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Abstract

We describe a generative model of the relationship be-

tween two images. The model is defined as a factored three-

way Boltzmann machine, in which hidden variables collab-

orate to define the joint correlation matrix for image pairs.

Modeling the joint distribution over pairs makes it possi-

ble to efficiently match images that are the same accord-

ing to a learned measure of similarity. We apply the model

to several face matching tasks, and show that it learns to

represent the input images using task-specific basis func-

tions. Matching performance is superior to previous simi-

lar generative models, including recent conditional models

of transformations. We also show that the model can be

used as a plug-in matching score to perform invariant clas-

sification.

1. Introduction

The ability to judge whether two images, or image

patches, are “the same” is one of the most basic and cen-

tral operations in most computer vision tasks. Matching

images that show the same content across different views,

for example, is the key operation in most retrieval and clas-

sification tasks. Matching patches that represent the same

position across different images is the main task in virtually

all geometric inference, tracking, stereo, and related tasks.

What makes matching hard is the fact that it is intimately

tied to the presence of invariants in a task at hand: Two im-

ages are the same exactly if they are invariants under some

class of allowable transformations. In many common tasks

the “allowable transformations” are, unfortunately, much

Figure 1. Subset of filter pairs learned from non-rigid transforma-

tions of faces. To compute the joint density of two images, filters

in the top row are applied to the first image and filters in the bot-

tom row are applied to the second image. The responses of corre-

sponding filters are multiplied and projected into a feature space

that represents relations. Both the mappings and the filters are

learned from data (see main text for details).

too complex to be modeled sufficiently well with rigid geo-

metric transformations or simple photometric effects. They

involve homographies or affine transformations in many ge-

ometry tasks, and highly complex, and often subtle, non-

rigid transformations in the case of face modeling and re-

trieval. Modeling these transformations by hand is usually

either impractical or extremely time-consuming and diffi-

cult.

The task of learning about invariances has received a fair

amount of attention in the past. In pure matching tasks,

metric learning (see, for example, [27], [2], [1]) has been

used with varying levels of success. Many metric learning

methods, unfortunately, are either based on adapting a Ma-

halanobis distance (in which case they are not expressive

enough to model the subtle variations required by datasets

like face images), or they require a considerable amount of

hand-crafting to achieve the desired invariances (such as the

use of convolutional neural networks in [2], or carefully

designed Haar-features in [1], among others). Invariances
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have also been addressed with bilinear models (for exam-

ple, [23], [18], [4]).

Matching of large images (for registration, retrieval, or

other tasks) is typically performed by resorting entirely to

hand-crafted systems operating on interest points. Since in-

terest point positions need to be matched as a sub-routine,

these approaches still rely on, and thus profit from, being

able to globally match regions around interest points well.

An entirely different, probabilistic approach to modeling

allowable transformations was recently suggested by [15].

The approach has been extended and deployed in various

applications, such as [16], [21], [8], [17]. The idea behind

this line of work is to use binary latent variables to learn the

conditional distribution of one image (the “output”) given

another image (the “input”). The conditional distribution

is modeled by a conditional Restricted Boltzmann Machine

(RBM) which makes it possible to deploy efficient learning

methods known as contrastive divergence learning (CD) [5].

Unfortunately, in inference tasks that involve matching one

cannot use the conditional distribution directly as a score,

because the RBM distribution is defined only up to an un-

known normalizing constant. In matching applications one

uses instead a measure of how well the model transforms

one image into another as a score function which has been

shown to work fairly well in some cases [15], [8].

In this paper, we describe an approach to modeling the

joint distribution over image pairs, and show that, despite

the apparent inapplicability of CD learning, it is possible

to train the model efficiently using an appropriate variation

of contrastive divergence which we call 3-way CD. We then

show how the joint model allows us to perform matching us-

ing probabilities over image pairs, and that the probabilistic

score yields a much higher accuracy than conditional mod-

els. Learning a joint density also allows us to overcome

filter normalization issues (due to having a conditional par-

tition function), which often lead to high-frequency noise-

artifacts on the input filters (see, for example, [8]).

We apply the model to face images as a major case study.

Faces represent a particularly difficult class of objects for

many vision tasks, because they show a very wide range

of meaningful configurations that cannot be captured with

simple rigid transformations. One way to analyze how faces

change is to represent transformations between pairs of face

images of the same type, such as same identity pairings that

occur in neighboring video frames, or same expression pair-

ings that occur across people experiencing the same emo-

tional context. A model’s capacity at representing transfor-

mations can be judged by attempting to transfer an expres-

sion from one individual onto the face of another individ-

ual whom the model has never seen before. This analogy

task is known as expression transfer [24]. An immediate

application of a model of face transformations is verifica-

tion, where two or more images are compared in order to

determine if they are the same identity or expression.

In our approach we assume no a priori knowledge

of what features would be useful for these, or similar,

tasks. While most approaches to face transformation em-

ploy morph bases, we learn a distributed representation of

component “morphlets”, which capture the non-rigid na-

ture of face transformations. We apply joint density mod-

els to two very different kinds of image pairs, same iden-

tity/different expressions versus same expression/different

identity. In both cases, modeling the relation between pairs

requires the model to extract highly non-linear/non-rigid

transformations of faces, yet the two tasks differ in the im-

portance of identity versus expression.

2. The model

We define a probabilistic model that captures the rela-

tionship between two real-valued images x and y. In many

real-world tasks, such as dealing with facial transforma-

tions, there can be a multitude of subtle, non-linear inter-

actions between the pixel intensities. We can model these

interactions probabilistically by marginalizing over a set of

binary latent variables h1, . . . , hK . In our case, each of the

latent variables can contribute a “basis relationship” to an

overall model of the dependency between x and y.
Following [16], we define the joint probability distribu-

tion over triplets (x, y, h) using a matching score

S(x,y,h) =

F
∑

f=1

(

I
∑

i=1

vifxi)(

J
∑

j=1

wjfyj)(

K
∑

k=1

ukfhk) (1)

that first projects x, y and h onto F basis functions (or

“filters”) u·f , v·f and w·f , respectively, and then sums over

products of corresponding filter-responses. As a result the

score function assigns large values to triplets whose filter-

responses tend to match well. The filters themselves will

be learned from training data as we shall show, allowing

the score function to assign meaning to the co-occurrence

of subsets of filter responses by letting the hidden variables

weight these co-occurrences appropriately.
To turn the matching score into a probability distribution

we first add “bias” terms including quadratic containment
of the visibles

E(x,y,h) = −S(x,y,h)

−
K
∑

k=1

ukhk +
1

2

I
∑

i=1

(xi − vi)
2 +

1

2

J
∑

j=1

(yj − wj)
2

(2)

which we then exponentiate and normalize

p(x,y,h) =
1

Z
exp (−E(x,y,h)) ,

Z =
∑

x,y,h

exp (−E(x,y,h))
(3)
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The particular choice of bias terms yields Gauss conditional

distributions to model continuous data as we discuss below.

The number F of triplets and the number K of latent vari-

ables have to be set by hand or by cross-validation, and typ-

ically range in the 100’s to 1000’s.

To obtain the distribution over an image pair (x,y), we

can now marginalize over h:

p(x,y) =
∑

h∈{0,1}K

p(x,y,h) (4)

Note that the sum over h is not tractable for large K, be-

cause it contains 2K terms. As we shall discuss below,

however, all that is required for maximum likelihood learn-

ing and for matching are conditional distributions under the

model, which can be computed efficiently.
By plugging the definition of energy (Eq. 2) into Eq. 3,

and normalizing appropriately, we get

p(h|y,x) =
∏

k

bernoulli
(

uk +
∑

f

ukf

∑

i

vifxi

∑

j

wjfyj
)

(5)

p(x|y,h) =
∏

i

N
(

vi +
∑

f

vif (
∑

j

wjfyj)(
∑

k

ukfhk); 1.0
)

(6)

p(y|x,h) =
∏

j

N
(

wj +
∑

f

wjf (
∑

i

vifxi)(
∑

k

ukfhk); 1.0
)

(7)

This shows1 that, among the three sets of variables, com-

putation of the conditional distribution of any one group (x,

y, or h), given the other two, is tractable. Furthermore,

the variables within a group are conditionally independent

given the variables in the other two. An illustration of the

model is shown in Figure 2. Variables (pixels and hidden

variables) are shown as circles, filters as triangles.

Our model is related to previous work on three-way in-

teractions, such as [16], [19]. In particular, an energy func-

tion similar to Eq. 2 was used in [16], with the difference

that we are modeling real-valued rather than binary images

and that we are concerned with non-rigid transformations.

More importantly, the normalizing constant Z in Eq. 3 in

contrast to previous methods (such as [16], [21], [8]) is a

sum over x,y and h. We thus define the joint distribution

for an image pair, rather than a conditional distribution of

an output-image given an input image. This has the effect

that learning, unlike in these approachs, does not boil down

to training a set of case-specific RBMs, making it impossi-

ble here to deploy standard contrastive divergence learning

[5]. As we demonstrate in our experiments, however, it is

1It would be possible to modify the model, such that the variances in

Eqs. 7 and 6 are different from one. Here, instead, we normalize images,

such that each pixel, independently, has mean zero, and standard deviation

one on average, before deploying or training the model.

possible to efficiently train this model using a “three-way”

version of contrastive divergence learning, which we dis-

cuss in the next section.

2.1. 3way Contrastive Divergence

To train the model we maximize the log-likelihood L =∑
α log p(yα,xα) for a set of training pairs {(xα,yα)}.

The derivative of L wrt. a single model parameter θ is given
by

−
∂L

∂θ
=

∑

α

〈

∂E(xα,yα,h)

∂θ

〉

h

−

〈

∂E(x,y,h)

∂θ

〉

x,y,h

(8)

The second term in this sum is an average wrt. to the

model distribution over x,y and h, and thus it cannot be

computed in closed form. It is possible, however, to ap-

proximate the average by drawing samples from the distri-

bution. Since the model exhibits a “tri-partite” structure,

drawing samples from any of the distributions p(y|x,h),
p(x|y,h), p(h|y,x) is straightforward, using the decou-

pling into products in Equations 5 to 7. This suggests using

Gibbs sampling, by repeatedly sampling from the distribu-

tions in one of these groups, conditioned on the other two.

The tri-partite structure facilitates Gibbs-sampling in this

model just as the bi-partite structure in a standard RBM

[5]. In contrast to a standard RBM, to sample each variable

once requires visiting (all) three groups of variables rather

than just two. “Alternating” Gibbs sampling in an RBM is

replaced by three-way iterations in this case.

j

f

k

vifi wjf

ukf

h

x y

x

x

y

y

Figure 2. Left: Schematic representation of the model. Right: The

conditional inverse covariance matrix over image-pairs, given hid-

den variables. Note that the number of pixels is not necessarily the

same in images x and y.

Like using CD in a standard RBM, it is possible to ini-

tialize the sampling at the training-data and to cut it short

before reaching the equilibrium distribution [5]. Because of

the three-way structure, a single iteration involves sampling

and updating each of the three groups of variables. The or-

der with which sites are visited therefore becomes a choice

that one has to make (unlike in a two-way model). Here we

make this choice randomly in every iteration and show that

this is a viable approach in our experiments. The overall
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algorithm is shown in figure 2.1, where we use the matrices

U , V , W containing the F basis functions in their rows and

vectors u, v and w containing the biases. In practice, one

can add a regularization term −λ(‖U‖2
2
+ ‖V ‖2

2
+ ‖W‖2

2
)

to the objective function where λ is chosen by hand or by

cross-validation.

Algorithm 1 Three-way contrastive divergence learning

Require: Data-set (xα, yα)Nα=1, learning-rate ǫ

repeat

for α from 1 to N do

compute Ax = Uxα, Ay = V yα

set hk = p(hk|x
α,yα) for each k

compute Ah = Wh

apply positive phase updates:

U = U + ǫ(AxxT), V = V + ǫ(AyyT),
W = W + ǫ(AhhT),
u = u+ ǫxα, v = v + ǫyα, w = w + ǫh

sample ĥ from p(h|xα,yα)
sample g from bernoulli(0.5)
if g > 0.5 then

sample x̂ from p(x|ĥ,yα), set Ax = V Tx̂

sample ŷ from p(y|ĥ, x̂), set Ay = WTŷ

else

sample ŷ from p(y|ĥ,xα), set Ay = WTŷ

sample x̂ from p(x|ĥ, ŷ), set Ax = V Tx̂

end if

set hk = p(hk|x̂, ŷ) for each k

compute Ah = Wh

apply negative phase updates:

U = U − ǫ(Axx̂T), V = V − ǫ(AyŷT),
W = W − ǫ(AhhT),
u = u− ǫx̂, v = v − ǫŷ, w = w − ǫh

renormalize U, V,W,u,v,w

end for

until convergence criterion reached

It is interesting to note that, by defining their model as

a conditional model, [16] and related approaches side-step

difficulties related to three-way structure and use contrastive

divergence training like in an RBM. We show that using

three-way iterations in learning allows us to obtain a fully

probabilistic model, which, in turn, can be used to define

a highly accurate invariant metric2 for use in matching and

classification tasks.

Plugging Eq. 2 into Eq. 3 and assuming h to be fixed
shows that the joint conditional distribution over image
pairs (x,y) given h, is a Gaussian distribution. The pre-
cision (inverse covariance) matrix Ph of this Gaussian is
the identity matrix with additional off-diagonal terms that
are non-zero only across a pair of images (but not within a

2Strictly speaking the model defines a “semi-metric”, because it does

not strictly enforce the triangle-inequality. In matching tasks a semi-metric

is all we need, however.

single image), and that are given by

P
h
ji = P

h
ij = −

∑

k

hk

∑

f

ukfvifwjf . (9)

The structure of this matrix is illustrated in Figure 2, where

white denotes zero and black non-zero.

In practice, it is important that the matrix stays positive-

definite during the optimization. An analogous require-

ment for a single image model was described in [19]. We

found that an effective way to keep Ch positive definite and

to avoid numerical instabilities is to simply normalize the

filter-coefficients (i.e. the columns of U , V and W ) after

each gradient update. In contrast to [19] we do not take any

additional measures to avoid instabilities3.

Figure 3. Examples of training image pairs. Same identity pairs

were used in tasks 1 and 3, same expression pairs were used in

task 2, and affine image patches were used in task 3.

2.2. Learning a semimetric

Note that the block structure of the precision matrix (Fig-

ure 2 (b)) is consistent with our goal to encode relation-

ships between images rather than the structure within a sin-

gle image. In particular, the model does not try to faithfully

represent any covariances within an image, but only cross-

covariances between pixels xi in one image and pixels yj
in the other image. We now describe how the model allows

us to assess the similarity between images after it has been

trained on image pairs.
The log-probability that the model assigns to an image

pair (x,y) is given by

log p(y,x) = − logZ −
1

2

(

∑

i

(vi − xi)
2 +

∑

j

(wj − yj)
2

)

+
∑

k

log
(

1 + exp
(

uk +
∑

f

ukf

∑

i

vifxi

∑

j

wjfyj
)

)

(10)

3Since diagonal dominance implies positive definiteness [7], one way

of ensuring positive definiteness is by keeping the off-diagonal entries suf-

ficiently small, which is achieved implicitly by the normalization.
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We can compute this quantity only up to logZ. However,

logZ is the same for all image pairs (x, y), so it cancels

when comparing image pairs and when the unnormalized

log-probability is used as a compatibility score.
Naively using this score as a metric on images would

be problematic, because the similarity judgement for a pair
(x,y), could be made arbitrarily bad, for example, by
rescaling both images with the same constant factor. To
remove the sensitivity to how well images themselves are
modelled, we use the following definition of dissimilarity
between two images x, y:

d(x,y) = − log p(x,y)−log p(y,x)+log p(x,x)+log p(y,y)
(11)

A similar approach is taken in [22] to define a semi-metric

using a RBM without three-way interactions. We compare

to this method in Section 3, where we show that three-way

connections can greatly improve the performance on match-

ing tasks.

It is important to note that in conditional models (for ex-

ample, [16]), the normalizing constant Z is a function of

the input image, so that the unnormalized log-probability

(Eq. 10) cannot be used to define a metric. The authors

suggest using a squared “one-step-reconstruction error” in-

stead, and report fairly good results on some classification

problems. We show in Section 3.1 that much better results

can be achieved using unnormalized log-probabilities.

Figure 4. Morphlets learned from different types of training pairs.

In each panel, the left column shows input filters wif , and the right

column shows output filters wjf . Position morphlets were learned

from pairs where the image was shifted randomly by +/-2 pixels

in x, y, holding all else constant.

Note that the definition of the semi-metric (Eq. 11) also

ensures symmetry (i.e. that d(x,y) = d(y,x)). An alterna-

tive way to obtain a symmetric dissimilarity measure is by

using weight-sharing during learning, to ensure that each

input-filter (column of V ) also occurs as an output-filter

(column of W ) and vice versa. Furthermore, parameters

involving the hidden variables (U and the biases u), which

weight the filter responses, then need to be adjusted accord-

ingly. We use both the basic and the symmetric models in

our experiments.

3. Experiments

We experimented4 with two kinds of data. For both,

we compared quantitatively to methods such as conditional

models, bilinear models, as well as models of the joint dis-

tribution of a concatenation of two images.

The first type of data contains patches of natural images

related by affine transformations. We generated data-sets

based on (i) patches of size 16×16 cropped from images in

the CIFAR database [9], and (ii) patches of larger 28 × 28
patches cropped from the van-Hateren database (first used

in [25]).

The second type of data contains transformations of face

images. We used 12, 973 images from the Toronto Face

Database (TFD) [20] containing frontally posed facial ex-

pressions of the 6 basic emotions [3], and neutral. In or-

der to test the model on a potentially more difficult face

database, we also used 12, 072 images from the Pubfig

database [10] which contains images extracted from the In-

ternet by a face detector. These images tend to vary greatly

in lighting, pose, and occlusions. Examples of image pairs

used in the experiments are shown in figure 3.

3.1. Invariant classification

As a proof of concept, we tested the model as a plug-

in matching score for classification using the “rotated

MNIST” dataset described in [11]. The dataset contains

rotated handwritten digits (“0” to “9”) of size 28× 28 pix-

els as well as labels; the task is classification. There are

12000 cases for training and 50000 cases for testing. We

trained the symmetric model with 100 mapping units and

500 factors on the 28 × 28 affine van Hateren patches. For

classification, we used k-nearest neighbors with the match-

ing score defined by the trained model. We kept 2000 cases

from the training data as a validation set used to choose k.

For nearest neighbors using Euclidean distance the test-set

performance is 13.21% false (at k = 7). For the semi-

metric inferred by the model the performance is 10.13%
false (at k = 5). This shows that the model is able to ef-

fectively encode the invariances in a way suitable for clas-

sification. For reference, the performance of other methods

on this dataset is shown in Table 3.1. The model knows the

type of invariances in this task and has thus an advantage

over black-box methods. However, it is important to note

that there were no digits in the training data used for train-

ing the model. We did not vary any of the parameters (num-

ber of hiddens/factors) in the experiment, so performing a

search over these using cross-validation is likely to improve

4A GPU-based implementation of the model in the Python

language is available at http://www.cs.toronto.edu/˜rfm/

code/gbmcuda.py.
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Model 3-way Knn SVM DEEP NNet

Performance 10.13 13.21 11.11 10.30 18.11

Table 1. Error rates in % for an invariant classification task. Keys

used in the table: 3-way: Model described in this paper; Knn: K-

Nearest Neighbors; SVM: Best performing SVM (RBF kernels);

DEEP: Best performing deep belief net; NNet: Multilayer Percep-

tron.

performance. A model trained on rotations, rather than gen-

eral affine transformations, may also improve performance.

In any case it is clear that the model can effectively trans-

fer knowledge from the domain of general natural images

to the domain of hand-written digits.

3.2. Learning expression and identity morphlets

We trained two models on face pairs from the TFD in or-

der to extract features that represent either changes in facial

identity holding expression constant (identity morphlets) or

changes in facial expression holding identity constant (ex-

pression morphlets). For the expression changes, we trained

a model on 8 million same identity image pairs using 512

factors, and 512 hidden units. We did not use weight-decay.

For the identity changes, we trained an identical model on

8 million same expression image pairs. In addition, we

trained models on rigid image shifts and on shifts combined

with expression changes to demonstrate that very different

kinds of change can be represented by the same type of

model. Figure 4 shows image filters for the various types

of transformation, Figure 1 shows some additional filters for

shifts combined with expression changes. The plots demon-

strate that the morphlets take on distinct forms that depend

on the class of transformation. A lot of the learned filters

are reminiscent of the localized filters that one obtains with

non-negative matrix factorization [12], but there are no pos-

itivity constraints, and these filters come in pairs. There are

also some filters that are more global.

3.3. Facial expression transfer

The problem of remapping a facial expression change

from one person onto another is known as expression trans-

fer [24]. A model trained to represent expression transfor-

mations by extracting identity morphlets can perform ex-

pression transfer by applying a transformation inferred from

a source pair to a target input image, which can be either

x or y. This is a type of analogy making [16], which in

this case is complicated by the fact that it relies on highly

delicate, localized deformations. In particular, the target in-

put image is a different identity than the source pair, and

we need to deform the target identity such that the output

image matches the expression of the corresponding source

image, while retaining the identity of the target (see Figure

5). The results demonstrate a crucial capacity of face rep-

Figure 5. Facial expression transfer for random test pairs using a

model trained on same identity face pairs. Face pairs in the top row

are shown to the model at test time in order to infer a facial expres-

sion transformation. The inferred transformation is then applied to

left images of the bottom rows to obtain synthetic expressions that

retain facial identity.

resentation, which is the ability to separate static identity

information of a face from its dynamic expression features.

3.4. Quantitative comparisons

We examined the performance of the model quantita-

tively on four tasks. Each task amounts to determining for

a set of image pairs, whether the images are “the same” or

not, where the definition of sameness is different in each

task. For each task we used the area under the ROC curve

(AUROC) as a measure of discrimination performance. We

set F , K and λ using an independent validation set.

First we compared to the conditional model described in

[16], using the reconstruction error metric as suggested by

the authors. Second, we compared to a bilinear variation

of the joint model to assess whether the nonlinear repre-

sentation of transformations captured by the binary hidden

units in our model is more suited to metric learning than an

equivalent bilinear approach. We also compared to RBMs

on the concatenation of x and y as an alternative probabilis-

tic model for which we can obtain a free energy score for

discrimination [22]. This also allows us to assess the im-

portance of using three-way connections. We used cosine

similarity applied to the pixel vectors as a baseline discrim-

ination measure. In addition to the basic formulation of the

model, we examined the symmetric version using weight-

sharing to enforce symmetry (see Section 2.2).

The first two tasks used face images from the TFD [20].

For Task 1 (TFD Same ID), models were trained on pairs

of images of the same identity only, and the discrimination

task was same versus different person. For Task 2 (TFD

Same Exp), models were trained on pairs of images of the

same expression from two different identities, and the dis-

crimination task was same versus different expression. Task

3 (Pubfig Same ID) was trained on images from the Pubfig

database [10], and like Task 1 also performed same ver-

sus different identity discrimination. For the fourth task

2798



Model/Task TFD

ID

TFD

Exp

PUBFIG

ID

AFFINE

cosine 0.848 0.663 0.649 0.721

RBM 0.869 0.656 0.647 0.799

conditional 0.805 0.634 0.557 0.825

bilinear 0.905 0.637 0.774 0.812

3-way 0.932 0.705 0.771 0.930

3-way symm 0.951 0.695 0.762 0.931

Table 2. Area under the ROC curve on four matching tasks.

(AFFINE) we used affine transformations of the CIFAR

patches of size 16-by-16 pixels (examples also shown in

Figure 3). The task is to determine whether two patches

are affine transforms of each other or not.

The ROC curves are plotted in Figure 6, and AUROC

measures are shown in Table 3.4. The nonlinear 3-way

joint model outperformed both the RBM and the conditional

model by a fairly large margin in all tasks. The joint non-

linear models outperformed the bilinear model on all tasks

except Task 3 (PUBFIG Same ID), for which performance

was basically equivalent for the non-symmetric and bilinear

models. The symmetric and non-symmetric formulations

tended to perform similarly in all tasks. Interestingly, the

conditional model using the reconstruction metric [16] per-

formed significantly worse than the RBM, even though the

RBM did not model any 3-way interactions. Critically, for

the face tasks, the matching score applied by the joint 3-

way models always significantly outperformed the cosine

baseline, but the reconstruction error metric used by the

conditional model did not. On the other hand, all models,

whether using the matching score (joint models and RBM)

or reconstruction error (conditional model), outperformed

the cosine measure for Task 4 (AFFINE).

4. Discussion

A trained model can extract two pieces of information

from an image pair: (i) the matching score (i.e. how likely

is this pair “the same”); (ii) an implicit encoding of the re-

lationship between the two images in the form of the in-

ferred hidden variables. In this paper, we focused on the

first. Combining the score with the encoding of the relation,

could be useful in geometry tasks, where it could help elim-

inate false matches and thus potentially speed up iterative

schemes, such as RANSAC, and is an interesting direction

for further research. Another interesting direction for fu-

ture research is the introduction of sparsity, for example by

adopting the approach in [13].

The binary hidden units in the model could be stacked

to produce deep architectures in the same way that deep be-

lief nets [6] are constructed. This would give rise to a hi-

erarchical model of image transformations, analogous to a

hierarchical factored model of natural images proposed by

[19], but more powerful as it would represent spatiotempo-

ral geometry rather than spatial geometry alone. This ability

to stack nonlinear transformation modules is an advantage

over bilinear models, where the hidden units are linear. It is

also an advantage relative to standard optical flow models

developed to track face deformations [14], which lack any

internal feature representational layer. It could be the case

that optical flow in the right feature space would work well

for representing face transformations; however, the 3-way

model already solves the problem of what the features are

and how they transform within the framework of a single

unsupervised learning procedure.
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