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The new coronavirus disease 2019 (COVID-19) has required the implementation of severe

mobility restrictions and social distancing measures worldwide. While these measures have

been proven effective in abating the epidemic in several countries, it is important to estim-

ate the effectiveness of testing and tracing strategies to avoid a potential second wave of the

COVID-19 epidemic. We integrate highly detailed (anonymized, privacy-enhanced) mobility

data from mobile devices, with census and demographic data to build a detailed agent-based

model to describe the transmission dynamics of SARS-CoV-2 in the Boston metropolitan

area. We find that enforcing strict social distancing followed by a policy based on a robust

level of testing, contact-tracing and household quarantine, could keep the disease at a level

that does not exceed the capacity of the health care system. Assuming the identification of

50% of the symptomatic infections, and the tracing of 40% of their contacts and households,

which corresponds to about 9% of individuals quarantined, the ensuing reduction in trans-

mission allows the reopening of economic activities while attaining a manageable impact on

the health care system. Our results show that a response system based on enhanced testing

and contact tracing can play a major role in relaxing social distancing interventions in the

absence of herd immunity against SARS-CoV-2.

The first report of a new infectious disease, later coined COVID-19, appeared on 31 Decem-

ber 20191. As of 2 May 2020, the virus has spread to 187 countries with more than 3.4 millions

confirmed cases worldwide, and killing more than 240,000 people2. As the number of confirmed
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COVID-19 cases increased and the expansion of the disease entered into a global exponential

growth phase, a large number of affected countries were forced to adopt non-pharmaceutical inter-

ventions at an unprecedented scale. Given the absence of specific antiviral prophylaxis, therapeut-

ics or a vaccine, non-pharmaceutical interventions ranging from case isolation and quarantine of

contacts, to the lock-down of entire populations have been implemented with the aim of suppress-

ing/mitigating the epidemic before it could overwhelm the health care system. Although these ag-

gressive measures appear to be successful in reducing the number of deaths and hospitalizations3, 4,

and in reducing the transmission of the SARS-CoV-2 virus, the absence of herd immunity after the

first wave of the epidemic points to a large risk of resurgence when interventions are relaxed and

societies go back to a “business as usual” lifestyle5–7. It is therefore of paramount importance

to analyze different mitigation and containment strategies aimed at minimizing the risk of poten-

tial additional waves of the COVID-19 epidemic while providing an acceptable trade-off between

economic and public health objectives.

In the present work, through the integration of anonymized and privacy-enhanced data from

mobile devices and census data, we build a detailed sample of the synthetic population of the

Boston metropolitan area in the United States (see Figure 1a and 1b). This synthetic population

(Figure 1a) is used to define a data-driven agent-based model of SARS-CoV-2 transmission and

to provide a quantitative analysis of the evolution of the epidemic and the effectiveness of social

distancing interventions. The model allows us to explore strategies concerning the lifting of social

distancing interventions in conjunction with testing and isolation of cases and tracing and quarant-

ine of exposed contacts. Our results indicate that after the abatement of the epidemic through the

3
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“stay at home” orders and halt to all nonessential activities, a proactive policy of testing, contact

tracing and contacts’ household quarantine allows the gradual reopening of economic activities

and workplaces, with a low COVID-19 incidence in the population and a manageable impact on

the health care system.

To provide a quantitative estimate of the contact patterns for the population of agents and

to build the synthetic population of the Boston Metropolitan Area (BMA), we used detailed mo-

bility and socio-demographic data and generated a network that encodes the contact patterns of

about 85,000 agents in the area during a period of six months (see Supplementary Material, SM).

Agents are chosen to be representative of the different census areas in the Boston area following

the methodology used in Ref. 8. This defines a weighted multilayer network consisting of three

layers representing the network of social interactions at (1) workplace/community level (W+C),

(2) households, and (3) schools, as shown in Figure 1a. Connections between two agents in the

W+C layer are estimated from the data by the probability of both being present in a specific place

(e.g. restaurant, workplace, shopping) weighted according to the time they have spent in the same

place. A second layer represents the households of each anonymous individual. Using the home

census block group of each anonymous user we associate each individual to a specific household

profile based on socio-demographic data at US census block group level9. Families are generated

by randomly mixing nodes from the community living in the same census block group, following

the statistical features of family types and sizes. Finally, a third layer represents the contacts in the

schools (i.e., every node represents one synthetic student and has contacts only with other individu-

als attending the same school). To study the evolving dynamics of the infection, we implemented

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 18, 2020. ; https://doi.org/10.1101/2020.05.06.20092841doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.06.20092841
http://creativecommons.org/licenses/by-nc-nd/4.0/


a stochastic, discrete-time compartmental model in which individuals transition from one state to

the other according to key time-to-event intervals (e.g., incubation period, serial interval, and time

from symptom onset to hospital admission) as from available data on SARS-CoV-2 transmission.

The natural history of the disease is captured by the epidemiological model represented in Figure

1c, where we also show the transition rates among compartments8, 10–12. The model considers that

susceptible individuals (S) become infected through contact with any of the infectious categories

(infectious symptomatic (IS), infectious asymptomatic (IA) and pre-symptomatic (PS)), transition-

ing to latent compartments (LS) and (LA), where they are infected but not infectious yet. Latent

individuals branch out in two paths according to whether the infection will be symptomatic or

not. We also consider that symptomatic individuals experience a pre-symptomatic phase and that

once they develop symptoms, they can experience diverse degrees of illness severity, from mild

symptoms to being hospitalized (H) or in need of an intensive care unit (ICU)13. Finally, indi-

viduals transition in the removed compartment (identifying recovered or dead individuals). The

model assumes a basic reproductive number R0 = 2.5, which together with the rest of the para-

meters (see SM, table S1) yields a generation time Tg = 6.6 days. We consider a 25% fraction

of asymptomatic individuals. We report the full set of parameters used in the model and an ex-

tensive sensitivity analysis in the SM file. The model is not calibrated to account for the specific

evolution of the COVID-19 epidemic in Boston as it is aimed at showing the effect of different

non-pharmaceutical interventions rather than providing a forensic analysis of the outbreak in the

BMA. Details on the generation of the synthetic population network and the infection transmission

model are provided in the SM.
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Results

To provide a baseline of the COVID-19 impact in the Boston metropolitan area, we have first

investigated an unmitigated scenario in which no interventions are implemented. Results for the

unmitigated scenario are shown in Figure 2, panels a-c. A COVID-19 unmitigated epidemic would

have a peak incidence of 25.2 (95% C.I: 23.8-26.4) newly infected individuals per 1,000 people.

The epidemic follows a typical trajectory, namely, when the effective reproduction number Rt

as a function of time (panel c) becomes smaller than 1, the transmission dynamics slows down

and eventually vanishes after having infected about 75% of the population (Figure 2b). Figure 3a

shows the evolution of the number of new severely affected patients who require hospitalization

and admission into ICUs. At the peak of the unmitigated epidemic, the number of ICU beds needed

exceeds by far the available capacity (dashed horizontal line in Figure 3a) by more than a factor of

12, thus indicating that the health care system would suffer large service disruptions, resulting in

additional deaths due to hospitals overcrowded with patients with COVID-1914. It is worth noting

that current fatality rates consider the general availability of ICU beds and critical care capacity, if

this would not be possible the fatality rate may increase dramatically.

To avoid the harmful effects of an unmitigated COVID-19 epidemic, governments and policy

makers across the world have relied on the introduction of aggressive social distancing measures.

In the United States, as of April 15 2020, it was estimated that more than 95% of the population

was under a “stay at home” or “shelter in place” order15, 16. To model the social distancing policies

implemented in the whole Boston metropolitan area, we have considered March 17, 2020 as the

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 18, 2020. ; https://doi.org/10.1101/2020.05.06.20092841doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.06.20092841
http://creativecommons.org/licenses/by-nc-nd/4.0/


average starting date of social distancing policies that include school closures, the shut down of

all non-essential work activities as well as mobility restrictions (see SM for details). This scenario

mimics the social distancing intervention implemented in most of the high income countries in

Europe and across states in the US. Such extreme social distancing policies come with very large

economic costs and social disruption effects17, thus prompting the question of what exit strategy

can be devised to restart economic activities and normal societal functions18. For this reason, we

explore two different scenarios for lifting social distancing interventions:

• Lift scenario (LIFT): the “stay at home” order is lifted after 8 weeks by re-opening all work

and community places, except for mass-gathering locations such as restaurants, theaters, and

similar locations (see SM). We also assume that symptomatic COVID-19 cases are isolated

within 2.5 days. The latter partial re-opening is enforced for another 4 weeks, which is

followed by a full lifting of all the restrictions that remained. We consider that schools will

remain closed given the impending summer break in July and August, 2020. In fact, some

school systems, like the Boston Public schools, have announced they will remain closed

through the 2019-2020 school year.

• Lift and enhanced tracing (LET) scenario: The “stay at home” order is lifted as in the previ-

ous scenario. Once partial reopening is implemented, we assume that 50% of symptomatic

COVID-19 cases can be tested for SARS-CoV-2 infection, on average, within 2 days after

the onset of symptoms and that they are isolated at home and their household members are

quarantined successfully for 2 weeks (a sensitivity analysis for lower rate of isolation and

7
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quarantine is presented in the SM). We also assume that a fraction of the non-household

contacts (we show results for 20% and 40%) of the symptomatic infections can be traced

and quarantined along with their household as well − note that we consider that the contact

tracing is more likely to pick up interactions proportionally to the time spent together.

The above scenarios are mechanistically simulated on the multilayer network of Figure 1a,

by allowing different interactions (between effective contacts) according to the simulated strategy.

As a result, the average number of interactions in the W+C layer goes from 10.86 (95% C.I.:1.51-

42.39) under the unmitigated scenario, to 4.10 (95% C.I.:0-23.79) for the partial lock-down and

only 0.89 (95% C.I.: 0-8.39) contacts for the stay at home policy, see Methods and SM for more

details. This result is in agreement with previously published work19 and recent reports in the New

York City area20. It is worth remarking that the fluctuations in the number of contacts in the stay at

home order is due to a large extent to contacts that take place in grocery stores and other essential

venues.

The numerical results show that the LIFT scenario, while able to temporally abate the epi-

demic incidence, does not prevent the resurgence of the epidemic and a second COVID-19 wave

when the social distancing measures are relaxed. In Figure 2d, we show that following the lifting

of social distancing the infection incidence starts to increase again, and the effective reproductive

number, that dropped by circa 75% and reached values below 1 with the intervention, increases

to values up to 2.05 (95%CI: 1.73-2.47) (see Figure 2f). Indeed, at the time of lifting the social

distancing intervention the population has not achieved the level of herd immunity that would pro-

8
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tect it from the resurgence of the epidemic. We also estimate that a second wave of the epidemic

still has the potential to infect a large fraction of the population (Figure 2e) and to overwhelm the

health care systems, as shown in Figure 3b. The number of ICU beds needed, although half the

unmitigated scenario, is still exceeding by far the estimated availability5–7, 21. Such scenario would

imply resorting again to major distancing policies, as it would be untenable to let run the epidemic

again. This suggests that lifting social distancing without the support of additional containment

strategies is not a viable option.

In the case of the LET scenario, the lifting of the social distancing intervention goes along

with a significant amount of contact tracing and precautionary quarantine of potentially exposed

individuals. The quarantine is not limited to the contacts of the identified symptomatic COVID-19

case, but extended to their households. This strategy amounts to a simplified tracing of contacts

of contacts, that would not require extensive investigations within households. In other words, this

strategy does not require the tracking of single individuals but considers households as the basic

unit. Households could be monitored though, with daily calls or messages to ascertain the onset of

symptomatic infections, and provide medical support as needed.

Figure 2g shows results obtained for different levels of tracing (no tracing, 20% and 40%) of

the contacts of the symptomatic isolated COVID-19 cases. By comparing Figure 2d with Figure

2g (for no tracing), we find that quarantining households of symptomatic subjects alone is not

enough to significantly change the course of the epidemic and the conclusions reached for the first

of these scenarios. When 40% or more of the contacts of the detected symptomatic infections are

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 18, 2020. ; https://doi.org/10.1101/2020.05.06.20092841doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.06.20092841
http://creativecommons.org/licenses/by-nc-nd/4.0/


traced and they and their households quarantined, the ensuing reduction in transmission leads to a

noticeable flattening of the epidemic curve and appears to effectively limit the possible resurgence

of a second epidemic wave. It is also worth noticing that we assume the absence of other additional

and minimally disruptive social distancing policies such as crowd control, smart working, wearing

of masks, etc., that could lead to a further reduction of the transmissibility of the virus with respect

to our estimations. It is important to stress that the contact tracing proposed here works at the

level of household unit, simplifying also the monitoring and follow up process, by contacting only

one member of the household to monitor the onset of symptoms among all members (we further

explore other isolation/quarantine strategies in the SM). Figure 3c and Table1 show the burden

in hospitalization and ICU demand in the unmitigated situation and the two mitigation scenarios.

The LET scenario allows relaxation of the social distancing interventions while maintaining the

hospital and ICU demand at levels close to the health-care availability and surge capacity. For the

sake of completeness in the SM file we report the analysis for a LIFT scenario including the school

and University reopening in the fall. The results show that in absence of additional containment

policies the tracing effort would need to be raised of about 50% to cope with the increased number

of infections.

Discussion

The efforts in the suppression and mitigation of COVID-19 are pursuing the objectives of pre-

serving the health care system from disruptive failures due to overwhelming stress imposed by

the large number of severe cases, and of minimizing the morbidity and mortality related to the

10
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epidemic. The aggressive social distancing interventions implemented by many countries in re-

sponse to the COVID-19 pandemic appear to have achieved the interruption of transmission and

the abatement of the epidemic, although at the price of huge societal disruption and economic

costs. In such a context, the identification of “exit strategies” that allow restarting economic and

social activities while still protecting the healthcare systems and minimizing the burden of the epi-

demic is of primary importance. Several modeling studies have already pointed out that resuming

economic activities and social life is likely to lead to a resurgence of the COVID-19 epidemic, and

combined social distancing interventions of different degrees and intensity have been proposed to

substantially delay and mitigate the epidemic17, 21. These interventions should be maintained for

long periods of time and still generate economic loss and widespread disruption to social life. Here

we show how testing, contact tracing strategies at scale, based on home isolation of symptomatic

COVID-19 cases and the quarantine of a fraction of their contacts’ household, has the potential

to provide a viable course of action to manage and mitigate the epidemic when social distancing

interventions are progressively lifted22, 23. These strategies present us with logistic challenges that

include large-scale and rapid diagnostic capacity, and a large surge in the number of contact tracers.

We have investigated what fraction of the population would be isolated/quarantined under the pro-

posed contact tracing and isolation strategy. Figure 4a shows the fraction of households that needs

to be quarantined. Assuming the identification of 50% of the symptomatic infections, and tracing

of 40% of their contacts and households, only about 9% of the population would be quarantined

at any time. While this is certainly a relevant fraction of the population, it is a much better option

if compared with massive social distancing policies affecting the entire population that last for

11
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months.

In Table 1, we report the number of symptomatic infections for which the contact tracing

investigation should be performed in the basic scenarios. This number provides an estimate of the

contact tracers per 1,000 individuals. It is important to note that the more effective is the contact

tracing starting from each individual, the smaller is the number of generally traced households

because the epidemic has lower incidence rates. In addition, as illustrated in Figure 4b, the health

status of the vast majority of quarantined individuals is unknown as contact tracing does not imply

testing. The curves in Figure 4a constitute the upper bounds for each simulated case. If we assume

that the capacity to do massive testing would likely ramp up in the near future, then it is expected

that the actual number of people in quarantine could be significantly lowered by testing the house-

hold. This would also alleviate the burden on household members that could not go to work and

increase compliance of isolation for the positive cases. It is also worth remarking that many of the

logistic challenges faced with massive contact tracing might possibly be eased by digital techno-

logies that are currently being investigated across the world following the examples of COVID-19

response in Asian countries23. Also it may be difficult to quarantine the entire household of indi-

viduals who are potentially exposed, since this is a hardship suffered with great uncertainty about

their risk of infection. Offering other logistic quarantine solutions (quarantine centers, hotel rooms)

might significantly raise the rate of compliance.

These results were obtained under several assumptions. There are very large uncertainties

around the transmission of SARS-CoV-2, in particular, the fraction of sub-clinical and asympto-

12
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matic cases and their transmission. Estimates of age-specific severity are informed from the ana-

lysis on individual-level data from China and other countries, and subject to change as more US

data become available. We also do not include specific co-morbidities or pre-existing conditions

of the specific BMA population. For this reason, in the SM we perform an extensive sensitiv-

ity analysis showing that the modeling results discussed here are robust to the plausible range of

parameter values for the key time-to-event intervals of COVID-19 (e.g., incubation period, serial

interval, and time from symptom onset to hospital admission, etc.). We are also not considering

potential changes to the virus transmissibility due to environmental factors, in particular, seasonal

drivers such as temperature and humidity. The modeling does not consider possible reintroduction

of SARS-CoV-2 in the population from infected travelers. Strategies based on testing, isolation

and contact tracing will eventually fail in the presence of a large number of case importations,

thus travel restrictions and screening may need to be introduced to/from places that show sustained

local transmission. Finally, we did not include the effect of the widespread use in the population of

masks or other personal protective equipment. These active protection measures could contribute

to the reduction of transmissibility and improve the effectiveness of the exit strategies modeled

here.

The modeling of the impact of testing, contact tracing and isolation on second-wave scenarios

of the COVID-19 epidemic could be instrumental to national and international agencies for public

health response planning. Our results indicate that gradually removing the restrictions imposed

by social distancing could lead to a second wave with the potential to overwhelm the health care

system if not combined with strategies aimed at the prompt testing of symptomatic infections and
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the tracing and quarantine of as many of their contacts as possible. While we show that contact

tracing and household quarantine at scale may be effective even assuming a complete lifting of

the social distancing measures, future decisions on when and for how long to relax policies will

need to be informed by ongoing surveillance. For instance, smart working from home for people

who can adhere to it without serious disruptions should be encouraged. This, as well as other

minimally disturbing policies together with transition periods in which the partial lift of social

distancing goes along with efficient and large-scale testing, contact tracing and monitoring of the

epidemic should be considered in the definition of exit strategies from large scale “stay at home”

orders. Important enough, as shown in the SM, isolation of symptomatic infectious individuals

within their households is a valid strategy only when the whole household is also set in quarantine.

As such, providing spaces where symptomatic people can be individually isolated would help to

reduce the burden of these measures on the population.

Methods

Weighted synthetic population. Our synthetic population is constituted by circa 85000 nodes,

of which 64000 are adults and 21000 correspond to children (defined as individuals aged 17 or

less), see Figure 1b. The total number of interactions among these individuals before social distan-

cing is given by more than 5M edges, see SM for a finer description.

Community weighted contact network. The community network is approximated using 6 months of

data observation in the Boston area from anonymized users who have opted-in to provide access to

their location data anonymously, through a GDPR-compliant framework provided by Cuebiq. In-
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dividuals performing the analysis were legally required to never single out identifiable individuals

and not make attempts to link these data to third party data about an individual. In this layer each

agent in our synthetic population represents an anonymous individual of the real population. The

data allow us to understand how infection can propagate in each layer by estimating co-location

of two individuals in the same setting. We use a large database of 83000 places from Foursquare

API in the BMA. Specifically, the weight, ωCij
, of a link between individuals i and j within the

workplace plus community layer is computed according to the expression:

ωCij
=

n∑

p

Tip

Ti

Tjp

Tj

, ∀i, j

where Tip is the total time that individual i was observed at place p and Ti is the total time that

individual i has been observed at any place set within the workplace plus community layer. Note

that while the mobility data set we use is large, co-location events between individuals are still

quite sparse. Because of this sparsity, and to protect individual privacy in our analysis, we have

adopted this probabilistic approach to measure co-presence in all locations mapped in the data-

set. Since agents are representative of the different census areas and groups of the Boston area,

our probabilistic approach is a good proxy for the real probability of co-presence between those

groups/areas when networks are scaled up to the total population of the Boston area, that is ap-

proximately 4,628,910 inhabitants. Finally, for robustness and computational reasons, we have

included only links for which ωCij
> 0.001.

Household weighted contact network. We first localize individuals’ approximate home place ac-

cording to the US census block group. Then we assign a type of household based on Table B11016:

Household Type by Household Size from US Census 20189, and mix individuals that live in the
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same block according to statistics of household type and size. Finally, children are assigned to

households as described in the main text. We also assign individuals an age group based on Table

B01001: Sex and age from the US Census 2018. To assign weights, we assume that the probability

of interaction at a household is proportional to the number of people living at the same household

(well-mixing). Therefore, the weight, ωHij
, of a link between individuals i and j within the same

household is given by:

ωHij
=

1

(nh − 1)

where nh is the number of household members. This fraction is assumed to be the same for all

individuals in the population.

School weighted contact network. To calculate the weights of the links at the school layer, we mix

together all children that live in the same school catchment area. Interactions are considered well-

mixed, hence, the probability of interaction at a school is proportional to the number of children at

the same school. Therefore, the weight, ωSij
, of a link between children i and j within the same

school is given by:

ωSij
=

1

(ns − 1)

where ns is the number of school members.

Calibration of intra-layer links. Initially, we need to calibrate layer weights. We rescale the

weight of all links in each layer so that the average number of daily contacts matches the estimation

provided in Ref.24 based on the analysis of contact survey data from 9 countries25–28. In particular,
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we estimate that in the unmitigated scenario the number of daily contacts is 10.86, 4.11 and 11.41

in the community+workplace, household and school layers, respectively (see SM).

Stochastic simulations of the COVID-19 dynamics. We describe the COVID-19 transmission

process using a discrete time Susceptible-Latent-Infected-Removed (SLIR) stochastic model, with

some extra compartments to incorporate the special characteristics of SARS-CoV-2 infection, Fig-

ure 1c. In particular, at each time-step t (1 day), the infectious asymptomatic (IA), infectious

symptomatic (IS) and pre-symptomatic (PS) individuals can transmit the disease to susceptible (S)

subjects with probability rβ, β and βS , respectively. If the transmission is successful, the sus-

ceptible node will move to the latent asymptomatic state (LA) with probability p or to the latent

symptomatic state (LS) with probability (1 − p). A latent asymptomatic individual becomes in-

fectious asymptomatic after a period (ǫ
′

)−1, whereas latent symptomatic subjects transition, after

a period ǫ−1, to the pre-symptomatic (PS) compartment. The average period to develop the dis-

ease and move to the infectious symptomatic state is γ−1. Infectious asymptomatic nodes will

be removed (R) after an average of µ steps. Conversely, infectious symptomatic nodes can either

recover after that period with probability (1 − α) or, with probability α, these nodes will need

hospitalization. It is considered that due to their symptoms they will self-isolate at home after an

average period of µ−1. Then, depending on the severity of the symptoms, after a period δ−1 the

hospitalization will be normal with probability (1 − χ) or require ICU care with probability χ.

Finally, individuals that are either hospitalized or at ICU become removed with probability µH or

µICU, respectively. We initialize the model in the city of Boston by selecting an attack rate on the
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17th of March of 1.5% (a sensitivity analysis of this quantity is provided in the SM).

Social distancing strategies. To simulate social distancing measures, we modify the synthetic

population such that:

• School closures are simulated by removing all the schools from the system simultaneously.

• Partial ”stay at home”. It assumes that all places are open except restaurants, nightlife and

cultural places. Closures of these places are simulated by removing the interactions that

occur in any place that falls into that category according to Foursquare’s taxonomy of places.

This is the situation after the first reopening.

• Full lock-down and confinement, namely, schools and all non-essential workplaces are closed.

Here we close all workplaces except essential ones and remove interactions that occur at

them. Essential workplaces are: Hospitals, Salons, Barbershops, Grocery Stores, Dispensar-

ies, Supermarkets, Pet Stores, Pharmacies, Urgent Care Centers, Dry Cleaners, Drugstores,

Maternity Clinics, Medical Supplies and Gas Stations.

The connectivity distributions for each of the scenarios simulated as well as other statistics related

to the effects of the lock-down are shown in the SM.
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Scenario Hospitalization ICU Individuals traced

Unmitigated 4.57 (4.10-5.03) 2.56 (2.21-2.91) -

LIFT 3.22 (2.80-3.67) 1.87 (1.55-2.20) -

LET Detection 30%

No Tracing 2.70 (2.29-3.12) 1.58 (1.27-1.88) -

Tracing 20% 0.86 (0.65-1.10) 0.55 (0.39-0.72) 0.52 (0.36-0.69)

Tracing 60% 0.35 (0.21-0.50) 0.22 (0.12-0.34) 0.17 (0.08-0.27)

LET Detection 50%

No Tracing 2.35 (1.97-2.75) 1.39 (1.11-1.68) -

Tracing 20% 0.44 (0.28-0.62) 0.28 (0.16-0.42) 0.39 (0.23-0.55)

Tracing 40% 0.29 (0.18-0.43) 0.15 (0.08-0.26) 0.14 (0.05-0.23)

Table 1: Mean and 95% C.I. of the number of normal hospitalizations, ICU hospitaliza-

tions and symptomatic individuals identified/traced (when applicable) at the peak of the

epidemic per 1,000 people. The estimated availability of ICU beds is 0.21 beds per 1,000

people.
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Figure 1 Model components. Panel a is a schematic illustration of the weighted mul-

tilayer synthetic population built from mobility data in the metropolitan area of Boston.

The agent-based system is made up by around 64000 adults and 21000 children, whose

geographical distributions are shown in panel b. Nodes are connected by more than 5

million weighted edges. Community layers (that include workplaces), are further clas-

sified into categories according to Foursquare’s taxonomy of places. Panel c displays

the compartmental model used to describe the natural history of the disease as well as

the transition rates between the different states. Specifically, we consider Susceptible

(S), Latent asymptomatic (LA), Latent symptomatic (LS), Pre-symptomatic (PS), Infectious

asymptomatic (IA), Infectious symptomatic (IS), Hospitalised (H), Hospitalized in intensive

care (ICU) and Recovered (R) individuals. More details of the model and the transitions

between compartments are provided in Methods and the SM.

Figure 2 Impact of COVID-19 under different scenarios. Evolution of the number of new

cases (a, d, g), the outbreak size (b, e, h) and the effective reproductive number (c, f, i)

as a function of time in each situation studied. Results of the SARS-CoV-2 transmission

dynamics are shown for the unmitigated scenario (top panels a-c), and the two social

distancing interventions considered, LIFT (d-f) and LET scenarios (g-h). In both cases,

we considered the closure of schools and non-essential places for 8 weeks. This is the

strictest lock-down period, which is followed by a partial lifting of the stay-at-home policy

whose duration is set to 4 weeks. During the partial lifting, all places in the community
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layer are open except mass-gathering locations (restaurants, theaters, etc, see SM). Fi-

nally, a full reopening takes place after the period of partial lifting ends (relevant events are

marked with the vertical lines). Panels d-f consider that no other measures are adopted

concurrently to the lifting of the restrictions, whereas the results in panels g-i have been

obtained when the reopening is accompanied by an active policy consisting of testing the

symptomatic individuals, home isolating them, and quarantining their household and the

households of a fraction of their contacts, as indicated in the legend of the bottom panels.

Note that the vertical scales of panels a, d, and g are not the same and that both the

number of new cases and total cases are per 1,000 inhabitants. In all panels the solid line

represents the average over 10,000 simulations and the shaded region the 95% C.I.

Figure 3 Impact on the Boston health care system. Estimated number of individuals per

1,000 inhabitants that would need hospitalization (H), and intensive care (ICU) for each

of the three scenarios considered in Figure 2. Panel a corresponds to the unmitigated

situation, whereas results for the LIFT and LET strategies are shown in panels b and c,

respectively. The horizontal dotted-dashed lines represent the ICU basal capacity of the

Boston health care system. The dotted line in panel c indicates 30% of the ICU basal

capacity.

Figure 4 Affordability of the best way-out scenario. LET strategy with 50% detection and

40% tracing. (a) Fraction of the population that needs to be put under quarantine as a

function of time and percentage of contact tracing. (b) Health status of the individuals that
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are quarantined for a contact tracing level of 40%. Note that only symptomatic individuals

are tested, which implies that a large fraction of the quarantined population is of unknown

status. This fraction of individuals quarantined with unknown health condition could be re-

duced if the capacity to do more tests increases. As it is shown, the pandemic might span

over several months depending on the level of contact tracing. (c) Number of individuals

whose contacts are traced each day per 1,000 persons. Relevant intervention actions are

signaled by the vertical dashed lines in all panels.
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