routes, but of chief interest for

the current research is the prevalence of opioid “trafficking” (i.e., buying or selling) via

persons who are receiving these products ostensibly for treatment. Results from the 2006

NSDUH survey (SAMHSA, 2007) indicate that 75% of the nonmedical demand for opioids

is met via interpersonal sharing or theft from friends or relatives. The remaining 25%

represents the demand met by trafficking {8}. The focus on trafficking in the model reflects
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the emphasis in the medical sector on prescribing for chronic pain, and the assumption that

chronic pain medicines are less likely to be left over or shared.

In the model, demand for opioids (long- and short-acting) is calculated from the number of

individuals in low- and high-frequency populations {7}. When the trafficking supply {8} is

ample relative to demand, the rate of initiation {2} and the rate of advancement from low-

frequency to high-frequency use {3} is somewhat enhanced. However, when the 25% of

opioids for nonmedical use supplied by trafficking is limited (or even negative), rates of

initiation and advancement decrease appreciably. The ratio of supply to demand {9}

indicates the degree to which opioids are accessible for nonmedical use. As the populations

of nonmedical users increase beyond what trafficking can support, accessibility becomes

limited. This decreases initiation and advancement and this balancing loop offsets the

exponential increase in nonmedical use driven by the popularity feedback loop.

Model Testing

The model was tested in detail to determine its robustness and ability to endogenously match

simulated data against historical data (refer to Sterman, 2000, for a list of standard tests for

confidence). Model outputs were compared with reference data for the historical period

(1995 to 2008) where these data were available, as shown in Figure 5. Overall, simulated

results were consistent with the empirical reference data despite the complex patterns

exhibited, and baseline results were considered sufficiently plausible to proceed with

exploratory analysis.

Results

To illustrate the potential for evaluating interventions, logic representing three possible

interventions was added to the model to calculate their relative potential impacts on the

number of opioid overdose deaths in the United States. The model was run over a time

period of 20 years, which was divided into a historical period—1995 to 2008—and an

evaluation period—2008 to 2015. All interventions were represented as simple toggles, with

exaggerated impacts that demonstrate the model’s relative response at multiple points of

leverage.

Prescriber Intervention

The implementation of a prescriber education program was simulated by doubling prescriber

perception of risk and reducing rates of addiction by half. Given a simulated education

intervention, prescribers perceived opioid prescribing as twice as risky and were twice as

effective in monitoring patients for signs of abuse. The increased risk caused prescribers to

treat half as many chronic pain patients with opioids and to be doubly biased toward

prescribing short-acting formulations. Their increased effectiveness in monitoring treatment

also resulted in a 50% reduction in the number of patients who developed abuse or

addiction.

The prescriber intervention simulation caused a marked decrease in the number of overdose

deaths among medical users in the model (see Figure 6B), as wary prescribers offered opioid
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therapy to fewer individuals. Nonmedical overdose deaths also decreased, as there were

fewer individuals with abuse or addiction who could engage in trafficking and increased

difficulty in obtaining fraudulent prescriptions. Constraining the trafficked supply reduced

the number of nonmedical users and nonmedical overdose deaths. However, this

intervention also resulted in a denial of therapeutic treatment to individuals with legitimate

chronic pain complaints.

Medical User Intervention

This intervention simulated a patient-level education program that halved the rate at which

medical users with chronic pain developed abuse or addiction. In contrast to the prescriber

intervention, this simulation maintained the baseline level of prescriber risk perception. Not

surprisingly, this caused a decrease in the number of medical user deaths (see Figure 6C).

However, because the number of deaths among nonmedical users continued to grow, the

reduction in deaths among medical users was not enough to prevent an overall increasing

trend in overdose deaths in the model.

The increasing trend in the number of nonmedical users stemmed from the vicious cycle of

opioid popularity. An immediate cut in the fraction of individuals developing opioid abuse

or addiction caused the perception of opioid risk to drop. In a climate of lower risk,

prescribers became less cautious and prescriptions were easier to obtain by fraudulent

means. This small rise in fraudulent supply available through traffickers permitted a slight

increase in the number of nonmedical users. And because of the self-reinforcing nature of

the popularity feedback loop, this slight increase led to a noticeable increase in nonmedical

use and overdose deaths in the nonmedical sector.

Popularity Intervention

The popularity intervention simulated an education program targeted at nonmedical users

that halved the rate of initiation and also the level of perceived popularity of opioids for

nonmedical use. Sharply reducing initiation and perceived popularity caused a substantial

reduction in the number of overdose deaths in the model (see Figure 6D). Once the user

populations declined, the self-reinforcing nature of popularity worked in a virtuous cycle of

decreased use and decreased popularity. This further reduced rates of nonmedical use and

overdose deaths in the nonmedical use sector.

Discussion

Results indicate that SD modeling holds promise as a tool for understanding the phenomena

contributing to the nonmedical use of opioids and for evaluating the potential impact of

educational interventions on the epidemic of overdose deaths in which pharmaceutical

opioids are reported. By deliberately exaggerating the direct effects of three potential

options, downstream effects were accentuated to allow for direct comparison of alternatives

and to make obvious any possible unintended consequences or counterintuitive results.

Results of the interventions suggest that prescriber-level education initiatives, such as

promotion of careful screenings of patients who receive opioid therapy (Fishbain et al.,

2008), may be a more effective way to reduce abuse, addiction, and unintentional overdose
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deaths than patient-level education initiatives. Surprisingly, reducing the rate of abuse or

addiction among medical users resulted in more overdose deaths, because, in the model,

lower rates of abuse and addiction led to lower perception of risk among prescribers, more

prescribing, and ultimately more trafficking to nonmedical users.

However, restrictions at the prescriber level suggest that more chronic pain sufferers would

also be denied potentially beneficial therapy. By intervening at the level of the medical user,

the number of overdose deaths decreased in the medical sector without denying any

additional patients treatment. It is possible that a medical user intervention could be

amplified with additional efforts to reduce diversion to the nonmedical sector, but among the

interventions tested in this study, it appears that patient education interventions may be less

effective at reducing overdose deaths in the United States.

The popularity intervention, which directly targeted the nonmedical use sector, was found to

be the most powerful point of leverage in reducing deaths among nonmedical users; and

research indicates that more than half of opioid overdose deaths are suffered by individuals

who have never been prescribed opioids directly (Hall et al., 2008). This intervention would

likely have the greatest impact on adolescents and young adults, populations with the

greatest rates of nonmedical use (SAMHSA, 2012). However, it is also important to

consider the distal impacts of interventions in the medical sector on the nonmedical sector.

The prescriber intervention indirectly limited the supply of opioids available for nonmedical

use and resulted in the largest reduction in overdose deaths among the three interventions

compared.

Limitations

Despite great efforts to find empirical support for all model parameters, parameter validity

remains a primary limitation in the study (Wakeland et al., 2010). Several parameters have

weak empirical support, and a number of potentially important factors have been excluded,

often because evidence to support them remains elusive. For example, the trafficking sector

focuses solely on trafficking as a mode of diversion, even though a large fraction of

nonmedical use demand is met by interpersonal sharing among friends and relatives. There

is very limited empirical evidence on interpersonal sharing, but because of its importance

this mechanism would ideally be included in a more detailed fashion. Additional detail on

opioid trafficking would also be ideal, as it is currently assumed that only individuals with

chronic pain who also abuse or are addicted to opioids engage in trafficking, and that the

number of traffickers is stable with changes in supply and demand. There are no reliable

data on how many individuals masquerade as pain patients so as to acquire medicine for

illicit resale, but anecdotally, some individuals are merely engaged in a criminal enterprise

and have no interest in abusing the drugs they buy and sell.

Some additional boundary exclusions include polydrug use and abuse, and the use of

substitute substances such as heroin. Without modeling the larger system of nonmedical and

illicit use of substances, we are not able to explore the impact of drug switching or polydrug

abuse on unintentional overdose deaths in the United States. Opioid treatment programs,

alternative treatments, and secular factors—such as payer policies and formularies—are also
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likely to influence rates of medical and nonmedical use of opioids and the outcomes

associated with such use, but were not included in the current model.

Finally, the model focuses exclusively on prescribing and diversion of opioids for the

treatment of chronic noncancer pain, without representing the vastly larger number of

persons who receive them for acute pain. Chronic pain was of primary interest in the current

model because policy interventions that restrict opioid prescribing may have an especially

large impact on individuals with long-term pain conditions. However, a larger fraction of the

opioids dispensed annually are prescribed to treat acute pain conditions and contribute to the

supply of opioids for nonmedical use as well as to physicians’ perception of risk in

prescribing.

Conclusion

Work is underway to address many of the above limitations, but limitations notwithstanding,

the present study serves well to demonstrate how a systems-level model can inform

interventions on the nonmedical use of pharmaceutical opioids. It is hoped that the insights

achieved by this initial application will demonstrate the value of applying an SD approach to

this important public health concern. From a systems perspective, it is clear that

interventions focused on prescribing and dispensing behavior can have implications beyond

the medical aspects of the system, and it appears likely that a multifaceted approach

addressing licit as well as illicit use is warranted.

This initial effort is meant to stimulate the creation of additional models that address the

above limitations and that simulate policy interventions more directly tied to those currently

under discussion. However, the basic structure of the medical, trafficking, and nonmedical

sectors is expected to remain relevant as REMS are implemented and as the policy

landscape around this public health area continues to shift. The SD approach allows for

analysis of various points of intervention and for evaluation of alternative policies that aim

to ameliorate the negative outcomes associated with nonmedical use of pharmaceutical

opioids in the United States.
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Figure 1.
Escalation of unintentional drug-poisoning deaths in the United States from 1999 to 2008

Source. Warner (2011).
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Figure 2.
Stock and flow diagram of the Medical Use Sector.

Note. Circled numbers correspond to bracketed notations in the text. Numbers in boxes

correspond to model parameters in Table 1.
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Figure 3.
Stock and flow diagram of the Trafficking Sector.

Note. Circled numbers correspond to bracketed notations in the text. Numbers in boxes

correspond to model parameters in Table 2.
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Figure 4.
Stock and flow diagram of the Nonmedical Use Sector.

Note. Circled numbers correspond to bracketed notations in the text. Numbers in boxes

correspond to model parameters in Table 3.
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Figure 5.
Model output versus reference behavior.

Note. From top left, clockwise: (a) total prescription opioid overdose deaths per year (Mean

Absolute Percentage Error [MAPE] 22%), (b) total nonmedical users of prescription opioids

(MAPE 9.1%), (c) total number of individuals initiating nonmedical opioid use per year

(MAPE 9.9%). For discussion on MAPE as a metric of model fitness, see Sterman (2000).
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Figure 6.
Effect of simulated interventions on total opioid overdose deaths, overdose deaths among

nonmedical users, and medical users.

Note. Baseline results (A) are shown for the historical period and evaluation period.

Intervention results (B, C, D) are shown only for the evaluation period.
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Table 1

References of Support for Model Parameters in the Medical Use Sector.

Parameters (Enumerated) and Reference Data Value Support

1, 2 All-cause mortality rate for those
 receiving long-acting and short-
 acting opioids

0.012; 0.01 U.S. population mortality data, adjusted by panel
consensus

3 All-cause mortality rate for those
with abuse/addiction

0.015 U.S. population mortality data, adjusted by panel
 consensus

4, 5 Average long- and short-acting
 treatment duration (in years)

7; 5 Panel consensus

6 Base level of abuse potential for
opioids

1.3 Modeling team judgment, reviewed by Panel

7 Base rate for adding or switching
(to long-acting)

0.03 Extrapolation from outcome data: Verispan, LLC, SDI
Vector One®: National (VONA; see
Governale, 2008a)

8
Table function

a
 for base rate of

treatment

From 0.05 in 1995 to
0.23
in 2005

Panel consensus, informed by Potter et al. (2001)

9 Base risk factor (degree tx
reduced in 1995 due to
perceived risk)

1.3 Modeling team judgment, reviewed by panel

10
Table function

a
 for diagnosis rate

for chronic pain

From 0.05 in 1995 to
0.15
in 2005

Panel consensus, informed by WHO (World Health
 Organization; see Gureje, Simon, & Von Korff,
2001)

11 Overdose mortality rate for
 those abusing opioids

0.0015 Extrapolation from heroin research (see
Sullivan, 2007)

12 Overdose mortality rate for those
on long- and short-acting

0.0025; 0.00005 CONSORT study (Consortium to Study Opioid Risks
and Trends; see Potter et al., 2001)

14 Rate of addiction for those on
long- and short-acting

0.05 Meta-analyses (see Dunn et al., 2010; Højsted &
Sjøgren, 2007)

15 Rate of addiction for those on
short-acting

0.02 VISN16 data (South Central Veterans Affairs Health
 Care Network; see Fishbain, Cole, Lewis, Rosomoff,
& Rosomoff, 2008)

16
Table function

a
 for short-acting

bias (as function of perceived
risk)

From (1,0) to (4,1) Modeling team judgment, reviewed by panel

17 Tamper Resistance (baseline
value)

1 Policy variable (1 = status quo)

Physicians’ fear of overzealous
regulatory scrutiny when
prescribing opioids

Joranson et al. (2002)

Physicians’ decrease in opioid
 prescribing after regulation

Wolfert et al. (2010)

Higher rate of abuse among long-
 acting than short-acting opioids

Cicero, Suratt, Inciardi, and Munoz (2007)

Physicians’ tendency to exhibit
more caution in prescribing
long-acting than short-acting
opioids

Potter et al. (2001)

a
A Table Function is a series of XY coordinates representing a relationship (usually nonlinear) between two variables; initial and final values given

above.
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Table 2

References of Support for Model Parameters in the Trafficking Sector.

Parameter Value Support

1. Average number of dosage units per
opioid prescription

86 Extrapolation from dispensing data: Verispan, LLC, SDI Vector
 One®: National (VONA; see Governale, 2008a, 2008b)

2. Average number of extra dosage units
taken per day among those with abuse or
addiction

1.5 Panel consensus

3. Fraction of those with abuse/addict who
engage in Dr shopping

0.5 Extrapolation from study results (Manchikanti et al., 2006)

4. Fraction of those with abuse/addict who
engage in forgery

0.4 Extrapolation from study results (Manchikanti et al., 2006)

5. Number of days of extra opioid usage
among those with abuse/addiction

50 Generalized from NSDUH data (National Survey on Drug
Use and Health 2002, 2003, & 2004; see Table 2.18B in
Colliver et al., 2006)

6. Profit multiplier 15 Modeling team judgment

7. Table function
a
 for the effect of perceived

risk on extra Rx obtained

From (0,0) to (2,1) Modeling team judgment

a
A Table Function is a series of XY coordinates representing a relationship (usually nonlinear) between two variables; initial and final values given

above.
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Table 3

References of Support for Model Parameters in the Nonmedical Use Sector.

Parameters (Enumerated) and Reference
Data Value Support

1 Base level of abuse potential of opioids 1.3 Panel Consensus

2 Fraction of demand met from chronic
pain trafficking

.25 Extrapolation from NSDUH 2006 results
(SAMHSA, 2007)

3 Fraction of low- frequency users who
switch to high- frequency

0.06 Extrapolation from MTF data (Monitoring the
Future; see Johnston, O’Malley, Bachman, & Schulenberg,

2007)
and results (Mack & Frances, 2003)

4, 5 Low- and high-frequency user all-cause
mortality rate

0.012; 0.02 Extrapolation from heroin research findings
(WHO; see Degenhard et al., 2004; Hser et al., 2001;
Rehm et al., 2005)

6, 7 Low- and high-frequency user cessation
rate

0.15; 0.08 Imputation from NSDUH data (National Survey
on Drug Use and Health, 2007; see
SAMHSA 2009)

8, 9 Number of days of nonmedical use
among low- and high-frequency users

30; 220 Extrapolation from NSDUH 2007 results
(Lee et al., 2010)

10 Number of dosage units taken per day of
nonmedical use

2 Modeling Team Judgment, reviewed by Panel

11, 12 Overdose mortality rate for low- and
high-frequency nonmedical users

0.0002; 0.002 Extrapolation from research findings (Fischer et al., 2004;
 Warner et al., 2009; Warner-Smith, Lynskey, Darke, &
Hall, 2000)

13 Rate of initiation of nonmedical opioid
use

0.006 Imputed from National Drug Use and Health
Survey Data (NSDUH, 1995; see SAMHSA, 1996)

14
Table function

a
 for the impact of limited

accessibility on initiation and increasing
use

From (0,0) to (5,2) Modeling Team Judgment, reviewed by Panel

15
Table function

a
 for the number of

individuals using illicit drugs excluding
marijuana and opioids

From 6.7M in 1995 to
8.6M in 2009

Calculated from NSDUH 2006 results, see
SAMHSA (2007)

16
Table function

a
 for US population ages 12

and older, as a function of time

From 211M in 1995 to
357M in 2007

Imputed from NSDUH data (National Survey on
Drug Use and Health 1995, 2002; see
SAMHSA, 1996, 2002)

Proportion of nonmedical users who
meet the DSM-IV criteria for abuse or
dependence

12% to 14% American Psychiatric Association (1994),
Colliver et al. (2006)

a
A Table Function is a series of XY coordinates representing a relationship (usually nonlinear) between two variables; initial and final values given

above.
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