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Abstract 

Switchgrass (Panicum virgatum L.) is a perennial C4 grass native to North America and 

successfully adapted to diverse environmental conditions. It offers the potential to reduce soil 

surface carbon dioxide (CO2) fluxes and mitigate climate change. However, information on how 

these CO2 fluxes respond to changing climate is still lacking. In this study, CO2 fluxes were 

monitored continuously from 2011 through 2014 using high frequency measurements from 

Switchgrass land seeded in 2008 on an experimental site that has previously used for soybean 

(Glycinemax L.) in South Dakota, USA. DAYCENT, a process-based model, was used to 

simulate CO2 fluxes. An improved methodology CPTE [Combining Parameter estimation 

(PEST) with “Trial and Error” method] was used to calibrate DAYCENT. The calibrated 

DAYCENT model was used for simulating future CO2 emissions based on different climate 

change scenarios. This study showed that: (i) the measured soil CO2 fluxes from Switchgrass 

land were higher for 2012 which was a drought year and these fluxes when simulated using 

DAYCENT for long-term (2015-2070) provided a pattern of polynomial curve; (ii) the simulated 

CO2 fluxes provided different patterns with temperature and precipitation changes in a long-
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term, (iii) the future CO2 fluxes from Switchgrass land under different changing climate 

scenarios were not significantly different, therefore, it can be concluded that Switchgrass grown 

for longer durations could reduce changes in CO2 fluxes from soil as a result of temperature and 

precipitation changes to some extent. 
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Introduction 

Switchgrass is a perennial C4 grass, native to North America and successfully adapted to diverse 

environmental conditions over large geographic regions (Lewandowski et al., 2003). It was first 

identified as a renewable energy source by the U.S. Department of Energy in 1985. This 

perennial grass can be used for livestock forage, soil stabilization, and wildlife cover. Further, 

Switchgrass can be adapted to marginal lands, and tolerates soil water deficits and low soil 

nutrient concentrations. Therefore, Switchgrass has been extensively evaluated for further 

development over the last two decades (Parrish and Fike, 2005; Wright, 2007). The current US 

average Switchgrass yield was projected to double or even triple by 2025 (McLaughlin et al., 

2006). However, information regarding growing Switchgrass on marginal lands in the North 

Central region of USA and how does it respond to climate change when grown in a recently 

converted cropland is lacking. 

Mitigation of carbon dioxide (CO2) emissions to the atmosphere is a key to solve the 

problem of global warming. It has been well documented in the literature that perennial crops 

emit less CO2 emissions than corn (Zea mays L.) or soybean (Adler et al., 2007). Therefore, it 

can be beneficial economically and environmentally to plant Switchgrass on marginally yielding 

cropland areas over the long-term in order to mitigate the climate change impacts. However, it is 

very difficult to monitor climate change impacts associated with CO2 fluxes. Furthermore, 

monitoring these CO2 fluxes across the region from all possible combinations of environmental 

and soil conditions is very difficult (De Gryze et al., 2010). Therefore, process-based ecosystem 

models provide an option to simulate CO2 emissions that can account for all possible 

permutations of management and climate in the region.  

DAYCENT model (Parton et al., 1998), the daily version of the CENTURY (Parton, 

1996; Parton et al., 1987), was selected in this study. It is a fully resolved ecosystem model 

simulating major ecosystem processes such as changes in soil organic matter, plant productivity, 

nutrient cycling (i.e., N, P, and S), CO2 respiration, soil water, and soil temperature (De Gryze et 

al., 2010). However, performance of this model strongly depends on how well it is calibrated and 

validated for the specific environmental conditions being evaluated (De Gryze et al., 2010; Smith 

et al., 1997). Therefore, calibration of these models is very important in order to assess long-term 
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scenarios. Methods of calibrating DAYCENT used in previous studies (Chamberlain et al., 2011; 

Davis et al., 2010) were “trial and error” method, which is a good method but limited because it 

cannot obtain the best-fit values of parameters. This is a manual way of calibrating the model, as 

opposed to the use of statistical inverse modeling where measured data is used as input into the 

models to provide estimates of model parameters according to mathematical and statistical 

theories. The PEST (Parameter estimation) model (Doherty, 2010), a method of statistical 

inverse modeling, was chosen to calibrate the DAYCENT model in this study. The purpose of 

the PEST is to assist in data interpretation, model calibration and predictive analysis. The first 

statistical inverse modeling for calibrating the DAYCENT model using PEST was reported by 

Rafique et al. (2013). However, the method’s disadvantage is that some parameter functions and 

impacts in DAYCENT may be changed by PEST. For example, according to the Instruction of 

DAYCENT, almost parameters in fix.100 file of DAYCENT cannot be adjusted (some 

parameters could be adjusted with very small ranges). However, in the study by Rafique et al. 

(2013), some of these parameters were calibrated by PEST. This may result in biased 

simulations. To overcome the weaknesses of using either “trial and error” or inverse modeling 

method alone for model calibration, we proposed an improved methodology, i.e., combination of 

trial and error and inverse modeling using PEST called CPTE, which was descripted in our 

previous study (Mbonimpa et al., 2015a). In this study, the methodology has been first used for 

DAYCENT calibration, and to simulate climate change impacts on soil CO2 fluxes.    

Therefore, specific objectives of the present study were to: (i) improve the method of 

calibration to enhance the simulation of DAYCENT model and (ii) analyze the future long-term 

impacts of temperature and precipitation changes on soil surface CO2 fluxes from Switch grass 

land recently converted from cropland in South Dakota. 

 

1 Materials and methods 

1.1 Data measurements and sources 

The research site was located near Bristol (45°16' 8.274"N, 97°50'8.9694"W), South Dakota, 

USA. It was arranged into 12 plots measuring 21.3 m wide and 365.8 m long and comprised of 

three landscape positions: shoulder, backslope and footslope. Three N treatments (low, 0 kg 

N/ha; medium, 56 kg N/ha; and high, 112 kg N/ha) were applied annually during spring 

beginning in 2009. Switchgrass was planted on May 17, 2008 to a land previously used for 
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soybean production. A detailed description of the study site can be found in Mbonimpa et al. 

(2015b).  

In this study, soil surface CO2 fluxes were measured using a LI-8100 instrument 

(Automated Soil CO2 Flux System) from plot number 103 which received the high N fertilizer 

rate and was located at the shoulder position. Soil CO2 fluxes were monitored at every 2-hr 

interval for four years (2011, May 6 to November 1; 2012, April 4 to November 1; 2013, May 20 

to November 13; and 2014, May 6 to October 26). The measured CO2 flux data were converted 

to daily average values which include a total of 736 daily values, in which 85 were removed 

because the LI-8100 instrumentation misread and/or there were sudden and large unexplainable 

changes. Soil temperature and volumetric soil moisture content at 5-cm depth were measured 

with the soil temperature and moisture probes included with the LI-8100. 

The daily maximum and minimum air temperature data for 2011 to 2013 were measured 

using temperature sensor connecting to the LI-8100 instrumentation at the research site. The 

precipitation data for 2011 through 2013 was measured by Observation Point which was 3.2 

kilometers away from the study site. The daily maximum and minimum air temperature and 

precipitation from 1956 to 2010 and 2014 were retrieved from the nearest weather station in 

Webster, SD (25 kilometers), in which precipitation from 2001 to 2010 and 2014 were retrieved 

from the nearest weather station in Bristol, SD (10 kilometers). The soil bulk density and pH data 

were 1.37 Mg/m3 and 8.09, respectively. The particle size distribution was 225 g/kg clay, 377 

g/kg silt, and 398 g/kg sand.  

 

1.2 Model performance evaluation and statistical analysis 

The model performance was evaluated with five widely used quantitative criteria (Dai et al., 

2014; Moriasi et al., 2007) that include the coefficient of determination (R2, squared correlation 

coefficient), model performance efficiency (ME) (Nash and Sutcliffe, 1970), percent bias 

(PBIAS) (Gupta et al., 1999), and the RMSE and RSR [the ratio of the root mean squared error 

(RMSE) to SD (standard deviation of measured data)] (Singh et al., 2004). The R2 is the most 

important criteria to compare default simulation with that of calibrated simulation or validated 

simulation, and its acceptable range is > 0.50 (Santhi et al., 2001). The ME is the key variable 

used to evaluate the model performance. If ME > 0.50, the performance is acceptable prediction. 

If the ME is greater than 0.65 and less than 0.75, the performance is good. If ME > 0.75, the 
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model performance is very good (Moriasi et al., 2007). The third important criterion is RMSE-

observations standard deviation ratio (RSR). It is calculated as the ratio of the RMSE (root mean 

square error) and standard deviation of measured data (Singh et al., 2004). Its range of 

satisfactory rating values is less than 0.70 (Moriasi et al., 2007). For the PBIAS, if its absolute 

value is less than 25% and greater than 15%, the performance is satisfactory, and 10% < |PBIAS| 

< 15% for good performance and |PBIAS| < 10% for very good (Moriasi et al., 2007). The lower 

the absolute value of PBIAS, the better the performance. Further, paired simulated soil CO2 

fluxes between different climate scenarios were compared using the Parallel-line method because 

these data were time correlated values as well as each pair values were not independent. The 0.05 

of significance level of the statistical hypothesis test was used. The distributions of the datasets 

were tested for normality using Kolmogorov-Smirnov test. The data analyses were performed 

using SAS 9.3 (SAS, 2012). 

 

1.3 DAYCENT model calibration and validation 

The DAYCENT model stand-alone version DailyDayCent 08/17/2014 was used for simulating 

soil surface CO2 fluxes in this study. The model inputs include daily precipitation and maximum 

and minimum temperature, soil texture, bulk density, pH, and historical land use and field and 

crop management. In this study, “trial and error” method was first used to calibrate DAYCENT 

model. In the DAYCENT model, there are 87 parameters that can be adjusted for simulating CO2, 

and for this study, a total of 29 from 87 were selected based on previous literature and 

recommendation from model developers. The parameters values were reset on the basis of the 

available information for the experimental site. Then, the model was calibrated manually by 

adjusting values of the important parameters until the adjusted parameters improve the 

simulations of CO2 fluxes. Through comparing the predicted CO2 fluxes with those of measured 

values, the R2 of 0.46, ME of 0.27, RSR of 0.85, and PBIAS of -18.02% was obtained. These 

values were out of their acceptable ranges. Therefore, PEST model was used to calibrate further 

the manually calibrated DAYCENT model (called “PEST calibrated model”). Combined PEST 

and DAYCENT models  (called “PEST calibration” or “PEST calibrated model”) were run for 

calibration using the most sensitive parameters (n = 44) and measured CO2 flux data from 2011 

to 2013. The calibrated modeled CO2 fluxes (“PEST-MOD”) were extracted from the outputs of 

the PEST calibrated model, and then PEST-MOD vs. measured CO2 fluxes (“MEAS”) were 
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compared based on four statistical criteria which showed an improved calibration and prediction 

of CO2 fluxes. 

Validation of the calibrated DAYCENT was performed using (i) measured CO2 fluxes in 

2014, (ii) measured Switchgrass yields from 2009 to 2011, which were used to check the net 

primary productivity (NPP) that the model is predicting for this study site. It is noted that if the 

NPP for the site is not correct, then none of the other model outputs can be expected to be 

representative of the conditions at the site (Parton et al., 1998), and (iii) soil temperature and soil 

moisture data measured from 2011 to 2013.  

1.4 Simulating and analyzing future soil surface CO2 fluxes 

The PEST calibrated DAYCENT model was used to simulate CO2 fluxes for long-term duration 

(2015 to 2070) based on future climate change scenarios, and then these simulated CO2 fluxes 

were compared using Parallel-line method and Line charts. The future climate scenarios were 

created based on the method of incremental scenarios development (McCarthy, 2001). Each 

includes three variables: daily minimum (Tmin (℃)) and maximum temperature (Tmax (℃)) and 

precipitation (Prcp (cm)) from 2015 to 2070 based on the format of input for the DAYCENT 

model. The historic weather data from 1959 to 2014 were used for the observed time series to 

create the climate change scenarios. Based on the distribution of the observed time series (Fig. 

S1A), the maximum temperature followed a slightly decreased trend from 1959 to 2014 (Fig. 

S1A), which was stationary over time. Therefore, the maximum temperature for all scenarios 

was expected to increase by 0.5℃ from 2015 to 2070 (total 56 years). The average increase of 

manual maximum temperature is 0.5/56℃. Then, Tmax in 2015 = Tmax in 1959 + 1×0.5/56℃, Tmax 

in 2016 = Tmax in 1960 + 2×0.5/56℃, Tmax in 2017 = Tmax in 1961 + 3×0.5/56℃, … , Tmax in 2070 

= Tmax in 2014 + 56×0.5/56℃. For the minimum temperature, there was an increase of 2.38℃ 

from 1959 to 2014 (Fig. S1A), which is non-stationary over time, therefore, the future minimum 

temperature for the 2015 to 2070 period could be possibly different increased trend as compared 

to that of 2015 to 2070 period. The increase range was expected 1℃ through 3℃ based on the 

fact of increase of 2.38℃ from 1959 to 2014 and the range reported by IPCC which suggested 

increase in temperature roughly between 0.4℃ and 2.6℃ by 2060 relative to 1990 (IPCC, 2007). 

Within the range of 1 through 3℃, we set ten scenarios that include the minimum temperature 

values were increased by 1℃, 1.25℃, 1.5℃, 1.75℃, 2℃, 2.25℃, 2.38℃, 2.5℃, 2.75℃, and 3
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℃ from 2015 to 2070. Therefore, the magnitude of the future minimum temperatures of ten 

scenarios are 2.38℃+ ten different increases from 2015 to 2070 + the observed Tmin from 1959 

to 2014, respectively. For example, for the scenario 5, its minimum temperature is increased by 2

℃ from 2015 to 2070, its daily minimum temperature in 2015 = 2.38℃ + Tmin in 1959 - 1×(2.38-

2℃)/56, the daily Tmin in 2016 = 2.38℃ + Tmin in 1960 - 2×(2.38-2℃)/56, the daily Tmin in 2017 

= 2.38℃ + Tmin in 1961 - 3×(2.38-2℃)/56, … , the daily Tmin in 2070 = 2.38℃ + Tmin in 2014 - 

56×(2.38-2℃)/56. Based on the same algorithm, Tmin in other nine scenarios were calculated. 

Thus, the ten scenarios of temperature changes were created while Prcp was kept the constant. 

They were named as x1, x2, …, x10, in which the x7 is corresponding to + 2.38℃ (the amount 

of increase of observed minimum temperature from 1959 to 2014) and was regarded as 

Temperature Business As Usual (T-BAU). 

The 13 scenarios of precipitation change were also created. Changes in precipitation from 

y1 to y13 are corresponding to -30%, -25%, -20%, -15%, -10%, -5%, 0, +5%, +10%, +15%, 

+20%, +25%, and +30% of the precipitation measured for 1959 to 2014. The frequencies of 

precipitation for future climate scenarios were kept same to that of 1959 to 2014. However, the 

range is based on that reported by IPCC’s projected precipitation to be approximately between -

30% to 30% across the globe by 2090 relative to 1990 (IPCC, 2007). The y7 is the scenario with 

0% of precipitation and was regarded as Precipitation Business As Usual (P-BAU). 

 

2 Results 

2.1 Measured CO2 fluxes and DAYCENT calibration and validation 

Soil surface CO2 fluxes from Switchgrass land varied seasonally and yearly (Fig. 1A). The 

higher fluxes were observed in the summer of 2012. The CO2 data monitored from 2011 through 

2013 were used for DAYCENT model calibration to develop the DAYCENT model, and the 

data from 2014 were used for validation. The most sensitive parameters in DAYCENT model 

were identified based on the scaled sensitivity values from PEST output. Out of 87 parameters, 

44 were identified to be the most sensitive to simulate soil CO2 fluxes. These parameters were 

ranked in descending order based on the scaled sensitivity values presented in Supplementary 

data of Table 1 (i.e. Table S1 in Supplementary data in Appendix A). The parameters 

prbmn(1_1), epnfs(2), sfavail(1), biomax, and pramn(1_1) in the DAYCENT model were 
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observed to be the most sensitive. The prbmn (1_1) is the intercept parameter for computing 

minimum C/N ratio for below ground matter as a linear function of annual precipitation. Epnfs 

(2) is intercept value for determining the effect of annual evapotranspiration non-symbiotic soil 

N fixation. Sfavail (1) is species specific fraction of N available to grass/crop. Biomax is biomass 

level above which the minimum and maximum C/E ratios of the new shoot increments equal 

pramn (*, 2) and pramx (*,2) respectively. Pramn (1_1) is minimum C/N ratio with zero 

biomass. Other 39 parameters were descripted in Table S1. Then values of the 44 parameters 

were adjusted for DAYCENT calibration until the adjusted parameters improve the simulations 

of CO2 fluxes. 

Data in Fig. 1A showed that the simulated CO2 fluxes using the manual and DAYCENT-

PEST calibration were observed similar trends with those of the measured fluxes. The data 

reported in Fig. 1A showed an agreement between modeled and measured soil CO2 fluxes except 

for few unaligned peaks. The PEST calibrated DAYCENT (DAYCENT-PEST) provided the best 

prediction for CO2 fluxes compared to manual calibration of DAYCENT. Data in Table 1 

showed the evaluation criteria of model performance for calibration and validation periods for 

modeling CO2 fluxes. The coefficient of determination (R2) value of 0.65 of the PEST calibrated 

DAYCENT model indicated that there was a strong linear relationship between the PEST 

calibrated and measured CO2 fluxes, whereas, R
2  of the manual calibrated model was 0.46 

(Table 1). The percent bias (PBIAS) value of 10.28% was good for the PEST calibrated model, 

whereas, it was -18.02% for the manual model. Both the R2 and the PBIAS values of the PEST 

calibrated DAYCENT model indicated that there was not only a strong linear relationship but 

there was also a very close magnitude between the DAYCENT-PEST calibrated model and 

measured CO2 fluxes. Also, modeling efficiency (ME) of 0.56 of PEST calibrated model was in 

the acceptable range, whereas the ME value of 0.27 of the manual model was out of the range. 

Further, the RSR (ratio of RMSE to standard deviation (SD) of measured CO2 fluxes) value of 

0.66 for the PEST calibrated model was reasonably good for the model performance, whereas, 

the manually calibrated model had a RSR value of 0.85, which was out of the range of 

satisfactory values (< 0.70). These results indicated that our final results of calibration of 

DAYCENT are good. 

For validation, the simulated and measured CO2 fluxes had similar trends and closer 

magnitude (Fig. 1B). The R2, ME, RSR, and PBIAS values of the PEST calibrated model vs. the 
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manually calibrated model for the validation period were 0.63 vs. 0.52, 0.40 vs. 0.31, 0.76 vs. 

0.83, and -7.88% vs. -13.92, respectively. These values of R2 and PBIAS for DAYCENT-PEST 

model were within satisfactory rating values compared to those of manually calibrated model 

(Table 1). The PEST vs. manually calibrated models simulated the soil temperature reasonably 

well with values for R2, ME, RSR, and PBIAS of 0.86 vs. 0.86, 0.41 vs. 0.49, 0.76 vs. 0.71, and 

9.78% vs. 8.36%. These values for simulating the soil moisture were 0.62 vs. 0.60, -5.41 vs. -

4.76, 2.53 vs. 2.40, and -36.09%vs. -33.81%, respectively. Results in Fig. 2a, b showed that the 

simulated soil temperature data matched closely to the measured temperature. Further, modeled 

soil moisture content provided similar trend with the measured soil moisture but had different 

magnitude. For Switchgrass yield validation for the PEST calibrated model vs. the manually 

calibrated model, simulated yields of Switchgrass from 2009 to 2011 closely resembled the 

measured yields based on their PBIAS values of -1.98%vs.0.84%, -5.19% vs. -2.50%, and -

2.81% vs. 3.72% (Table 2). In general, the PEST calibrated DAYCENT model provided more 

satisfactory validation based on the above results, and hence was used for all the long-term 

climate scenarios. 

2.2 CO2  fluxes forecasts using BAU weather data 

The PEST calibrated DAYCENT model along with the BAU weather data was used to simulate 

soil CO2 from 2011 to 2070. The simulated annual CO2 fluxes from Switchgrass land provided a 

trend of polynomial curve from 2015 to 2070 (Fig. 3a). The curve function is: y = -0.0064x
3 + 

0.4709x
2 - 2.9065x + 422.21, where y is the annual CO2 fluxes, x is year from 2015 to 2070. The 

simulated annual average value of CO2 fluxes from 2015 to 2070 is 554.84 (g/(m2·year)) with 

standard deviation of 103.68 and 95% confidence interval [527.07, 582.61]. 

2.3 Simulating the impacts of changing temperature scenarios on CO2 fluxes 

The PEST calibrated DAYCENT model was used to simulate yearly CO2 fluxes from 2011 to 

2070 based on different temperature scenarios, and then these fluxes were compared with the 

simulated CO2 fluxes using BAU (Note: The calculations of BAU weather data were described 

in the materials and methods section) (Table S2). Soil CO2 fluxes were not significantly affected 

by temperature increase from 1℃ to 3℃ in long-term (2015-2070) (Table 3). However, the 

annual means of simulated CO2 fluxes provided a trend of slightly linear increase with the 

minimum temperature increases from 1℃ to 3℃ (Table 3 and Fig. 4).  
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The CO2 fluxes under wet, dry and BAU were provided a trend of polynomial curves 

(Fig. 3b). The magnitude of fluxes under these three scenarios was narrower from 2015 to 2048. 

However, the trend and magnitude of CO2 fluxes for the dry condition was different from those 

of wet and BAU beyond 2049. These fluctuations were wider under dry conditions than that 

under P-BAU and wet conditions. In contrast, CO2 fluxes had a similar trend with those of BAU 

but the magnitude of fluxes was lower (Fig. 3b).  

Fig. 4 shows the simulated yearly mean CO2 fluxes (g/m2/year) corresponding to ten 

temperature scenarios under P-BAU, wet (+30% precipitation), and dry conditions (-30% 

precipitation). Under wet and P-BAU condition, the CO2 fluxes increased slightly with the 

increase of temperature, whereas, these fluxes had an observable increased trend under dry 

condition with the increase of temperature (Fig. 4). The CO2 fluxes under wet condition were 

less than those of dry conditions and P-BAU (Fig. 4). The soil CO2 fluxes from Switchgrass land 

in January, February, March, and December were very low, whereas, these fluxes were the 

highest in July. The mean CO2 fluxes under wet condition from May to October were less than 

that under P-BAU and drought conditions, which were of similar trends and magnitudes (Fig. 

S2). The trends of monthly soil CO2 fluxes were of similar trends of monthly temperature and 

precipitation (Fig. S2 and S4). Further, rates of monthly soil CO2 fluxes based on scenarios of 

temperature changes were compared under P-BAU, wet, and drought conditions (Table S4). 

Comparing to the P-BAU and dry condition during the growing season from April to November, 

monthly rates of CO2 fluxes under wet condition were negative and the rates in June and October 

were the highest. However, monthly rates of CO2 fluxes under drought condition had different 

magnitudes of these rates, and lower than that under wet and P-BAU conditions (Table S4). 

2.4 Simulating the impacts of changing precipitation scenarios on CO2 fluxes 

The precipitation increase from +20% to +30% significantly impacted CO2 fluxes compared to 

those from P-BAU (P < 0.05), however, precipitation changes from -30% to +15% did not 

impact soil CO2 fluxes (P > 0.05) (Table 4).   

The mean CO2 fluxes with 1℃ increase in temperature were slightly lower than those 

under temperature with BAU (T-BAU) condition (Fig. 5). However, a precipitation increase 

along with a 1℃ increase in temperature resulted in slightly elevated soil CO2 fluxes (Fig. 6). 

Under T-BAU and +1℃ condition, the CO2 fluxes had similar trends with a 2-degree polynomial 

curve. The data also showed that with the increase in precipitation from -30% to +30%P, the CO2 
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fluxes increased initially with decreased precipitation, peaked at an optimal precipitation, and 

then decreased to the lowest point under wet condition or increased precipitation (30%P) (Fig. 

6). For the T-BAU trend, the maximum CO2 fluxes were observed with -15%P and the trend 

function was given by: y = -295.14x
2 - 78.277x + 539, whereas, the maximum CO2 fluxes with 

the +1℃ temperature were observed with -5%P, and the trend function was given by: y = -

309.7x
2 - 52.764x + 531.59 (Fig. 6). The soil CO2 fluxes from Switchgrass land in January, 

February, March, and December were very low, whereas, these fluxes were the highest in July. 

The mean CO2 fluxes under T-BAU from May to October were slightly greater than that under 

+1℃ condition (Fig. S3). The trends of the monthly soil CO2 fluxes were of similar trends of 

monthly temperature and precipitation (Figs. S3 and S4). Further, rates of monthly soil CO2 

fluxes based on scenarios of precipitation changes were compared under T-BAU and +1℃ 

conditions. All of 12 monthly rates of CO2 fluxes under T-BAU condition were positive, in 

which November has the biggest rate of 4.06% and June has the least rate of 0.39% (Table S4). 

 

3 Discussion 

Our previous study on similar site concluded that climate impacted the soil surface CO2 fluxes 

(Mbonimpa et al., 2014). However, to assess the potential climate change impacts on these fluxes 

in long-term was still a researchable question. This study showed that the CO2 fluxes from 

Switchgrass land provided increased trends from 2011 to 2070 using range of different climate 

scenarios (Fig. 3a, b, and Fig. 5). These trends, however, were not a linear increase with the 

years but rather a polynomial. The latter trend resulted from interactions of the multiple factors 

those were influenced by climate. The temperature and precipitation directly determine level of 

soil temperature and moisture, respectively, which are the most important abiotic parameters 

determining CO2 fluxes and its underlying processes (Kutsch et al., 2009; Subke and Bahn, 

2010). Further, the future 56 years forecasting of CO2 fluxes were predicted with 95% 

confidence interval for mean based on different climate scenarios (Table S2). These findings can 

be useful in developing greenhouse gas mitigation strategies. 

Results from this study also showed that annual CO2 fluxes were not significantly 

different for all the temperature scenarios (Table 3). These fluxes slightly increased with the 

increase in temperature (Fig. 4). Similarly, CO2 fluxes with 13 precipitation scenarios were also 

not significantly different except for three scenarios (+20%, +25%, and +30%P), which resulted 
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in lower CO2 fluxes (Table 4 and Fig. 6). These data indicated that impacts of long-term 

temperature and precipitation changes on respiration of CO2 under local conditions were not 

significant. It has been reported in various studies that perennial grassland improves soil carbon 

sequestration and emit less emissions from soils. This may be the cause that in long-term climate 

change impacts on CO2 fluxes can be minimal in Switchgrass land. However, a further long-term 

research needed to support this statement.  

Soil CO2 fluxes under simulated drought conditions (-30%P) were exhibited wider 

fluctuations in the long-term (2011-2070) (Fig. 3b). Some studies have shown that soil moisture 

affects CO2 fluxes by its direct influence on root and microbial activities, and indirect influences 

on soil physical and chemical properties (Raich and Schlesinger, 1992; Schimel and Clein, 1996). 

Drought conditions reduce soil respiration and wetter conditions increase CO2 production 

(Jensen et al., 2003; Mbonimpa et al., 2015b). The heterotrophic respiration is more susceptible 

to drought than autotrophic respiration (Scott-Denton et al., 2006; Zhou et al., 2007). Thus, a 

wide range of fluctuations in CO2 fluxes under drought condition were observed compared to 

those under P-BAU (Fig. 3b). Furthermore, the CO2 fluxes exhibited the slopes of increased 

trend with increasing temperature from 1℃ through 3℃. These slopes were lower under P-BAU 

and wet condition compared to that with dry condition (Fig. 4). This may be due to the fact that 

Switchgrass performs better under soil water deficits. The present study site is located under the 

humid continental climate which is still appropriate for Switchgrass to grow well even if the 

precipitation amount were reduced by 30% compared to the P-BAU. Furthermore, the cultivar of 

Switchgrass for the study site was developed for local conditions. The improved Switchgrass 

growth could increase the respiration of CO2 with temperature under dry conditions compared to 

that under wet conditions. However, under wet conditions, higher water content in soils 

decreased air-filled porosity, increased stomatal resistance and hence decreased CO2 respiration 

(Kirkham, 2011). 

These results also indicated that when temperature is kept as constant, both dry and wet 

conditions could decrease CO2 emissions (Fig. 6). Some studies have shown that there is a 

negative effect of elevated soil temperature on soil moisture due to increased evapotranspiration 

(Liu et al., 2009; Poll et al., 2013; Shaver et al., 2000). Additionally, it is not necessarily true that 

precipitation always increases moisture content of the soils probably because most precipitation 

events were unlikely to rewet the soil to a greater depth (Poll et al., 2013). The reduction in soil 
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moisture by soil warming was shown to reduce microbial respiration in a dry semiarid temperate 

steppe (Liu et al., 2009). This inconsistency between soil moisture and soil respiration is 

probably due to the above mentioned inability of precipitation events to rewet the dry soil to a 

depth of 15 cm (Poll et al., 2013), especially, at the shoulder position as is the case in our 

research site. Under moisture excess or waterlogged conditions, there were anaerobic conditions 

and suppression of CO2 emissions (Liu et al., 2002). Furthermore, higher water content in soils is 

a condition attributed to reduced transpiration due to increased stomatal resistance (Kirkham, 

2011). These conditions could result in lack of oxygen in soil organic matter, which subsequently 

decreases respiration. Therefore, the CO2 fluxes were lower wet conditions compared to dry and 

BAU.  

Soil surface CO2 fluxes were higher with the T-BAU (+2.381℃) compared to that with 

+1℃ condition (Fig. 6). This was primarily because temperature increased CO2 emissions with 

increased soil organic matter decomposition. Further, precipitation amount contributing to the 

maximum CO2 flux under T-BAU was lower than that under +1℃ condition (Fig. 6). This might 

be explained by higher temperature values that can reduce soil moisture content through the 

evaporation process and increasing decomposition of organic compounds in aerobic soils. 

Further, the humid continental climate at the study site could results in the maximum CO2 fluxes 

under the reduced precipitation conditions, indicating that properly managed Switchgrass in the 

present site has the potential to mitigate CO2 fluxes. Data from this study showed that increased 

precipitation with increased temperature produced higher CO2 fluxes. These findings were also 

supported by other researchers who reported that the main driving factors affecting belowground 

soil respiration were temperature, precipitation or temperature in combination with precipitation 

(Do, 2008). The interactions of soil temperature and moisture determine soil respiration in most 

ecosystems (Kanerva et al., 2007; Li et al., 2006). Regression analysis showed that soil moisture 

positively affected the correlation between soil temperature and soil respiration and explained 

25% of the variation in Q10 values (Poll et al., 2013). The increase in CO2 fluxes under higher 

temperature condition may be explained by increased plant biomass in general and subsequent 

increases in C flow to the soil with increase of temperature and precipitation (Kanerva et al., 

2007). 

 

4 Conclusions 
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Soil surface CO2 fluxes are strongly influenced by climate, however, evaluating impacts of 

different climate scenarios on these fluxes in long-term is difficult without modeling tools. Our 

previous study that included measured CO2 data for 3 years showed that climate significantly 

impacted the CO2 fluxes. Therefore, this study was conducted to assess the long-term impacts of 

climate on CO2 fluxes from Switchgrass land recently converted from cropland. DAYCENT 

model was used for assessing the climate change scenarios. The calibration of this model was 

improved using a new (CPTE) methodology that combines the “trial and error” and PEST model 

to reduce the biasness of model predictions. The four data (CO2 fluxes of 2014, Switchgrass 

yield from 2009 to 2011, and soil temperature and soil moisture from 2011 to 2013) were used 

for validating the model. Then the calibrated and validated DAYCENT model was used to 

simulate and analyze future CO2 fluxes.  

This study concluded that measured soil CO2 fluxes were higher for 2012 which was a 

drought year, and these fluxes when simulated for long-term (2015-2070) provided an increased 

pattern of polynomial curve. Soil surface CO2 fluxes from Switchgrass land showed an increased 

trend from 2011 to 2070 with a polynomial curve. The distribution patterns of temperature and 

precipitation were more important for soil CO2 efflux seasonal dynamics. Our simulation results 

showed that the future CO2 emissions from Switchgrass land in South Dakota, generally, would 

be insignificantly different with temperature and precipitation, therefore, Switchgrass grown for 

longer durations could reduce changes in CO2 fluxes from soil as a result of temperature and 

precipitation changes within the ranges of the climate scenarios to some extent. However, to 

assess the climate change impacts based on just one parameter was not sufficient, therefore, the 

future work needs that include a systematical analysis of different parameters such as greenhouse 

gas (GHG) fluxes, soil organic carbon, total nitrogen and other crops and soils data from 

Switchgrass land. 
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List of figures 

Fig. 1 (A) Calibration: distribution of measured and modeled values of CO2 (g/m2/day) fluxes 

from 2010 through 2013, (B) validation: distribution of measured and modeled values of CO2 
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(g/m2/day) fluxes from 2014. MEAS, measured; PEST-MOD, calibrated modeled CO2 fluxes 

using PEST model; and MAN-MOD, manually calibrated modeled CO2 fluxes using “trial and 

error” method. 

 

Fig. 2 Comparison of measured and simulated soil temperature (a), and soil moisture content (b) 

for validation. MEAS, measured values; PEST-MOD, calibrated modeled values using PEST 

model; and MAN-MOD, manually calibrated modeled values using “trial and error”. 

 

Fig. 3 Average annual simulated CO2 fluxes from 2015 to 2070 simulated using (a) the weather 

data of BAU and (b) temperature scenarios from 2011 to 2070 under dry, wet, and P-BAU 

conditions. 

 

 

Fig. 4 Average annual simulated CO2 fluxes corresponding to temperature scenarios +1 through 

+3℃ under dry, wet, and P-BAU conditions.  

 

Fig. 5 Trends of simulated average annual CO2 fluxes from 2011 to 2070 based on precipitation 

changes from -30% to +30% under temperature of BAU (increase of 2.38℃) and increase of 1℃ 

with years. 

 

Fig. 6 Trends of simulated average annual CO2 fluxes  from 2011 to 2070 based on precipitation 

changes from -30% to +30% under temperature of BAU (increase of 2.38℃) and increase of 1℃ 

with changing precipitation. 
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List of tables  

Table 1 Evaluation criteria for comparing soil surface CO2 fluxes, soil temperature, and soil 

moisture between measured and modeled data using manually calibrated DAYCENT (Manual) 

and PEST calibrated DAYCENT (PEST) model for calibration and validation. 

Evaluation 
Criteria† 

Calibration   Validation  

CO2  
(g/(m2·day)) 

 
CO2 

(g/(m2·day)) 
Soil temperature (

℃) 
Soil moisture 
(cm3/cm3) 

Manual PEST   Manual PEST Manual PEST Manual PEST 

R
2 

([0.5,1)) 0.46 0.65  0.52 0.63 0.86 0.86 0.60 0.62 

ME ([0.5, 1)) 0.27 0.56  0.31 0.40 0.49 0.41 -4.76 -5.41 

RSR ([0.7, 0)) 0.85 0.66  0.83 0.78 0.71 0.76 2.40 2.53 

PBIAS ([25%, 0)) -18.02 -10.28   -13.92 -7.88 8.36 9.78 -33.81 -36.09 
†
R

2 = coefficient of determination; ME = modeling efficiency; RSR = the ratio of the root mean squared error to 
standard deviation of measured data; and PBIAS = percent bias. 

 

Table 2 Comparison of modeled and measured Switchgrass yield (g/(m2·year)) for validation. 

Year Measured 
DAYCENT-PEST   DAYCENT 

Modeled PBIAS (%)  Modeled PBIAS (%) 

2009 303.88 297.87 -1.98  300.37 0.84 

2010 566.69 537.30 -5.19  523.87 -2.50 

2011 545.21 529.89 -2.81  549.61 3.72 

 

Table 3 Statistical results of comparing simulated future soil CO2 fluxes (g/(m2·year)) based on 

different temperature scenarios. 

CO2 fluxes - temperature changes 

Var[1] Mean ± SD L95%CI U95%CI p-value[2] 

x1 533.19 ± 115.33 503.40 562.98 x1/x7:0.63 - 

x2 533.00 ± 115.33 503.21 562.80 x2/x7:0.62 x2/x1:0.99 

x3 532.51 ± 115.26 502.74 562.29 x3/x7:0.59 x3/x2:0.96 

x4 535.61 ± 117.44 505.27 565.94 x4/x7:0.81 x4/x3:0.77 

x5 536.21 ± 117.16 505.94 566.47 x5/x7:0.85 x5/x4:0.95 

x6 536.99 ± 117.81 506.56 567.43 x6/x7:0.91 x6/x5:0.94 

x7 538.15 ± 118.28 507.60 568.71 - x7/x6:0.91 

x8 538.48 ± 118.50 507.87 569.09 x8/x7:0.97 x8/x7:0.89 

x9 540.50 ± 119.34 509.67 571.33 x9/x7:0.82 x9/x8:0.85 

x10 540.97 ± 119.72 510.04 571.90 x10/x7:0.79 x10/x9:0.96 
 [1] x1=+1℃; x2=+1.25℃; x3=+1.5℃; x4=+1.75℃; x5=+2℃; x6=+2.25℃; x7=+2.38℃; x8=+2.5℃; x9=+2.75℃; 

x10=+3℃. [2] p-values were from output of Parallel line analysis. 
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Table 4 Statistical results of comparing simulated future soil CO2 fluxes (g/(m2·year))  based on 

different precipitation scenarios. 

CO2 fluxes - precipitation changes 

Var[1] Mean±SD L95%CI U95%CI p-value[2] 

y1 533.30 ± 133.60 498.79 567.82 y1/y7:0.53 - 

y2 538.97 ± 134.66 504.18 573.75 y2/y7:0.86 y2/y1:0.65 

y3 545.53 ± 139.66 509.45 581.61 y3/y7:0.78 y3/y2:0.65 

y4 547.12 ± 136.34 511.90 582.34 y4/y7:0.64 y4/y3:0.85 

y5 544.42 ± 130.76 510.64 578.20 y5/y7:0.75 y5/y4:0.88 

y6 543.38 ± 125.84 510.87 575.88 y6/y7:0.75 y6/y5:0.99 

y7 538.15 ± 118.28 507.60 568.71 - y7/y6:0.75 

y8 534.12 ± 113.73 504.74 563.50 y8/y7:0.78 y8/y7:0.78 

y9 526.26 ± 106.28 498.80 553.71 y9/y7:0.4 y9/y8:0.58 

y10 519.39 ± 100.53 493.42 545.36 y10/y7:0.18 y10/y9:0.62 

y11 509.93 ± 96.56 484.98 534.87 y11/y7:0.039 y11/y10:0.44 

y12 499.73 ± 93.36 475.61 523.85 y12/y7:0.004 y12/y11:0.40 

y13 492.48 ± 89.24 469.42 515.53 y13/y7<0.001 y13/y12:0.56 
[1] y1 = -30%P; y2 = -25%P; y3 = -20%P; y4 = -15%P; y5 = -10%P; y6 = -5%P; y7 = 0%P;  y8 = 5%P; y9 = 10%P; 

y10 = 15%P; y11 = 20%P; y12 = 25%P; y13 = 30%P. [2] p-values were from output of Parallel line analysis. 



 

Draft 1 of the graphical abstract. 

 

 

Draft 2 of the graphical abstract. 

 

Our suggestion: Please use Draft 2. Please change “CO2 flux (g/m2/d)” into “CO2 flux 
(g/(m2.day))” in top figure, change “CO2 fluxes (g/m2/y)” into “CO2 flux (g/(m2.yr))” in bottle 
figure. 


