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Advisor: Rajib Saha 

Abstract: Rhodopseudomonas palustris CGA009 is a purple non-sulfur bacterium (PNSB) 

that can fix CO2 and nitrogen or break down organic compounds for its carbon and nitrogen 

requirements. Light, inorganic, and organic compounds can all be used for its source of 

energy. Excess electrons produced during its metabolic processes can be exploited to 

produce hydrogen gas or biodegradable polyesters (polyhydroxybutyrate). A genome-scale 

metabolic model of the bacterium was reconstructed to study the interactions between 

photosynthesis, carbon dioxide fixation, and the redox state of the quinone pool. A 

comparison of model-predicted flux values with published in vivo MFA fluxes resulted in 

predicted errors of 5-19% across four different growth substrates. The model predicted the 

presence of an unidentified sink responsible for the oxidation of excess quinols generated 

by the TCA cycle. Furthermore, light-dependent energy production was found to be highly 

dependent on the rate of quinol oxidation. Finally, the extent of CO2 fixation was predicted 

to be dependent on the amount of ATP generated through the electron transport cycle, with 

excess ATP going toward the energy-demanding CBB pathway. Based on this analysis, it 

is hypothesized that the quinone redox state acts as a feed-forward controller of the CBB 

pathway, signaling the amount of ATP available.  
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Chapter 1. The Metabolic Versatility of Rhodopseudomonas palustris 

Purple non-sulfur Bacteria (PNSB) are considered to be among the most metabolically 

versatile groups of bacteria1,2. Within this class, Rhodopseudomonas palustris CGA009 

(hereafter R. palustris) demonstrates this elasticity through its ability to survive in a myriad 

of diverse environmental conditions3. It can grow either aerobically or anaerobically, 

utilize organic (heterotrophic) or inorganic (autotrophic) carbon sources, and exploit light 

to obtain energy when growing anaerobically3. Several interesting features have been 

observed in this bacterium, such as its consumption of fatty acids, dicarboxylic acids, and 

aromatic compounds including lignin monomers4-6. It is also one of two known bacteria 

that can express three unique nitrogenases, each with a different transition-metal cofactor7. 

Furthermore, this metabolically versatile strain’s genome includes the aerobic and 

anaerobic pathways for three of the four known strategies that microbes use to break down 

aromatic compounds, such as lignin breakdown products (LBPs)8. Harnessing R. palustris’ 

unique metabolic versatilities for the conversion of plant biomass to value-added products, 

such as polyhydroxybutyrate (PHB)9, n-butanol10, and hydrogen11,12, has garnered 

increasing interest. However, a system’s level understanding of how the bacterium’s 

complex web of metabolic modules operates in response to environmental changes is 

hindering the development of the PNSB as a biochemical chassis. 

Several studies conducted on R. palustris have shown that in addition to the Calvin-

Benson-Bassham (CBB) cycle’s role of carbon assimilation during autotrophic growth, the 

pathway plays a major role in maintaining redox balance under heterotrophic growth10,12-

14. It has been shown that heterotrophic growth of the PNSB on substrates that are more 

reduced than its biomass, such as LBPs, is dependent on the availability of an electron 
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sink13. CO2-fixation using the enzyme ribulose-1,5-biphosphate carboxylase/oxygenase 

(RuBisCO), nitrogen-fixation through the enzyme nitrogenase12, and the supplementation 

of an electron acceptor (e.g., TMAO)15 all prevent the inhibitory accumulation of excess 

reducing agents. The use of CO2 as a redox balancing strategy for the conversion of plant 

biomass to value-added products is an attractive approach that could increase profitability 

while improving sustainability. However, the complex interplay between the electrons 

supplied by the catabolism of different carbon sources, CO2 fixation, and the cyclic electron 

flow during photosynthesis is not fully understood, thus diminishing the ability to engineer 

this promising bacterium. 
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Chapter 2. Genome-Scale Metabolic Modeling of PNSB 

A Genome-Scale Metabolic Model (GSMM) provides a mathematical representation of an 

organism’s metabolic functionalities16. The metabolic network represents an organism’s 

available repertoire of biochemical transformations constructed as a stoichiometric 

matrix17. Due to the underdetermined nature of metabolic networks, optimization tools are 

used to predict reaction rates for a pre-specified objective function such as the 

maximization of biomass18. One of the most commonly applied optimization tools used to 

model metabolism is Flux Balance Analysis (FBA). FBA performs a pseudo-steady state 

mass balance for each metabolite in the network to predict the maximum growth rate and 

corresponding reaction fluxes during the cell’s exponential growth phase19. Due to the high 

dimensionality of the network, other tools such as Flux Variability Analysis (FVA) are 

used to determine the sensitivity of growth rate as a function of each reaction flux20. 

Finally, a modified FBA formulation can be used to predict the set of essential genes under 

a specified growth condition21. Thus far, a limited number of small-scale metabolic 

reconstructions have been developed for PNSB, examining either the central carbon 

metabolism22 or the electron transport chain23. However, these models are limited in scope, 

as they consider less than 4% of the organism’s metabolic functionality and are therefore 

incapable of capturing system-wide interactions between different metabolic modules. 

Very recently, a GSMM of the bacterium was reconstructed and used to test an array of 

cellular objectives during phototrophic growth. Anaerobic growth on acetate, benzoate, 

and 4-hydroxybenzoate was simulated using 8 different biologically relevant objective 

functions. The model predicted that the organism primarily optimized for growth, ATP 

production, and metabolic efficiency. However, the model could further be improved by 
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integrating recently annotated metabolic pathways of lignin monomer degradation24, and 

by making use of experimental data on gene essentiality25 and metabolic flux analysis for 

growth under different carbon sources13,14 to validate and refine the network. 

In this work, a Genome-Scale Metabolic Model (GSMM) of R. palustris was constructed 

to model the bacterium’s metabolic functionality under different environmental conditions. 

The model was used to simulate growth under different carbon sources and shows excellent 

agreement with experimentally measured fluxes13,14. Gene essentiality analysis was also 

performed for aerobic and anaerobic growth on acetate. The predicted essential genes were 

compared with available trans-mutagenesis data25, and an accuracy of 84% was achieved. 

After the model indicated the presence of an unidentified quinol sink, in silico simulations 

were combined with published in vivo flux measurements13,14 to study the effect (and 

extent) of the quinone redox state on cellular growth, electron transport rate, and CO2 

fixation. These results suggest that redox state acts as a feed-forward controller of the 

highly energy-demanding CBB cycle by regulating the rate of light-generated ATP. 

Overall, an understanding of the metabolic control points of this interconnected system 

constitutes the first step towards engineering strains capable of more efficiently harnessing 

photosynthetic energy and rerouting this energy towards bio-production and lignin 

valorization. 
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Chapter 3. Reconstruction of R. palustris’ Metabolic Network 

A draft model was first generated in KBase26 based on R. palustris’ genome (downloaded 

from the NCBI database on 04/12/2018). KBase uses annotated features in the genome to 

construct a list of reactions associated with genes in the organism. Previously published 

work of the bacterium’s metabolic network22 was used to manually curate pathways from 

the central carbon metabolism and to ensure correct cofactor usage and gene association. 

This resulted in an expanded network of high-confidence reactions, all associated with 

genes in R. palustris. Experimentally measured concentrations of biomass components are 

available for R. palustris when grown on acetate13 and were used to develop the biomass 

equation. To minimize the addition of low-confidence reactions during gapfilling, the 

process was broken down into two steps. First, a subset of high-confidence reactions from 

a recently published genome-scale model of R. palustris27 was added to the draft model. 

Here, high-confidence reactions are those that are associated with a published source of 

annotation. At this point, the majority of the reactions required to gapfill the biomass 

equation existed in partially incomplete linear pathways. Therefore, the ModelSEED 

database28 was used to gapfill the model generated in KBase. In addition, annotated 

metabolic pathways for the breakdown of multiple aromatic compounds including lignin 

breakdown products were found in literature24 and in organism-specific biochemical 

databases29,30, and were subsequently added to the model. Finally, annotated R. palustris 

genes were mined from three databases (KEGG29, BioCyc30, and UniProt31) to validate the 

Gene-Protein-Reaction (GPR) associations established in the model and to include GPR 

relationships for reactions added during the gapfilling process.  
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A summary of the model’s major statistics is shown in Figure 1A. Overall, the 940 genes 

associated with model reactions account for 62% of the genes involved in energy 

metabolism, biosynthesis, carbon & nitrogen metabolism, and cellular processes in R. 

palustris’ genome3. Experimental measurements of biomass component concentrations 

were obtained for growth on acetate13 (Figure 1B) and converted into stoichiometric 

coefficients for the model’s biomass equation. Organism-specific biochemical databases 

including KEGG, UniProt, and BioCyc were then used to annotate reactions added during 

gap-filling (Figure 1C). This resulted in the addition of 328 annotated and 110 

unannotated (orphan) reactions. The inclusion of these reactions is necessary to ensure 

biomass production. pFBA was used to simulate growth on a number of different carbon 

sources, including carboxylic acids (acetate, fumarate, succinate and butyrate) and lignin 

monomers
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Chapter 4. Model Simulation and Validation 

4.1 Model simulations 

Parsimonious Flux Balance Analysis (pFBA)32 was used to simulate growth under different 

environmental conditions. pFBA is analogous to FBA but adds an outer objective that 

minimizes the sum of all reaction fluxes. Objective tilting33 was used to formulate both 

objectives in one function as shown below. 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠 −  0.0001 ∑ 𝑣𝑗𝑗∈𝐽−𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

∑ 𝑆𝑖𝑗 . 𝑣𝑗 = 0𝑗∈𝐽  ∀ 𝑖 ∈ 𝐼 (1) 

𝐿𝐵𝑗 ≤ 𝑣𝑗 ≤ 𝑈𝐵𝑗 ∀ 𝑗 ∈ 𝐼 (2) 

Where I and J are the sets of metabolites and reactions in the model, respectively. Sij is the 

stoichiometric coefficient of metabolite i in reaction j and vj is the flux value of reaction j. 

Parameters LBj and UBj denote the minimum and maximum allowable fluxes for reaction 

j, respectively. vbiomass is the flux of the biomass reaction which mimics the cellular growth 

rate.  

pFBA was used to simulate growth on a number of different carbon sources, including 

carboxylic acids (acetate, fumarate, succinate and butyrate) and lignin monomers. pFBA 

is analogous to FBA but adds an outer objective that minimizes the sum of all reaction 

fluxes (see Methods). This is justified by the assumption that cells synthesize the 
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minimum amount of cellular machinery required to maintain the maximal growth rate32. 

Simulating growth using pFBA has two main advantages over FBA. First, pFBA avoids 

unrealistic flux predictions for reactions participating in thermodynamically infeasible 

cycles (TICs)34. TICs are usually removed from GSMs to avoid false predictions; 

however, when analyzing highly connected networks like that of R. palustris, removing 

these cycles can lead to the model missing certain functionalities and metabolic modes 

utilized by the organism. pFBA avoids these false predictions by the additional constraint 

that reaction fluxes should be minimized. Second, the pFBA formulation results in a 

significantly reduced set of optimal solutions compared to FBA. Flux Balance Analysis 

usually results in a large number of alternate optimal solutions (especially in highly 

connected networks), most of which are not biologically relevant, and can therefore lead 

to false conclusions35. pFBA’s additional objective greatly restricts the solution space and 

leads to more biologically insightful conclusions32. 

4.2 Model validation 

Metabolic Flux Analysis (MFA) measurements from anaerobic growth on acetate13, 

fumarate, succinate, and butyrate14 were compared with model predicted fluxes. Model 

accuracy for each growth condition was calculated by taking the sum of percent errors 

between pFBA predicted and MFA values (see Appendix B for example). In addition, R. 

palustris’ essential genes, determined experimentally for aerobic growth on acetate25, was 

used to validate the essential genes predicted by the model. Gene essentiality was predicted 

in the model by sequentially knocking out each reaction and determining the resulting 

effect on the biomass reaction rate21. If a reaction knockout resulted in a predicted growth 

rate that was less than 10% of the wild type growth rate, the reaction was considered 
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essential. Reaction GPRs were then used to map the list of essential reactions to essential 

genes. Finally, the list of experimentally determined essential metabolic genes25 were 

compared with model predicted essential genes to determine the specificity and sensitivity 

of the predictions. 

Essentiality analysis identified 368 essential reactions, out of which 249 were associated 

with gene annotations in the model. Comparison with in vivo gene essentiality data for 

aerobic growth on acetate25 was then used to check the model accuracy (Figure 1D). The 

calculated sensitivity and false negative rate (FNR) are consistent with recently published 

GSMMs36,37. Moreover, given that this is a non-model organism with no well-characterized 

close relatives, high-confidence annotation was not available for less-studied pathways, 

therefore an automated pipeline like GrowMatch38 could not be implemented to further 

improve essentiality predictions. 

 

Figure 1. Summary of model statistics and validation. (A) 

Overall model statistics. (B) Model biomass 

component compositions. (C) Sources of gene 

annotation. (C) Gene essentiality analysis results. 
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Chapter 5. Interplay between Photosynthesis, CO2 fixation, and the 

Quinone Pool  

5.1 The effect of the quinone pool on light uptake, carbon dioxide fixation, and 

growth 

During initial growth simulations, growth was observed to be hindered due to the 

accumulation of excess quinols formed in the TCA cycle. Since no high-confidence 

reaction was found to consume quinols in R. palustris, a quinol “sink” reaction was added 

to the model. Sink reactions are often incorporated into metabolic models when a 

metabolite is known to be produced during metabolism but for which no means of 

consumption have been identified39, or to describe the accumulation of a storage 

compound39 (e.g. glycogen). Furthermore, recent experimental work with R. palustris TIE-

1 reported the presence of an unidentified quinol-oxidizing reaction that had not been 

accounted for previously40, giving further support to this prediction. To determine the 

effect of the quinone pool on growth, pFBA simulations were conducted under different 

quinol sink rates to qualitatively predict how changes in the quinone redox state affected 

the rest of the metabolic network. The quinol sink reaction was treated as a parameter in 

the model and pFBA simulations were conducted at varying quinol oxidation (sink) rates 

to determine how light uptake (i.e. Electron Transport Rate or ETR), growth, and CO2 

fixation are affected by changes in the quinone redox state (Figure 2). Carbon uptake was 

restricted to a maximum value of 100 mmol/gDW/hr for acetate and 50 mmol/gDW/hr for 

fumarate, succinate, and butyrate to ensure the same number of carbons were being up 

taken. MFA values were scaled to the same carbon uptake rates13,14. For growth on 
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butyrate, the supplementation of CO2 is required for growth, as the substrate is more 

reduced than biomass and requires an electron sink14. The media was supplied with CO2 at 

a maximum uptake rate of 32.1 mmol/gDW/hr to match MFA observations. Since steady-

state GSMMs cannot capture metabolite concentrations, the redox state cannot be 

calculated directly. Instead, the qualitative behavior of the redox state was predicted by 

varying the rate of the quinol sink. As the quinol oxidation rate increases, the quinone pool 

becomes more oxidized. Using experimental MFA data13,14, the quinol oxidation rate was 

predicted for each of the four substrates (Table 1). These values were calculated by 

minimizing the sum of errors between the in silico generated pFBA fluxes and the in vivo 

MFA flux values. The table also shows the quinone reduction rate through the TCA cycle 

for each carbon source. The percentage of CO2 fixed was defined as the rate of CO2 fixation 

divided by the total rate of CO2 produced metabolically. Figure 3 shows the resulting flux 

predictions obtained at the predicted quinol oxidation rates for growth on acetate (figure 

3A), and the calculated percent errors of these predictions for each carbon substrate (figure 

3B). A comparison of flux predictions with MFA values for the other three carbon sources 

is provided in Appendix A.  

For growth on acetate and butyrate, light uptake (i.e. ETR) shows two distinct regions 

based on the extent of quinol oxidation (Figure 2A). Under low oxidation rates, flux 

through the quinol-producing succinate dehydrogenase reaction is avoided by using the 

glyoxylate shunt and subsequently the CBB cycle. Therefore, both light uptake and CO2 

fixation increase rapidly in this region. In the second region, at high quinol oxidation rates, 

flux shifts toward the oxidative TCA cycle. Therefore, in this region, both the Electron 

Transport Chain (ETC) activity and the rate of CO2 fixation decrease with increasing quinol 
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oxidation. Furthermore, as can be seen from Table 1, the ratio of quinol oxidation rate to 

quinone reduction rate is similar for both carbon sources. Due to the supplementation of 

CO2 during growth on butyrate, the percentage of CO2 fixation could not be calculated. 

During growth on succinate, the production of quinols through succinate dehydrogenase 

cannot be avoided, therefore light uptake rate increases linearly with the rate of quinol 

oxidation. Moreover, the rates of quinol oxidation and quinone reduction are equivalent, 

indicating that the quinone pool is more reduced when compared to the redox state during 

growth on acetate and butyrate. This leads to a reduced electron flow through the ETC, and 

subsequently lower ATP generation. Finally, the model predicts that during growth on the 

highly oxidized (compared to cell biomass) carbon source fumarate, the rate of the quinol 

sink does not affect the flux distribution. 

 

 

Figure 2. Effect of the Quinol sink rate on: (A) Light uptake rate, (B) Growth rate, (C) Carbon source 

uptake rate, and (D) Carbon fixation rate for growth on four carbon sources. Ace: acetate, 

but: butyrate, suc: succinate, fum: fumarate. 
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Carbon 

source 

QH2 oxidation 

rate 

(mmol/gDW/hr) 

Q reduction 

ratea 

(mmol/gDW/hr) 

Electron 

transport rate  

(mol/gDW/hr) 

CO2 fixation 

rate  

(mol/gDW/hr) 

% 

CO2 

fixedb 

Net CO2 

excretion rate 

(mmol/gDW/hr) 

Acetate 52.5 39.1 5.3 29.7 73.2 10.9 

Butyrate 54.9 37.4 5.4 57.8 - -18.6c 

Succinate 49.8 49.2 3.0 35.6 50.6 34.8 

Fumarate 0 0 2.3 17.3 25.1 51.5 

Table 1. Predicted reaction rates for growth on four different carbon sources 

 

a The rate of quinone reduction in the TCA cycle. 
b The rate of CO2 fixation divided by the rate of total CO2 produced. 
c CO2 was supplied in the media during growth on butyrate. 
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A similar parameter sampling procedure was performed to determine the effect of light 

uptake on growth. Light uptake rate was set as a parameter and the quinol oxidation rate 

was fixed to the value predicted based on MFA fluxes (Figure 4). Again, the plots show 

two distinct growth regions: (i) a low-light (LL) energy-limited region, and (ii) a high-light 

(HL) carbon-limited region. In the LL region, growth is highly dependent on the amount 

of light available and the model predicts that all of the ATP produced is used to convert 

the carbon source into biomass precursors. Therefore, no ATP remains for the energy-

Figure 3. Comparison of model-predicted vs MFA-generated flux values for reactions 

involved in central carbon metabolism. (A) Metabolic flux map showing reaction 

rates for growth on acetate (B) Percentage error between model predictions and MFA 

flux values for growth on four carbon sources. 

 



15 

 

intensive CBB pathway. In the HL region, the maximum substrate uptake rate is reached, 

and the carbon source cannot be incorporated any faster. The additional energy produced 

from light is then directed towards CO2 fixation. Although the model predicts that the rate 

of CO2 fixation increases linearly with light uptake rate, kinetic and thermodynamic 

constrains on the highly inefficient CO2-fixing RuBisCO enzyme41 hinder this process at 

high light uptake.  

 

 

 

 

Figure 4. Effect of the light sink rate on (A) Growth rate, (B) Carbon source uptake rate, (C) Carbon 

fixation rate, and (D) Carbon dioxide excretion rate for growth on four carbon sources. 

Ace: acetate, but: butyrate, suc: succinate, fum: fumarate. In A, B, and D, the lines for succinate 

and fumarate lie on top of each other.  
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5.2 Proposed mechanism for the interplay between the quinone redox state, the 

electron transport rate, and CO2 fixation 

Based on the effect of the quinol oxidation rate on light uptake and on the model’s flux 

distribution, a mechanistic explanation of the system-wide metabolic interactions can be 

postulated. As shown in Figure 5, increased flux through the oxidative TCA cycle leads to 

the accumulation of reduced quinols. This in turn leads to a restriction in the flow of 

electrons through the ETC and consequently in the amount of ATP produced. The CBB 

system thus lacks the energy required to fix CO2. Therefore, the quinone redox state is 

predicted to act as a feed-forward controller to the energetically expensive CBB pathway, 

indicating how much ATP is available at a given condition.  

Comparison of pFBA generated growth simulations with MFA data leads to the hypothesis 

that an unidentified quinone:oxidoreductase reaction has to occur to obtain the observed 

flux distribution. A previous study on the PNSB R. capsulatus suggests that complex I, the 

NADH:quinone oxidoreductase enzyme, is responsible for the observed quinol oxidation 

through reverse electron flow42. However, the model predicts that the rate of quinol 

oxidation required cannot be accounted for through complex I only, which showed low 

activity. Furthermore, based on the high thermodynamic cost of reverse electron flow, it 

appears unlikely that it can account for the predicted rate of quinol oxidation23.  

Although the source of quinol oxidation (sink) has yet to be identified, there are a number 

of candidate reactions that can carry out this role. Primarily, the malate:quinone 

dehydrogenase (MDH) appears to be a potential reaction for oxidizing excess quinols. In 

the forward direction, this reaction converts malate into oxaloacetate and produces 

ubiquinol in the process. A second NAD-dependent malate dehydrogenase is also coded 
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for by R. palustris that could perform the same function. Knocking out and over-expressing 

these enzymes could be employed to investigate their role in ETR, ATP production, and 

CO2 fixation. 

 

Figure 5. Schematic of a proposed mechanism for the interaction between the quinone redox state, electron 

transport rate, and carbon fixation. (A) High rate of quinol oxidation. (B) Low rate of quinol oxidation.  
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Chapter 6. Conclusions Recommendation for Future Work 

In this study, a genome-scale metabolic network was used to propose a system-wide 

mechanistic model of the interactive system that includes photosynthesis, carbon dioxide 

fixation, and the quinone redox state. The model was validated using experimental 

genome essentiality data25 (84% accuracy), and flux measurement data13,14 on four carbon 

sources (5-19% prediction error). Model simulations predict the presence of an 

unidentified quinol sink. Predictions also indicate that the extent of CO2 fixation is 

dependent on the amount of ATP present, with the quinone redox state acting as a feed 

forward signal to the CBB system. The proposed mechanism can be used to generate 

strategies for engineering strains capable of more efficiently harnessing photosynthetic 

energy, and that have the ability to reroute energy towards bio-production and lignin 

valorization.  

Going Forward, future experimental work can be conducted to measure the electron 

transport rate, intracellular ATP concentration, and RuBisCO gene expression across 

different quinone redox states to strengthen the proposed hypothesis and further refine the 

model. Recently developed protocols using pulse amplitude fluorometry (PAM) 

measurements to infer electron transport rates in photosynthetic bacteria can be 

implemented to measure substrate and condition-specific electron transport rate in R. 

palustris. Simultaneous the use of ATP and quinone assays to measure intracellular ATP 

and quinone concentrations will serve as further evidence to the proposed hypothesis, and 

enhance our understanding of how this bacterium reroutes energy and carbon under 

different environmental conditions. 
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Appendices 

Appendix A: pFBA simulation for growth on butyrate, succinate, and fumarate 

 
Figure A1. Metabolic flux map showing predicted pFBA and experimentally obtained MFA reaction rates 

for growth on butyrate.  
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Figure A2. Metabolic flux map showing predicted pFBA and experimentally obtained MFA reaction rates 

for growth on succinate.  
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Figure A3. Metabolic flux map showing predicted pFBA and experimentally obtained MFA reaction rates 

for growth on fumarate.  
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Appendix B: Calculating pFBA prediction error for growth on acetate 

Formula used to calculate prediction error: 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 =  ∑ 𝑣𝑗, 𝑝𝐹𝐵𝐴 − 𝑣𝑗,𝑀𝐹𝐴𝑣𝑗,𝑝𝐹𝐵𝐴𝑗∈𝐽  

Where J is the list of reactions with a measured MFA flux. 

 

 

 

rxn ID MFA flux pFBA 

flux 

|MFA-pFBA| corrected |MFA-pFBA| Error 

PGI 1.8 +/- 

0.6 

1.5 0.3 0 0 

OPPP 0 +/- 0.5 0 0 0 0 

TA 2.2 0 2.2 2.2 0 

Ald 11 13.8 2.8 2.8 0.202899 

TK1 11.2 +/- 

1.2 

12 0.8 0 0 

GAPDH 59.5 +/- 

6.7 

60.8 1.3 0 0 

Rubisco 29.6 +/- 

3.9 

29.7 0.1 0 0 

Eno 6.3 +/- 

1.3 

1.3 5 3.7 2.846154 

TK2 10.1 +/- 

1.2 

10.2 0.1 0 0 

S7 12.4 10.3 2.1 2.1 0.203883 

PK 14.1 +/- 

1.5 

7.9 6.2 4.7 0.594937 

PDH/POR 2.4 +/- 

1.9 

0 2.4 0.5 0 

CSyn 45.9 +/- 

1.2 

45.9 0 0 0 

MSyn 37.2 +/- 

1.1 

35.3 1.9 0.8 0.022663 

PEPCK 22.9 +/- 

0.9 

12.7 10.2 9.3 0.732283 

IDH 8.7 +/- 

0.6 

9.8 1.1 0.5 0.05102 

ILy 37.2 +/- 

1.1 

36.1 1.1 0 0 

Table A1. Calculation of prediction errors for reactions in central carbon metabolism 

grown on acetate. 
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aKDH 2.0 +/- 

0.2 

0 2 1.8 0 

SDH 38.4 +/- 

1.1 

39.1 0.7 0 0 

MDH 75.6 +/- 

1.7 

78.4 2.8 1.1 0.014031 

MEnz 0.0 +/- 

0.7 

0 0 0 0 

Uptake 100 100.1 0.1 0.1 0.000999 
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