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Abstract

In November 2021, the first infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VOC)
B.1.1.529 (‘Omicron’) was reported in Germany, alongside global reports of reduced vaccine efficacy (VE) against infections with this
variant. The potential threat posed by its rapid spread in Germany was, at the time, difficult to predict. We developed a variant-
dependent population-averaged susceptible-exposed-infected-recovered infectious-disease model that included information about
variant-specific and waning VEs based on empirical data available at the time. Compared to other approaches, our method aimed for
minimal structural and computational complexity and therefore enabled us to respond to changes in the situation in a more agile
manner while still being able to analyze the potential influence of (non-)pharmaceutical interventions (NPIs) on the emerging crisis.
Thus, the model allowed us to estimate potential courses of upcoming infection waves in Germany, focusing on the corresponding
burden on intensive care units (ICUs), the efficacy of contact reduction strategies, and the success of the booster vaccine rollout cam-
paign. We expected a large cumulative number of infections with the VOC Omicron in Germany with ICU occupancy likely remaining
below capacity, nevertheless, even without additional NPIs. The projected figures were in line with the actual Omicron waves that
were subsequently observed in Germany with respective peaks occurring in mid-February and mid-March. Most surprisingly, our
model showed that early, strict, and short contact reductions could have led to a strong ‘rebound’ effect with high incidences after
the end of the respective NPIs, despite a potentially successful booster campaign. The results presented here informed legislation in
Germany. The methodology developed in this study might be used to estimate the impact of future waves of COVID-19 or other infec-
tious diseases.
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Introduction
During the COVID-19 pandemic, infectious-disease modeling
proved to be an essential tool to estimate the impact of upcoming
waves of the disease under different scenario assumptions re-
garding pathogen properties as well as pharmaceutical and non-
pharmaceutical interventions (NPIs) [1–3]. Knowledge about the
order of magnitude of an upcoming crisis can help to inform leg-
islation regarding interventions to prevent public health systems
and critical infrastructure from overburdening and collapsing [3–
5]. With continuously emerging SARS-CoV-2 variants of concern
(VOC) that can have relatively heterogeneous properties like viru-
lence and severity of disease, model-based analyses continue to
provide valuable insights into upcoming challenges and potential
mitigation strategies [6].

With the impact of its upcoming dispersion being unclear,
prior to the VOC B.1.1.529 (‘Omicron’) becoming the dominant
strain of SARS-CoV-2 in Germany, we modeled possible trajecto-
ries of the upcoming infection wave in 2022, taking into account

a variety of parameter estimates calibrated on the growth behav-
ior of Omicron cases and cases of the VOC B.1.617.2 (‘Delta’) still
prevalent in December 2021. Despite sustained high vaccine ef-
fectiveness against severe courses of the disease [7], reduced effi-
cacy against infection was suspected to lead to higher growth
rates and large outbreaks and, therefore, a potentially high bur-
den on the healthcare system and critical infrastructure [8]. In or-
der to estimate this potential impact, the spread of Omicron
could have in Germany, and how potential NPI and pharmaceuti-
cal (i.e. vaccination) intervention might affect the trajectory of its
spread, we devised and analyzed a parsimonious infectious-
disease model in this study. Our objective was, at the time, to
reduce model complexity as much as possible in order to draw re-
silient conclusions based on a limited amount of data in a short
amount of time. As such, our analysis was based on the (partially
limited) available empirical data regarding the properties of the
VOCs Omicron and Delta as well as vaccine efficacies (VEs) and
expectations of the booster distribution campaign, with an
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additional focus on the expected variation of contact behavior.
As data on both variant’s mean latent and infectious period were,
at the time, hard to obtain, we iterated our analyses for combina-
tions of plausible assumptions, which allow for simple interpola-
tion of modeling results in case better estimates of these
parameters are found later on. Here, we publish and reflect on
our methodology and results that were originally made public as
a technical report in German on 3 February 2022, see [9].

Our model analysis predicted, at the time, a maximum me-
dian incidence of approximately 300 000 [50% prediction interval
(PI) in 1000: 181–454, 95% PI in 1000: 55–804) reported cases per
day with the median peak occurring in the mid of February 2022,
reaching a cumulative Omicron case count of 16.5 million (50% PI
in mio: 11.4–21.3, 95% PI in mio: 4.1–27.9) until 1 April 2022, see
Table 1. Here, a 50% PI refers to the interquartile range of the pre-
dicted distribution of values (analogously for the 95% PI). These
figures were in line with the actual Omicron waves that were sub-
sequently observed in Germany (cf. Fig. 1) with respective peaks
occurring in mid-February (peak: 191k daily new cases) and mid-
March (peak: 230k daily new cases), cumulatively infecting a
reported 14.8 million individuals during the study period. We
found that the model peak height strongly depended on varia-
tions in the assumed generation time and decreased with a
shorter generation time, which highlights the importance of reli-
able empirical estimates of this epidemiological parameter that
were difficult to come by at the time. Regarding the efficacy of
contact-reducing NPIs, low contact reductions were expected to
lead to containment, whereas early, strict, and short contact
reductions could have had an adverse effect after the respective
lifting of restrictions at a later time, due to a waning of
population-averaged VE during restrictions. Based on our results,
we estimated that the relative risk (RR) of requiring intensive care
for an infection with Omicron compared to an infection with
Delta must assume values of the order of 10–20% to prevent the
recurrence of extreme intensive care unit (ICU) burden, which
was later found to be the case [10–12]. A hypothetically higher
number of first-time immunizations (in our example, 15 million
additional first-time immunizations) would have, in turn, greatly
reduced the risk of large waves and maximally burdened ICUs, as
well.

Our results informed legislation in Germany, and are, retro-
spectively, in good agreement with the actual course of the pan-
demic in Germany during the first quarter of 2022. We argue that
the simple, yet effective, methodology used herein will be useful
to estimate the impact of forthcoming waves of COVID-19 or
other infectious diseases.

Materials and methods
Concise summary of methodology
In the following, we briefly outline our methodology to facilitate
reader comprehension—a detailed description is provided in the
following subsections.

The model followed a population-averaged susceptible–ex-
posed–infected–recovered (SEIR) dynamic, in which no explicit
distinction was made between vaccinated and unvaccinated indi-
viduals or age strata [see ‘Model definition’ section, Equations (1–
4)]. Instead, the impact of vaccines was modeled using
population-averaged time-dependent VEs that were informed by
vaccine attenuation curves and assumptions regarding the suc-
cess of the booster campaign (see ‘Population-wide vaccine effi-
cacies’ section and Figs 2–5). Mathematically, this approach
yields the same growth rate as models that explicitly differentiate
between vaccinated and unvaccinated persons, but, in doing so,
it systematically overestimates the magnitude of large outbreaks
by �10% in the worst case (see Supplementary Section 1.1 and
Supplementary Fig. S1). The advantage of this simplified ap-
proach was that the model could be quickly adjusted and ana-
lyzed, as well as approximated analytically, allowing for an
adaptive response to changes in the data.

Estimated and assumed time courses of VEs are shown in
Fig. 2, see also ‘Population-wide vaccine efficacies’ section. Since
mRNA vaccines account for the absolute majority of vaccine
doses in Germany, only VEs of BioNTech and Moderna vaccines
were considered in the following. We initially assumed that im-
mune evasion of the Omicron variant corresponded to prelimi-
nary data from Denmark (hereinafter referred to as ‘low VE’, low
vaccine efficacy) [13]. For a secondary analysis, we instead chose
time courses of efficacy against infection that were functionally
similar to time courses of efficacy against symptomatic disease,
mostly observed in the UK, see [7]. This corresponded to a sce-
nario with lower immune evasion and a stronger effect of booster
vaccination, that is an optimistic scenario (hereafter referred to
as ‘high VE’).

We further assumed that the booster vaccination campaign
would have reached (i) 80% of the individuals (referred to as ‘me-
dium reach’) or (ii) all individuals who received full vaccination
protection in 2021 (referred to as ‘high reach’), see Fig. 3. The
number of newly completed vaccination series (‘2 doses’) was ig-
nored for the main analyses, but, for an illustrative analysis, the
percentage was momentarily raised to �90% (by artificially in-
creasing the number of initially vaccinated persons by 15 million)
to show a hypothetical course of a scenario with a high initial im-
munization rate.

We varied the mean latency [2 days for Delta, as well as
(i) 2 days for Omicron and (ii) 1 day for Omicron] and mean infec-
tious period (upper bound: 3 days, lower bound: 2 days), that is
simulated scenarios for generation times of 5, 4, and 3 days, see
‘Latency and infectious period’ section. We defined the latency
period as the mean duration between infection and the onset of
infectiousness.

The model was calibrated up to 1 January 2022 (contact modu-
lation and VEs). To this end, the temporal contact modulation
was inferred by mapping the model incidence to the observed in-
cidence for the respective assumptions, see ‘Calibration of the
contact modulation’ section. To emulate contact behavior similar
to the observed one, stochastic simulations were performed to
generate contact modulation curves that had the same statistical
properties as the contact modulation observed in December 2021,
see ‘Extrapolation of the contact modulation’ section. A

Table 1: Model prediction of the peak height of the different
observables (median and PIs at the date of maximum median),
see also Fig. 1

Quantity Scenario
median
[in 1000]

50% PI 95% PI Observed

New cases per day 296.2 180.9–453.6 55.1–803.6 230.1
New hospitalizations

per day
2.1 1.3–3.0 0.5–4.9 1.7

ICU occupancy 3.1 2.1–4.2 0.9–6.3 2.5

Here, PIs refer to the respective inter-percentile ranges of the predicted
distributions, for instance, the interquartile range in case of the 50% PI. In case
of reported new cases per day and new hospitalizations per day, the reported
observed values refer to the maximum of the 7-day running averages of the
respective time series. In the nonaveraged time series, single greater values
have been observed (e.g. a maximum of 247.8k reported new cases in the
nonaveraged time series).
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vanishing variance was assumed for mean curves. Calibration of
the model using the reported incidence of Delta cases showed in-
creasing uncertainty as the proportion of Omicron cases grew,
thus rendering the calibration increasingly unstable after 1
January 2022. After this date, only the daily vaccination data up
to 22 January were updated and used in the results presented.

High reported infection rates can lead to behavioral changes
and contact reductions [14]. For illustrative purposes, we

assumed a contact reduction of –20% relative to the original
courses, as well as higher contact reductions for complemen-
tary analyses, see ‘Contact reduction’ section.

In the UK and the USA, low values of RR of severe courses
from infections with Omicron versus Delta were observed [10,
11, 15]. Thus, for each scenario, we determined the range of
maximal possible RRs requiring intensive care in order to keep
the ICU burden at most at the level of the burden in the

Figure 1: Model simulation results for the number of new cases per day, new hospitalizations per day and ICU occupancy for a combination of different
model assumptions (see Materials and methods). Iterated here were ‘medium reach’ of the booster campaign (80% of those initially immunized receive
a booster vaccination), ‘low VE’ and ‘high VE’ of the booster (VE, see Materials and methods section), different generation times [5 days, 4 days (Omicron
latency: 2 days), 4 days (Omicron latency: 2 days), 4 days (Omicron latency: 1 day), and 3 days), as well as ‘no further contact reduction’ and ‘–20%
contact reduction during the period from Jan 31 to Mar 15’. We defined the latency period as the mean duration between infection and onset of
infectiousness. For each scenario combination, 180 simulations were performed, each with an individual stochastic contact modulation curve (see
Materials and methods section). Shown are (i) individual simulation results (colored opaque lines), (ii) the median across all model runs (black dashed
line) with 50% and 95% PIs, and (iii) the observed data (square data points). The RR of hospitalization by Omicron versus Delta was assumed to be
RR¼ 0.35 and intensive care RR¼ 0.15. The model was calibrated until 1 January 2022, so simulations differ from that date onward.

Figure 2: VEs for Omicron (orange) and Delta (black) following immunization. The top row shows the efficacies after basic immunization and the
bottom row (where data were available) shows the corresponding values after booster immunization. Solid lines are the results of numerical fits of
Equation (33); dashed lines indicate assumptions made. Data were compiled from a total of 12 studies (see list below the figure and ‘Population-wide
vaccine efficacies’ section). For the ‘low VE’ scenario, it was assumed that the respective VEs against infection after the booster dose were equal to the
effect of the vaccines after receiving two doses (pessimistic). For the ‘high VE’ scenario, we instead assumed that any VEs against infection were
functionally equal to the time courses of VEs against symptomatic disease (optimistic).
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previous wave (‘Delta wave’), see Supplementary Tables S1 and
S2. For the analyses presented here, we assumed values of RR

of hospitalization to be RR ¼ 0:35 and intensive care RR ¼ 0:15
to approximate the observed trajectories of hospitalization in-

cidence and ICU occupancy observed in early January 2022.
The results discussed here are with regard to the originally

spreading Omicron sublineage (BA.1), ignoring the influence of
the sublineage BA.2, which did not spread substantially before

early 2022.

Model definition
Infection dynamics follow a temporally forced SEIR model:

@tS ¼ �f ðtÞS
X

v

½1� svðtÞ� avIv (1)

@tEv ¼ f ðtÞ½1� svðtÞ�SavIv � xvEv (2)
@tIv ¼ xvEv � bvIv (3)

@tRv ¼ bvIv: (4)

Here, v is a ‘variant of concern’ (hereinafter ‘variant’ or ‘VOC’),
f(t) controls for time-varying contact behavior (e.g. through NPIs

or voluntary behavioral change), svðtÞ is the population-averaged
efficacy of vaccination against infection (averaged across unvac-

cinated and vaccinated subpopulations). The transmissibility a,

mean latency 1=x, and mean infectious period 1=b are potentially
variant dependent.

To fit the model to the data, we add compartments for (i)

reported, (ii) hospitalized, or (iii) in need of intensive care. Let pC;v

denotes the probability of appearing in the reporting statistics af-

ter infection (compartments C), pH;v the probability of an unvacci-
nated person being hospitalized after infection (i.e. becoming

‘severely’ ill with COVID-19, compartments H), and pU;v the

likelihood of an unvaccinated individual requiring intensive care

following infection (compartments U). Furthermore, hvðtÞ and

uvðtÞ are time-dependent functions that quantify population-

wide VEs against hospitalization and intensive care.
To adequately reflect the properties of the respective empiri-

cal waiting time distributions (for instance, an initial onset pe-

riod), we split transitions between the susceptible compartment

and reporting, hospitalization, and ICU admission into chains of

exponential distributions, leading to overall waiting times that

follow Erlang distributions with number n and rate n=s (i.e. distri-

butions with mean s and standard deviation s=
ffiffiffi
n
p

) to the transi-

tion times between infection and reporting, hospitalization, and

ICU admission.
Thus, we obtain

@tC0
v ¼ pC;vf ðtÞ½1� svðtÞ�SavIv �

nC;v

sC;v
C0

v (5)

@tCi
v ¼

nC;v

sC;v
Ci�1

v � nC;v

sC;v
Ci

v; for 0 < i < nC;v (6)

@tC
nC;v
v ¼ nC;v

sC;v
CnC;v�1

v : (7)

The variant-independent incidence is given by

JC ¼
X

v

@tC
nC;v
v ¼

X
v

nC;v

sC;v
CnC;v�1

v : (8)

For hospitalizations, we define

@tH0
v ¼ pH;vf ðtÞ½1� hvðtÞ�SavIv �

nH;v

sH;v
H0

v (9)

@tHi
v ¼

nH;v

sH;v
Hi�1

v � nH;v

sH;v
Hi

v; for 0 < i < nH;v (10)

@tH
nH;v
v ¼ nH;v

sH;v
HnH;v�1

v : (11)

Here, hvðtÞ is the population-averaged efficacy against hospi-

talization at time t. The number of new hospitalizations at time t

is

JH ¼
X

v

@tH
nH;v
v ¼

X
v

nH;v

sH;v
HnH;v�1

v : (12)

To model the number of ICU beds occupied, we define distri-

butions for both the transition between infection and ICU admis-

sion and the length of stay in ICU. The equations follow

@tW0
v ¼ pU;vf ðtÞ½1� uvðtÞ�SavIv �

nW;v

sW;v
W0

v (13)

@tWi
v ¼

nW;v

sW;v
Wi�1

v � nW;v

sW;v
Wi

v; for 0 < i < nW;v (14)

@tU0
v ¼

nW;v

sW;v
WnW;v�1

v � nU;v

sU;v
U0

v (15)

@tUi
v ¼

nU;v

sU;v
Ui�1

v � nU;v

sU;v
Ui

v; for 0 < i < nU;v (16)

@tU
nU;v
v ¼ nU;v

sU;v
UnU;v�1

v ; (17)

with a total ICU occupancy

U ¼
X

v

XnU;v�1

i¼0

Ui
v: (18)

Figure 3: Cumulative number of vaccinated persons and number of daily
vaccinations (data and extrapolation) assuming that the number of
booster vaccinations reached 80% (medium reach) or 100% (high reach)
of those first vaccinated by the end of 2021.
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Population-wide vaccine efficacies
To find time-dependent population-wide VEs against infection

svðtÞ, hospitalization hvðtÞ, and requiring intensive care uvðtÞ, we

assume four basic vaccination states: VE 14 days after completion

of first vaccination series V2, VE after waning X2, VE 7 days after

booster vaccination (‘booster’, VB), and booster VE after waning

XB. We define the mean times of VE attenuation as h2 þ h02 and

hB þ h0B, that is we additionally use intermediate compartments

V02 and V0B to ensure a realistic approximation of the actual wan-

ing time distribution, introducing a temporal buffer between vac-

cination and waning during which the initial protection is

constant. Initially, the entire population is unvaccinated, A¼ 1.

We model the temporal transition from unvaccinated to vacci-

nated of different vaccination statuses for each variant as

@tA ¼ ��2ðt� 14dÞ (19)

@tV2 ¼ �2ðt� 14dÞ � 1
h2

V2 �
�Bðt� 7dÞ

X2 þ V2 þ V02
V2 (20)

@tV02 ¼
1
h2

V2 �
1
h02

V02 �
�Bðt� 7dÞ

X2 þ V2 þ V02
V02 (21)

@tX2 ¼
1
h02

V02 �
�Bðt� 7dÞ

X2 þ V2 þ V02
X2 (22)

@tVB ¼ �Bðt� 7dÞ � 1
hB

VBðtÞ (23)

@tV0B ¼
1
hB

VBðtÞ �
1
h0B

V0BðtÞ (24)

@tXB ¼
1
h0B

V0BðtÞ: (25)

Here, we use the rates of completed vaccinations �2ðtÞ and

booster vaccinations �BðtÞ, which can be determined as the pro-

gressive differences of the respective cumulative number of vac-

cinations [16]. Note that we assume the onset of maximum

protection at 14 days after completion of the first vaccination se-

ries and at 7 days after booster vaccination. V and V0 represent

states of maximum immunity that were constant for a mean

time hþ h0 and decreased thereafter (state X) at rate 1=h0. Given

the equations above, we have Aþ V2 þ V02 þ X2 þ VB þ V0B þ XB ¼ 1

at all times.
Let ev;b;c be a placeholder for different VEs against infection,

symptomatic disease, severe disease requiring hospitalization, or

severe diseases requiring intensive care with variant v, vaccina-

tion status b ‘2 doses’ and ‘boostered’, as well as waning status c

(c¼ 0 initially and c¼w after attenuation). The population-

averaged VE with respect to variant v is then given by

evðtÞ ¼ ev;2;0½V2ðtÞ þ V02ðtÞ� þ ev;2;wX2ðtÞþ
þev;B;0½VBðtÞ þ V0BðtÞ� þ ev;B;wXBðtÞ;

(26)

and the VE for vaccinated-only individuals is

~evðtÞ ¼ evðtÞ=½1� AðtÞ�: (27)

Note that the observable ‘ev’ serves as a placeholder for the

temporal functions describing VE against infection sv, severe dis-

ease requiring hospitalization hv, and severe disease requiring in-

tensive care uv.
Using this model of waning immunity, we want to devise a

method to obtain the average initial VE, the waning time parame-

ters h and h0 as well as the average waned VE from empirical tem-

porally resolved VE curves. To this end, we make use of the

simplified model

@tA ¼ ��ðtÞ (28)

@tV ¼ �ðtÞ �
1
h

V (29)

@tV0 ¼
1
h

V� 1
h0

V0 (30)

@tX ¼
1
h0

V0; (31)

and assume that every individual of a population becomes vacci-
nated at time t¼ 0, that is �ðtÞ ¼ dðtÞ with initial conditions
Að0Þ ¼ 1; Vð0Þ ¼ V0ð0Þ ¼ Xð0Þ ¼ 0, or �ðtÞ ¼ 0, with initial condi-
tions Vð0Þ ¼ 1; Að0Þ ¼ V0ð0Þ ¼ Xð0Þ ¼ 0. Then, the average share
of individuals in the ‘waned’ compartment is given by

XðtÞ ¼
1� h

h� h0
e�t=h þ h0

h� h0
e�t=h0; h 6¼ h0

1� 1þ t
h

� �
e�t=h; h ¼ h0

;

8>><
>>: (32)

and therefore, the population-averaged sigmoidal decrease of VE
from maximum immunity to its attenuated value follows the
equation

ZðtÞ ¼ e0½1� XðtÞ� þ ewXðtÞ: (33)

Note that the mathematical description is agnostic with
regards to the interpretation of Z(t) representing either a
population-averaged decay of individual step functions whose
times of change have been drawn from a distribution or every in-
dividual following the same average attenuation and such inter-
pretations will therefore not be drawn here.

For every combination of efficacy type e 2 fs; h;ug, variant
v 2 fd; og, and vaccine status b 2 f2;Bg, we can now fit Equation
(33) against empirical VE attenuation data to obtain the respec-
tive values of ev;b;0; ev;b;w; hv;b, and h0v;b, which can then be used to
compute population-averaged VEs from Equation (26), and
Equations (19)–(25).

To do so, we used data from the meta-review by [17] only con-
sidering data explicitly reporting VE against Delta. Time intervals
since the administration of the second vaccine dose and the com-
puted VE within these intervals were extracted. The mean of
each interval minus 14 days was used to define the day of VE
since peak immunity after two doses. If only the beginning of a
time interval was defined (e.g. starting 140 days after administra-
tion), then the length of the time interval was measured from the
previous one (e.g. time interval 1: ‘days 105 to 139’, time interval
2: ‘days 140þ’; time interval 2 was then assigned an upper bound
of ð140dþ 139d� 105dÞ ¼ 174d). One study identified in the re-
view, [18], refers to an additional time point that was also consid-
ered here. Also mentioned in [19] is a study by [20], from which
data of VE against infection with Delta after two doses were
extracted. Here, too, incomplete time intervals were fitted in a
manner analogous to Feikin et al. [21] providing data on VE
against symptomatic infection with both Delta and Omicron after
two doses as well as after booster vaccination. Because this study
specifies time intervals in weeks, it was assumed that the first in-
terval (Weeks 2–9) corresponded to Days 14–63 and subsequent
intervals (Weeks 10–14, 15–19) each corresponded to the next day
of the previous interval until the end of the last week in the inter-
val (e.g. Weeks 10–14 thus corresponded to Days 64–98). The
same procedure was used for booster vaccination data and was
implemented here as well. Unless otherwise defined in the study,
the mean of each time interval minus 7 days (rather than 14 days)
was used to define the day of VE since maximum immunity. Data
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on VEs against hospitalization and intensive care with Delta were
taken from a study by de Gier et al. [22]. The UK Health Security
Agency published data on VE against symptomatic infection with
Delta and Omicron and against hospitalization with Omicron af-
ter two vaccine doses and after one booster [7]. Data on VE
against infection with Delta and Omicron were extracted from
Hansen et al. [13]. Because protection after booster vaccination
was determined here only as a comparison with fully vaccinated
persons, only data on VE after two doses were extracted. In addi-
tion, the 95% confidence intervals (CIs) of VEs were taken from
all studies and used as weights in fits. Our study exclusively
refers to data published by the end of 2021.

As described above, Equation (33) was fitted to these data per
variant, vaccination status, and the target variable. Assumptions
were made for VEs for which no data are available, with results
shown in Fig. 2.

For the future course of the vaccination campaign, we as-
sumed that no more initial vaccinations were administered.
Furthermore, we assumed that the rate of daily booster vaccina-
tions maintained its level achieved in late December, such that
the cumulative number of booster vaccinations, following a sig-
moid function, reached (i) the number of all initially vaccinated
persons in 2021 and (ii) 80% of those (Fig. 3).

With these fits and assumptions, Equations (19)–(25) were in-
tegrated to obtain the population-averaged VEs in Equation (26),
shown in Figs 4 and 5.

Calibration of transmissibility of VOCs to growth
rates in December 2021
To determine the transmissibility of the VOCs Delta and Omicron
in Germany, we measured the respective growth rates of the var-
iants in December 2021 using reported data and data from the
Deutscher Elektronischer Sequenzdaten-Hub (DESH, German
Electronic Sequence Data Hub) and applied analytical approxi-
mations to derive the transmissibilities.

The growth rate Kv of a variant v at time t is given by the larg-
est eigenvalue of the Jacobi matrix of the ODE system from
Equations (1–4) as

KvðtÞ ¼ �
bv

2
� xv

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4SðtÞgvðtÞxv þ b2

v � 2bvxv þ x2
v

q
2

; (34)

where gvðtÞ ¼ f ðtÞav½1� svðtÞ� is the time-dependent infection rate
of a variant modulated with time-dependent contact behavior
f(t). Here, S(t) is the time-varying relative proportion of suscepti-
bles and svðtÞ is the population-wide VE against infection. From
Equation (34), the base transmissibility of a variant is given by

av ¼
ðKv þ xvÞðKv þ bvÞ

Sfxvð1� svÞ
: (35)

From the fixation dynamics of Omicron (Fig. 6), a fit of the
function

Figure 4: Population-wide VE svðtÞ (top row, Equation (26)) and VE of the vaccinated population ~svðtÞ (bottom row, Equation (27)) against infection under
the assumed vaccination efficacies from Fig. 2. (i) Results according to the data for VE against infection of first-immunized (low VE) and (ii) assuming
that VE against infection matched the data for VE against symptomatic infection (high VE). Both scenarios (low VE and high VE) were each considered
under the assumption that either 80% (medium reach) or 100% (high reach) of those first immunized by the end of 2021 received booster vaccination.
Note that using Farrington’s method, the ‘medium reach, high VE’ scenario combination accurately reflected the observed time series retrospectively,
cf. Supplementary Analysis 1.1 and Supplementary Fig. S2.
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rðtÞ ¼ 1
1þ exp½�lðt�~tÞ�

(36)

to the measured proportion of Omicron in all new infections can
be used to determine the fixation rate l, which is related to the
growth rates of the variants as

l ¼ Ko � Kd: (37)

Hence follows

ao ¼ ð4Sf ðt1Þ½1� soðt1Þ�xoÞ�1
�
� b2

o þ xoð2bo � xoÞ
þðbo � bd þ 2lþ xo � xdþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Sðt1Þgdðt1Þxd þ b2
d � 2bdxd þ x2

d

q
Þ2
� (38)

on a calibration date t1.
The proportion of new infections attributed to the Omicron

variant was measured from random laboratory samples of DESH

data [23]. We assumed that the sample collection date corre-

sponded to the date of symptom onset. We filtered collected sam-
ples by the ‘scorpio_call’ column, in which a sequenced genome

is assigned to a VOC using the ‘Scorpio’ software (see descriptions

in [24–26]). Here, all sequences whose ‘scorpio_call’ value con-

tained the string ‘Delta’ were assigned to the VOC Delta, and all
sequences whose ‘scorpio_call’ value contained the string

‘Omicron’ were assigned to the VOC Omicron (this included the

value ‘probable Omicron’). In addition, filtering was done for

sequences that were randomly selected for sequencing resulting
in @dðtÞ sequences of VOC Delta and @oðtÞ sequences of VOC

Omicron for each day. The proportion r̂ðtÞ ¼ @oðtÞ=½@dðtÞ þ @oðtÞ�
could then be fitted to the function Equation (36) with free

parameters l and ~t (time at which Omicron would account for
50% of new infections). The fit was performed with Markov chain

Monte Carlo sampling to minimize the sum of residuals in loga-

rithmic space
P

t0 ½log rðt0Þ � log r̂ðt0Þ�, with 100 walkers and 1000

steps each. We thus obtained an ensemble of 100 000 parameter
pairs ~t and l. We found mean values of hli ¼ ð0:18460:019Þd�1

and h~ti � tðoÞ ¼ ð35:262:4Þd, where tðoÞ ¼ November 23; 2021 (date

of collection of the first Omicron samples).

Figure 5: Population-wide VEs (top row, Equation (26)) and VEs of the vaccinated population (bottom row, Equation (27)) against hospitalization hvðtÞ
and ~hvðtÞ as well as intensive care uvðtÞ and ~uvðtÞ under the assumed VEs from Fig. 2. Both scenarios (low VE and high VE) were each considered under
the assumption that either 80% (medium reach) or 100% (high reach) of those first immunized by the end of 2021 receive booster vaccination. Solid
lines show VE against Delta and dashed lines show VE against Omicron.

Figure 6: Omicron fixation dynamics with a numerical fit [sigmoid
function, Equation (36)]. Data points represent the Omicron proportion
in the random laboratory sample by date of extraction [28]. The dashed
vertical line marks the time at which the Omicron proportion was 50%
according to the fit. Additionally, we mark the 50% and 95% CIs of the fit.
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To determine the growth rate of Delta, we used the number of

new infections after symptom onset, imputed using a nowcasting

technique [27], and restricted ourselves to the period between 1

December 2021 and 15 December 2021. Let ĴS;totðtÞ be the number

of new infections after symptom onset on date t. Then ĴS;dðtÞ ¼
ĴS;totðtÞ½1� rðtÞ� is the number of daily new infections with Delta

(with mean values of l and ~t). In this way, we transformed the

measured total new infections and fit an exponential decrease

JsðtÞ to ĴS;dðtÞ.
The doubling time of a variant was measured as

Tdbl;vðtÞ ¼
ln2

KvðtÞ
; (39)

resulting in 4.5–5.5 days for Omicron cases in December 2021.
By Equation (35), the ratio of the base transmissibility of two

variants is given as

ao

ad
¼ 1� sd

1� so
� ðKd þ lþ xoÞðKd þ lþ boÞ

ðKd þ xdÞðKd þ bdÞ
: (40)

In the special case of constant latency and infectious period, as

well as sd � s and so � ð1� �Þs with ‘immune evasion’ �, we find

ao

ad
¼ 1� s

1� ð1� �Þs 1þ l
Kd þ x

� �
1þ l

Kd þ b

� �
: (41)

From this equation, it can be seen that both smaller latency

periods (larger x) and smaller infectious periods (larger b) require

smaller increases in base transmissibility to explain the observed

rates Kd and l. For example, assuming s¼ 0.5,

� ¼ 0:9; l ¼ 0:19=d; Kd ¼ �0:045=d, and x ¼ 1=2d, we obtain a

transmissibility increase of ðao=adÞ1 ¼ 100%þ 119% for b1 ¼ 1=7d

and an increase of ðao=adÞ2 ¼ 100%þ 24% for b2 ¼ 1=3d, which

illustrates the implausibility of longer infectious periods.

Calibration of the contact modulation
The transmissibility of Delta ad was chosen such that R0 ¼ ad=bd

with fixed R0. The exact value of R0 played a minor role due to the

freely chosen contact modulation f(t) (only the scale of f(t) was

determined by R0—a high R0 required a lower f(t) to explain the

observed rates than a lower R0). The contact modulation at time t

was derived from Equation (34) to be

f̂ ðtÞ ¼

�
K̂dðtÞ þ bd

��
K̂dðtÞ þ xd

�
ŜðtÞR0bdxd½1� sdðtÞ�

: (42)

We determined the empirical growth rate by the growth of the

incidence of Delta cases ĴC;d ¼ ½1� rðtÞ�̂JC (here, ĴC is the 7-day av-

erage of total incidence by reporting date and rðtÞ is the fitted fix-

ation curve of the VOC Omicron), obtained from the identity

KdðtÞ ¼ @tln̂JC;d by

K̂dðtÞ ¼
1
Dt

ln
ĴC;dðtþ 1þ tshiftÞ

ĴC;dðtþ tshiftÞ

 !
(43)

in the discrete approximation with Dt ¼ 1d and with reporting de-

lay tshift. A value of tshift ¼ 7d satisfactorily approximated the

reporting delay in practice. This value was chosen because, for a

delta-peak incidence at time t¼ 0, the reported incidence will be

equal to its associated waiting time distribution, with the

corresponding peak occurring at the distribution’s mode, which
for the Erlang distribution is given by �ðnC � 1ÞsC=nC � 7d.

For the share of susceptibles at time t, we chose

ŜðtÞ ¼ 1� 1
NpC

Xt

t0¼0

ĴCðt0 þ tshiftÞ (44)

with the proportion of recorded cases pC.
The remaining free parameter for model calibration was the

proportion of initially infected I0. We used the values shown in
Table 2.

Extrapolation of the contact modulation
Similar to the procedure in [28], we assumed that the empirically
found contact modulation f̂ ðtÞ according to Equation (42) fol-
lowed a stochastic process with autocorrelation time #�1 and ex-
trapolated the series based on an Ornstein–Uhlenbeck process as

dft ¼ #ðfm � ftÞdtþ ndWt: (45)

The process generates a time series ft with mean fm and vari-
ance n2=ð2#Þ, using a Wiener process dWt. The autocorrelation
time was obtained from the empirical curve f̂ as approximately
#�1 ¼ 21d. We chose tend ¼ 184d (1 January 2022) as the start of
the extrapolation time. To determine fm and n, we measured the
mean fm ¼ hf̂ i and the variance Var½f � in the period
t 2 ½150d; 184d�. The initial condition at time tend was set to
ft ¼ f̂ ðtÞ, then the equation was integrated with Dt ¼ 0:1d and
sampled with Dt ¼ 1d. The choice of the calibration end date had
an impact on the course of the wave in early January 2022. Since
the model course with tend ¼ 184d satisfactorily reflected the em-
pirical data in January 2022, this value was not changed retro-
spectively.

The continuous function f(t) required for model integration
was obtained from linear interpolation of the tabulated values of
f̂ ðtÞ and ft (tabulated for individual days).

Example runs for individual simulations are shown in Fig. 7.

Latency and infectious period
The time scales relevant for SEIR models are latency TL ¼ 1=x
and infectious period TI ¼ 1=b, which sum to generation time
TG ¼ TL þ TI [29, 30].

We chose the latency period of VOC Delta as TL ¼ 2d, resulting
from an incubation period of �4 days [31] and the observation
that the infectious period for the wild-type began, on average,
2 days before symptom onset [32]. One study from the UK [33] as-
sumed a latency period of 2.5 days for both the wild-type and the
VOC Alpha.

Another study from the UK found a mean generation time of
�5 days for VOC Delta [34], composed of a latency period of
�1 day, a presymptomatic infectious period of �3 days, and a
symptomatic infectious period of 1 day. To correspond to the gen-
eration time found in this way without changing the assumptions

Table 2: Initial conditions with t0 ¼ Jul 1; 2021 for different values
of latency and infectious period.

Latency x�1 [d] Inf.per. b�1 [d] I0=10�5

1 2 5.8
2 2 7.2
1 3 7.7
2 3 9.0
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regarding the latency period, we assumed an infectious period of
3 days (2 days pre-symptomatic and 1 day symptomatic) as a
lower limit. In previous analyses for Germany, a shorter genera-
tion time of 4 days was assumed for VOC Delta, among others,
which we have therefore also included in our analyses as a plau-
sible value [27]. Note that we considered longer infectious periods
implausible as per our estimations based on Equation (41).

Due to limited data, we assumed in a first analysis that the
VOC Omicron was associated with the same values for TL and TI

as the VOC Delta. However, initial observations suggested that
Omicron has a shorter serial interval (2.2 days on average in the
Republic of Korea [35]) than Delta (3 days on average in the
Republic of Singapore [36]). In the SEIR model, the mean serial in-
terval is equal to the mean generation time [29]. We therefore as-
sumed for additional analyses that Omicron has a shorter
latency of only TL ¼ 1d.

Note that in later published studies, a mean serial interval of
4 days for Delta [37], respectively, of 4.2 days for Delta and
3.6 days for Omicron was found for household clusters in
Germany [38], which is in line with our estimations of the genera-
tion time.

At the time, no other reliable estimates for the mean latency
and infectious period in Germany existed. We therefore decided
to iterate plausible combinations of these parameter values in-
stead of drawing their values from distributions that would be
pure assumptions, as well. Doing so comes with the additional

advantage that as soon as more reliable estimates exist, adjusted
modeling results can be easily estimated by interpolation from
previous results.

Remaining parameters
We assumed a reporting rate of 50%, that is every second infec-
tion was reported. This parameter was informed by seropreva-
lence analyses [39], where a detection rate of 55% was found for
individuals older than 17 years. As the ratio of asymptomatic in-
fection was reported to be higher for the younger population for
previous variants [40], we assumed a slightly lower population-
wide ascertainment of 50%. In retrospect, this assumption
remains plausible [41]. While different opinions prevail regarding
the influence of high incidences on ascertainment, we found that
constant ascertainment reflected the temporal interplay of
reported incidence, hospitalization rate, and ICU occupancy rea-
sonably well. To fit our model to the 7-day average incidence, we
chose an Erlang distribution with nC ¼ 3 and sC ¼ 11d between in-
fection and reporting. Here, we mapped the incubation period of
�4 days, plus a reporting delay of 4 days [27] in addition to a 3-
day systematic shift by the moving average. We took the 7-day
average of new infections per day from ref. [42].

The number and immunity of recovered individuals were, at
the time of analysis, unclear. A substantial number of recovered
individuals was expected to have been vaccinated, and ergo part
of the vaccinated population. We assumed that the immunity of
the recovered decreases over time. Therefore, we calibrated the
model to follow the Delta wave in the fall of 2021 and assumed
that those recently recovered had full immunity against infection
with Omicron, but that the unvaccinated recovered population
from the first three pandemic waves had no protection against
infection with Omicron unless they had been vaccinated addi-
tionally. For this reason, we implemented the model starting 1
July 2021, with no recovered individuals initially. Retrospectively,
we find that from the �3:7 mio cases reported until 1 July 2021,
74% likely received a vaccination according to survey studies [43–
45] and are therefore considered in our analysis as part of the
vaccinated population (through the population-averaged VE).
With an ascertainment ratio of about 50%, we estimate that the
total number of nonvaccinated recovered individuals was on the
order of 2.4% of the population in Germany at the time. Following
the same reasoning, from the �3 mio cases that were reported as
infected with the Delta variant in the following wave, a percent-
age of similar order was counted as entirely immune to infection
with Omicron in our model. As both percentages are of compara-
ble size, it is reasonable to assume that both assumptions bal-
ance each other out and are of small effect nonetheless.

For the number of daily new hospitalizations, we assumed a
hospitalization probability of pH;d ¼ 2:0% for unvaccinated per-
sons, and a probability of intensive care of pU;d ¼ 0:45% (both val-
ues were per reported case, not per infection). We set the length
of stay in an ICU equal to the observed length of stay observed
during the first pandemic wave at sU ¼ 18d and set nU ¼ 3 to rep-
resent the observed median and interquartile range (IQR) suffi-
ciently accurately (C. Karagiannidis, personal communications).
Length of stay correlated strongly with ICU probability, so differ-
ent pairs of values of these two parameters could generate rather
similar trajectories of ICU occupancy. We chose the transition
time from infection to hospitalization as sH ¼ 13d with nH ¼ 2 and
the transition time between infection and intensive care as sW ¼
14d with nU ¼ 1. We took the 7-day average of new hospitaliza-
tions per day from ref. [46] (adjusted time series) and the ICU oc-
cupancy in Germany from ref. [47]. The above values were

Figure 7: Time courses of contact modulation. (a) Contact modulation
for different generation times, inferred until 1 January 2022, then
deterministically continued according to Equation (45) with n¼ 0 (all
curves for ‘medium reach’ and ‘low VE’). (b) Example stochastic
extrapolations of contact modulation according to Equation (45) for
‘medium reach’, ‘low VE’ and a generation time of 5 days (2 days latent þ
3 days infectious period). The black curve shows the mean, dark gray
curves show five randomly selected trajectories and light gray curves
show additional trajectories.
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chosen in a way that the model curves depicted the course of the
Delta wave well (see as an example Fig. 8).

We set N ¼ 83155031 as the total population [46].

Contact reduction
To investigate the influence of different contact reductions on
the course of the wave, we simulated seven different scenarios.
In the base scenario, contact modulations f(t) were not changed.
For reductions, the curve was scaled between two time points tr;0

and tr;1. This resulted in the modified contact modulation

frðtÞ ¼
ð1� rÞf ðtÞ tr;0 � t � tr;1

f ðtÞ else

(
(46)

with 0 � r � 1. We chose values of (i) r ¼ 20%, from 31 January
to 15 March, (ii) r ¼ 50%, from 31 January to 15 February,
(iii) r ¼ 50%, from 31 January to 28 February, (iv) r ¼ 50%, from 31
January to 15 March, (v) r ¼ 50%, from 15 February 15 to 15
March, and (vi) r ¼ 50% from 1 January to 15 January. Example
model runs for contact reductions are shown in Fig. 10 and
Supplementary Fig. 3.

Model simulations
The model was implemented and analyzed using the simulation
software epipack [48]. As initial conditions for t0 ¼ Jul 1; 2021, we
chose the values shown in Table 2. The model was integrated up
to t1 ¼ Dec 1; 2021, using a Runge–Kutta 4(5) method with dy-
namic step size control. We assumed an initial Omicron share of
rðt1Þ and fixed the modified initial conditions to Inew

d ðt1Þ ¼
½1� rðt1Þ�Idðt1Þ and Inew

o ðt1Þ ¼ rðt1ÞIoðt1Þ (all other compartments
were assigned the respective values they assumed in the final
state of the previous integration). Finally, the model was inte-
grated until t2 ¼ Apr 1; 2022. An example integration including
the calibration based on the Delta wave is shown in Fig. 8.

Results
The purpose of our analyses was to provide, at the time, order-of-
magnitude estimates of central epidemiological observables and
scenario comparisons with regard to variations in parameters
that determined the course of the Omicron infection wave.

Combining plausible assumptions and stochastic extrapola-
tions of the contact modulation, we expected a maximum

median of 300 000 new cases per day, associated with a wide un-

certainty of 180 000 or 450 000 cases per day (50% PI) and 55 000

or 800 000 per day (95% PI) (see Fig. 1 and Table 1). Overall, a me-

dian outbreak size (cumulative number of reported Omicron
cases) of 16.5 million was expected by 1 April 2022 (50% PI: 11.4–

21.3, 95% PI: 4.1–27.9). This figure was expected to be an overesti-

mation at the time, as the reported cases might have been artifi-

cially reduced by changes in test prioritization or exhaustion of

reporting logistics capacities, and the outbreak size is systemati-
cally overestimated due to modeling choices. Note that the model

was calibrated up to 1 January 2022. Retrospectively, approxi-

mately 14.8 million Omicron infections have been reported up to

1 April 2022 [23, 41], which is �10% below our median expecta-

tion; hence, rather accurate considering we expected our model
to overestimate the peak size by a maximum of 10%. Similarly,

the observed incidence peaks in mid-February (peak: 191k daily

new cases) and mid-March (peak: 230k daily new cases) [23], as

well as the time series of new hospitalizations and cases in ICU

care, respectively, lied within expectation.
Regarding the temporal evolution of the outbreak, several of

the simulated outbreaks had two peaks as was then later ob-

served in the actual outbreak, the latter peak likely being caused

by the spread of the BA.2 sublineage of Omicron, which is associ-

ated with a higher base transmissibility [49]. However, most of

the simulated outbreak, as well as the time series of the scenario
median only shows a single peak. This scenario median time se-

ries first overestimated the daily number of new infections (in

February) and subsequently underestimated them (in March).
The results were sensitive to variations in the assumed gener-

ation time (Fig. 9). Small generation times caused larger growth

rates with constant transmissibility of a variant (see ‘Calibration
of transmissibility of VOCs to growth rates in December 2021’

section). This meant that rapid increases in case numbers must

be attributed to a higher basic reproduction number for longer

generation times, which, in turn, caused larger model outbreaks

than pathogens with shorter generation times, but the same
growth rate. Model results of different generation times and as-

sumed VE of the booster vaccine reflected, at the time, the ob-

served data similarly well, such that the analysis presented did

not allow for conclusions about the actual contribution of the

booster vaccination to the incidence. Retrospectively, the ‘me-
dium reach’ and ‘high VE’ scenarios show good agreement with

Figure 8: Calibration of the model to the fall of 2021 Delta wave assuming a mean latency and infectious period of 2 days each for Delta and 1 day and
2 days, respectively, for Omicron. This calibration further assumed that all of those fully vaccinated by the end of 2021 received a booster vaccination
(high reach) and that VEs match the data in Fig. 2. In addition, the RR of hospitalization due to Omicron versus Delta was assumed to be RR¼ 0.35 and
intensive care RR¼0.15.
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observed data (see Supplementary Material Section 1.2 and
Supplementary Fig. S2).

The model also showed a high sensitivity to the assumed
booster VE against infection. The booster vaccine reach is less
conclusive (within the range of 80–100% of initially immunized
individuals).

Variations in contact behavior can have a significant impact
on the results, as well. Slight reductions in contact, such as those
brought about by autonomous changes in the behavior of the
population [14], led to substantial reductions in outbreak size in
the model (Figs 10 and 11). Potentially, an additional wave could
have been expected after the end of the model integration phase.
This wave should have, however, been smaller due to the basic
immunity in the population achieved by the first wave. This ef-
fect is illustrated by a weak, short contact reduction (–20% from
31 January to 15 February), which would have had a ‘breaking’ ef-
fect on the wave and leads to a flattening of the epidemic curve
over a longer period of time. However, early, strict, yet short con-
tact restrictions could have led to a ‘rebound’ effect (Fig. 10) due
to a lack of population-wide immunity to infection. Such an NPI
would have caused larger outbreak sizes since the population-

wide effect of the booster vaccination against infection would
have already diminished by then (Fig. 4).

For unchanged contact behavior, we found a maximum per-
missible RR of requiring intensive care in the range of 10–20% in
order to keep ICU occupancy below a critical value of 4800 beds
(Supplementary Tables S1–S12).

Results for cumulative outbreak sizes and maxima of inci-
dence, hospitalization incidence, and ICU occupancy are shown
in Supplementary Tables S5–S12.

The hypothetical case of a short-term, drastic increase in the
initial immunization rate illustrated the contribution to the pan-
demic of those who were still unvaccinated (Fig. 12). Here, it was
assumed that, as of 22 January 2022, 15 million previously unvac-
cinated individuals would have achieved the initial full immuni-
zation status. A high initial immunization rate would have
resulted in a large reduction in ICU burden due to the high effi-
cacy of the vaccines against severe courses.

Retrospectively, our results agreed well with the scenario ‘me-
dium reach’, ‘high VE’, and –20% contact reductions (a short time
in early February 2022) for a mean latent period of 4 days and a
mean infectious period of 4 days for both variants, cf. third

Figure 9: Influence of generation time on model results for the number of new cases per day (first row), new hospitalizations per day (second row), and
ICU occupancy (third row) for a combination of different plausible model assumptions. Iterated here were ‘medium reach’ and ‘high reach’ of the
booster campaign, ‘low VE’ and ‘high VE’ of the booster vaccination, as well as different generation times of Omicron [5 days, 4 days (Omicron latency:
2 days), 4 days (Omicron latency: 1 day), and 3 days]. We defined the latency period as the mean duration between infection and the onset of
infectiousness. It was further assumed that no additional contact reduction occurs. For each scenario combination, a simulation was performed with
an average course of the contact behavior (stochastic simulation with zero variance). Furthermore, the RR of hospitalization by Omicron versus Delta
was assumed to be RR¼ 0.35 and intensive care RR¼ 0.15.
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Figure 10: Comparison of model results for different contact reductions. An early, strong contact reduction could have led to a strong rebound effect
(right column). A slighter, long contact reduction (–20% by 15 March) led to a smaller outbreak (by 1 April, second column from left). However, this
could have been followed by another smaller wave after the end of the contact reduction period (data not shown here due to uncertainties in the
forecast horizon beyond March). A slight, short contact reduction led to a flattening of the infection wave and thus also to containment (second column
from right) with a sustained continuation of systemic immunity by infection. Shown are the results for the number of new cases per day, new
hospitalizations per day, and ICU occupancy for a combination of different model assumptions. Iterated here were ‘medium reach’ and ‘high reach’ of
the booster campaign, ‘low VE’ and ‘high VE’ of the booster vaccination, as well as various contact reductions. Here, a generation time of 4 days was
assumed for both variants (2 day latency). For each scenario combination, a simulation was performed with an average course of the contact behavior
(stochastic simulation with zero variance). Furthermore, the RR of hospitalization by Omicron versus Delta was assumed to be RR¼ 0.35 and intensive
care RR¼ 0.15.

Figure 11: Contact reduction of –20% compared to the original trajectories for all generation times. Shown are the results for the number of new cases
per day for a combination of different model assumptions. ‘Medium reach’ of the booster campaign, ‘low VE’, and ‘high VE’ of the booster vaccination
were also iterated here. For each scenario combination, a simulation was performed with an average course of the contact behavior (stochastic
simulation with zero variance). Furthermore, the RR of hospitalization by Omicron versus Delta was assumed to be RR¼ 0.35 and intensive care
RR¼ 0.15.
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column from the left in Fig. 10. The ‘medium reach’ assumption
of administering booster vaccinations to 80% of the people who
had completed first vaccination series proved to be an accurate
estimation. Furthermore, the temporal evolution of the VE in the
‘high VE’ scenario shows satisfying agreement with the time se-
ries of VE that was estimated using Farrington’s method counting
breakthrough infections, see Supplementary Fig. S2 (with the
data containing mostly symptomatic infections, however, which
hinders a definite and direct comparison). The short decrease in
growth rate forced by a 20% reduction in the contact modulation
led to a peak size of �200 000 new cases per day in the model, fol-
lowed by a resurgence and a slightly larger second peak, both of
which reflects the actual time series of the outbreak quite well.
Since no decrease in contact or mobility behavior was observed
in Germany during this period of time, however, the first decrease
in the growth rate has probably been induced by other factors
and was likely caused by an incipient systemic immunity, which
implies that we might have underestimated the initial systemic
immunity against infection with the Omicron variant. The sec-
ond peak was, with high certainty, caused entirely by the spread
of the BA.2 sublineage of Omicron, which was associated with
even higher base transmissibility and therefore led to a net in-
crease in growth rate after the initial drop. The combination of
these two effects has likely led to a temporal evolution of the

growth rate that was reflected well by the ‘–20% contact reduc-
tion for a short time’ scenario in the model.

Discussion and conclusions
The presented results are subject to a number of limitations due
to both model structures, as well as various uncertainties in the
assumptions. For example, population-averaged models that do
not explicitly distinguish between vaccinated and unvaccinated
individuals can systematically overestimate the size of major
outbreaks by an order of magnitude of �10%. We therefore
expected the actual outbreak size to be lower than those reported
here. Nevertheless, we decided to not explicitly make a distinc-
tion between vaccinated and unvaccinated individuals, enabling
us to adjust, simulate, and reanalyze the model in a dynamic
manner. This facilitated an agile response to changes in data—an
advantage that justified uncertainties and allowed for sustain-
able analysis procedures due to the structural stability of the
model. By comparing many different scenarios, it was thus possi-
ble to quickly analyze and illustrate which aspects of the
expected dynamics are robust to parameter changes and to
which the model reacted sensitively to.

Further systematic overestimation of outbreak sizes may re-
sult from assumptions about the contact structure. In the

Figure 12: Comparison of model trajectories if, as of 22 January 2022, 15 million previously unvaccinated persons would have the same level of
immune protection as after completion of the initial vaccination series. Shown are the number of new cases per day (first row), new hospitalizations
per day (second row), and ICU occupancy (third row) for a combination of different model assumptions (see Materials and methods section). The solid
curves correspond to the results of the ‘high reach’ scenario from Fig. 1 and the dashed curves to the corresponding scenario of an initial immunization
rate of �90%.
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present case, a homogeneous contact structure was assumed,
which is the same within and between all age groups of the popu-
lation. This simplification, which is not met in reality, likely leads
to an overestimation of the number of cases since heterogeneities
in the contact structure of age groups usually lead to lower out-
break sizes [50]. Furthermore, this effect may have led to an un-
derestimation of the RR of hospitalization and requiring intensive
care, as the dynamics at the beginning of a wave are often domi-
nated by younger age groups, which are usually at lower risk of
severe disease. As more elderly people become infected, for
whom the probability of a severe course is higher than for youn-
ger people, the at-the-time observed RR may have increased
again and, with it, ICU occupancy. However, as with the distinc-
tion in vaccination status, a heterogeneous contact structure was
also disregarded in favor of reducing model complexity.

The average contact behavior in December 2021 was chosen
as the basis for extending the contact modulation. At the time, it
was reasonable to assume that this contact behavior could be ex-
tended into January 2022 and the following months due to then-
unchanging protective measures. Since the contact behavior was
not at pre-pandemic levels, it could be assumed that increased
contact behavior would be observed by the end of the first
Omicron wave at the latest, which could lead to another wave.
Due to large uncertainties as to when an increased contact be-
havior could be expected, to what extent this increase would oc-
cur, uncertainties as to how long an Omicron infection protects
against re-infection, uncertainties regarding a possible underre-
porting of infections, as well as the influence of seasonality on
the spread of Omicron, this effect was not considered here. In
this sense, an underestimation of the number of cases beyond 1
April 2022 was to be expected.

Furthermore, the concept of a possible ‘automatic emergency
brake’ was disregarded in this study, that is no automatic contact
reduction was to be implemented as soon as case numbers, hos-
pitalizations, or ICU occupancy exceeded a critical value.
However, we illustrated this effect by the influence of a long,
weak contact reduction of –20%.

There are also other possible limitations due to uncertainties
in the assumptions made or the processes underlying the model:

i) At the time of model development in mid-December 2021,
there was uncertainty about the immunity of recovered
individuals to reinfection with Omicron. In the model, all
persons who recovered from the first three pandemic
waves were assumed to be susceptible (except vaccinated
recovered individuals, who were equated with vaccinated
persons that were not previously infected), while those
who recovered from the Delta wave were assumed to be
100% immune. This results in an infection-induced initial
systemic immunity that lies between these two extremes.
In reality, increased immunity of those infected from ear-
lier waves could lead to an overestimation of peak heights
in the model. In the same sense, reduced immunity after a
Delta infection or decreasing immunity over time, not
taken into account here, could be the cause of an underes-
timation of the peak heights. Mathematically, our ap-
proach only served the purpose of assuming a certain,
comparatively low, basic immunity against infection with
Omicron in the population, that is the above-mentioned
model assumptions cannot be easily transferred to reality.
However, due to the unclear data regarding the immunity
of recovered persons with respect to infections with
Omicron during the development of the model in mid-

December 2021, our approach can be considered feasible at
the time.

ii) Similarly, there was uncertainty in the number of recov-
ered persons who received a vaccination after infection
and, thus, achieved at least primary immunization status.
Since recovered individuals from the first waves were as-
sumed to have no immunity (see above) and treated the
same as susceptibles, we implicitly assumed a vaccination
rate of recovered individuals equal to the population-wide
vaccination rate. Given the unclear data situation during
model development in mid-December 2021, this approach
can also be considered practicable. Retrospectively, this
assumption was justified by survey studies that asserted
that 74% of the recovered individuals would vaccinate too
[43–45].

iii) With regard to the exact estimation of the expected num-
ber of cases, it should be noted that the assumed under-
ascertainment (i.e. the proportion of unreported infections)
was also subject to uncertainty and could only be roughly
estimated. In the present case, we assumed a constant
reporting rate of 50%, that is every second infection was
reported. If the number of unreported infections was
higher in reality, then the observed case numbers were
likely to be smaller than those estimated by the model be-
cause natural population-wide immunity would be
achieved earlier at the then-current level of contact behav-
ior (effective R-value of Reff < 1). Similarly, underreporting
may have further increased in the following months due to
changes in the prioritization of testing or other logistical
limitations. Conversely, a relaxation of the situation could
have led to a subsequent increase in ascertainment during
the decline of an epidemic wave and therefore a decay in
the reported number of infections that is slower than the
true decline. At the time, however, a constant reporting
rate of 50% seemed a plausible assumption [40].

The VE against infection with Delta assumed in this analysis
was approximately equal to the VE against symptomatic disease
with Delta, a result of regression of the collected data on VEs.
However, because many studies estimated VE against infection
to be lower than VE against symptomatic disease, we may have
been overestimating the efficacy of vaccines against infection
with Delta. Furthermore, ignoring the VE of the AstraZeneca and
Johnson & Johnson vector vaccines also leads to a systematic,
though likely not considerable, overestimation of the VE against
infection with Delta. In the case of VE overestimation, Omicron
growth would have been driven more by an increase in base
transmissibility, as immune evasion would be lower. Since higher
transmissibility leads to greater outbreaks, this would have im-
plied an underestimation of outbreak size in our results.
However, the model also ignored VE against transmission, which
has been observed to be non-negligible in several countries. This
VE against transmission would again raise the effective contribu-
tion of vaccination to the attenuation of the incidence [51]. In ret-
rospect, we seem to not have overestimated the efficacy of
vaccines to prevent infections with Omicron.

To sum up, we devised and analyzed a parsimonious
infectious-disease model that was able to capture the central
aspects of the spread of the Omicron variant in Germany before
it dominated the dynamics in early 2022, despite many uncer-
tainties and limitations. We expect that our methodology can be
used to evaluate future outbreaks, either caused by other
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emerging SARS-CoV-2 variants or with regard to other infectious
diseases.

Supplementary data
Supplementary data is available at Biology Methods and Protocols
online.

Data availability
The data produced during this study has been archived on
Zenodo [52].

Code availability
The code produced during this study has been archived on
Zenodo [53].
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