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Modeling the metal-semiconductor interaction: Analytical bond-order potential
for platinum-carbon

Karsten Albe,* Kai Nordlund, and Robert S. Averback
Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urba

Illinois 61801
~Received 4 December 2001; published 13 May 2002!

We propose an analytical interatomic potential for modeling platinum, carbon, and the platinum-carbon
interaction using a single functional form. The ansatz chosen for this potential makes use of the fact that
chemical bonding in both covalent systems andd-transition metals can be described in terms of the Pauling
bond order. By adopting Brenner’s original bond-order potential for carbon@Phys. Rev. B42, 9458~1990!# we
devise an analytical expression that has an equivalent form for describing the C-C/Pt-Pt/Pt-C interactions. It
resembles, in the case of the pure metal interaction, an embedded-atom scheme, but includes angularity. The
potential consequently provides an excellent description of the properties of Pt including the elastic anisotropy
ratio. The parameters for both the Pt-Pt interaction and the Pt-C interaction are systematically adjusted using a
combination of experimental and theoretical data, the latter being generated by total-energy calculations based
on density-functional theory. This approach offers good chemical accuracy in describing all types of interac-
tions, and has a wide applicability for modeling metal-semiconductor systems.

DOI: 10.1103/PhysRevB.65.195124 PACS number~s!: 82.20.Kh, 34.20.Cf, 82.20.Wt
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I. INTRODUCTION

Analytical potentials of the embedded-atom type1–5 rep-
resent the current state of art in the classical description
cohesion in metals, and they enable simulations of sev
million atoms on present day computers. For covalen
bonded systems, such as carbon, silicon, and german
reactive bond-order potentials play a similar role and h
successfully been used in various applications.6 There are
only few simulation studies, however, that considered ma
rial processes in mixed covalent-metallic systems. This
due to the lack of analytical potentials that describe the
hesion in metals, carbons, and metal-carbon in a compre
sive way. The modified embedded-atom method~MEAM !,
as proposed by Baskes7 provides a possible analytical bas
for such a potential, but has not yet been used for carb
This might be related to the fact that within the MEAM
angularity depends only on the atom-type but not on
bond type, so that different hybridizations cannot be ea
described. In some studies pair potentials have been use
order to link established semiconductor and EA
potentials.8–12 The applicability of these approaches, ho
ever, is rather limited, since bonds between chemically
saturated carbon and metal atoms cannot be described.

There is much interest, of course, in material proper
and processes that involve chemical interactions betw
metals and carbon. Typical examples include the growth
nanostructured metallic films on semimetallic inert su
strates, such as graphite via cluster beam or vapor depos
techniques. These may be useful for the fabrication of na
electronic sensors. The deposition of metal clusters on
bon, or conversely, the deposition of carbon clusters on m
als, both at thermal and hyperthermal energies, is also
interest. By metal-cluster deposition an agglomeration
confined quantum systems can be obtained.13 Diffusion
mechanisms of huge clusters on graphite have b
0163-1829/2002/65~19!/195124~11!/$20.00 65 1951
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identified,14 and a ‘‘soft landing’’ as well as the penetratio
of metal clusters have been observed.11 Finally, metals play a
dominant role in the synthesis of carbon nanostructu
where they act both as condensation seeds and catalysts15 A
computationally efficient interatomic potential that realis
cally describes the structure and chemistry of both covale
bonded materials and metals would therefore be very us
for atomistic simulations of those material processes.

In this study we devise such a potential for carbo
platinum. Platinum is of obvious importance for catalyt
devices,16,17 but there are also several bulk and interfa
problems related to Pt-C, for instance the optimization
multilayers that are used as the reflector and dispersive
ment in the optical system of synchrotron beamlines.18 From
a theoretical point of view, carbon and platinum are imm
cible systems that do not form a carbide structure.19 Since
the electronegativity difference of Pt and C is small, t
charge transfer is negligible. Therefore, this system is
ideal choice for an analytical description using a sho
ranged potential.

The paper is organized as follows. First, we show how
bond-order scheme can be linked to established embed
atom methods, and present the analytical form of the po
tial. Then the density-functional theory~DFT! calculations,
that were performed in order to obtain a set of input data
the parameterization of the potential, are briefly describ
Finally, we discuss the fitting procedure for each type
interaction, separately.

II. BASIC METHODOLOGY AND ENERGY FUNCTIONAL

During the past two decades the interest in modeling
namic processes in condensed phases, where statistica
evance is necessary, has led to the development of m
different analytical potentials for various systems that ena
large-scale atomistic simulations using molecular dynam
or Monte Carlo methods. These potentials are analyt
©2002 The American Physical Society24-1



ur
m
m
e

ti
is
an

th

m
s

t,
th
ag
s

m

o-

a
te

te

.
re-
g
-

the
hop-
an

of
n
f-

der

thin

duc-

to
ffi-
by

KARSTEN ALBE, KAI NORDLUND, AND ROBERT S. AVERBACK PHYSICAL REVIEW B65 195124
functions or functionals, which relate the electronic struct
of the system to the lattice topology. Within a quantu
mechanical framework, the tight-binding method is the si
plest scheme for describing the energetics of transition m
als and semiconductors. This is, therefore, a natural star
point for developing analytical energy functionals. In th
section we review the basic assumptions of this theory
derive the analytical functional used in this work.

If we assume only one valence orbital per atomic site,
total energy of the system of interest can be written as:20,21

~1!

The first term accounts for the repulsion between ato
pairs, and the second is the bond energy calculated a
integral over the local electronic density of statesNi(E) at an
atomic sitei. e i is the effective atomic energy level. In fac
most structural quantities are insensitive to the details of
electron density of states, being mainly related to its aver
value and effective width. Ford transition metals such a
platinum, the cohesive energy is dominated by thed-band
contribution. It is a good approximation, therefore, to assu
a rectangular density of states of widthWi , so that the den-
sity of states per atom for a fulld-band will take the value
10/W. Then the bond energy per sitei can be written as21

VB
i '2

1

20
WiNd~102Nd!, ~2!

whereNd is the number of electrons in thed-band.
The width Wi is by definition related to the second m

ment of the local density of statesm i
2 via

m i
25E

2`

`

E2Ni~E!dE5E
2Wi /2

Wi /2 10

Wi
E2dE5

10

12
Wi

2 . ~3!

On the other hand, the second moment is given by
exact relation, which is the sum of two-center hopping in
gralshi j , which depend on the next neighbor distancer i j :

m i
252 (

j (Þ i )
~dds212ddp212ddd2!R5Ri j

510(
j Þ i

h2~r i j !.

~4!

Combining Eqs.~3! and ~4! we obtain

1

12
Wi

25 (
j (Þ i )

h2~r i j !. ~5!

Finally, using Eq.~5! together with Eq.~2! the total en-
ergy in Eq.~1! can be written as a sum over the atomic si
in the following way:

~6!
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This is identical to the empirical tight-binding~TB! po-
tentials for transition metals that Cleri and Rosato derived22

If we identify the sum over the hopping-integrals as the
sulting electron densityr i at sitei and define an embeddin
functionF(r)5DAr, then Eq.~6! corresponds to the Finnis
Sinclair implementation of the embedded-atom method3–5 as
originally proposed by Daw and Baskes.1,2

It is appropriate to chose an exponential term for both
distance dependence of the screening function and the
ping integral. Without loss of generality, therefore, we c
write f(r i j )5Aexp2lrij andh(r i j )5Cexp2mrij. Equation~6!
can then be rewritten as

~7!

whereB5CD.
The termVB

i is the contribution of atomi to the band
structure energy; it can be rewritten in the following way:

VB
i 5BS (

j (Þ i )
exp22mr i j D 1/2

~8!

~9!

If we refer to bi j as the bond-order constant in terms
the Abell-Tersoff concept,23 then the total-energy expressio
as derived in Eq.~6! becomes equivalent to a sum over e
fective bond strengths:

~10!

This equivalence between the EAM and the bond-or
ansatz was previously pointed out by Brenner24 almost a de-
cade ago. It is basically a consequence of the fact that wi
the TB approach the chemical bonding ofd transition metals
can be explained in the same terms as those for semicon
tors.

Since we have considered only the hopping integrals
the next neighbors, it is necessary and computationally e
cient to restrict the interaction to the next neighbor sphere
a cutoff function, which we choose as

f ~r !5H 1, r<R2D,

1
2 2 1

2 sin$p~r 2R!/~2D !%, uR2r u<D,

0, r>R1D.
~11!

After rearranging the sum, Eq.~10! becomes

~12!
4-2
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In this present form the bond-order parameterbi j , as de-
fined in Eq. ~9!, does not include angular dependenci
which are necessary for accurately modeling the deforma
of bonds. In order to overcome this deficiency Tersoff int
duced angular dependent bond-order functions for silic
carbon and germanium,6 while Brenner refined the
approach25 for modeling hydrocarbons. Other closely relat
potentials were proposed for Si and C~Ref. 26! and, recently,
several studies derived analytical bond-order functions
rectly from a momentum expansion.27–29 While these ap-
proaches differ in the details of their functional form, th
resulting angular dependencies of the bond-order are in
very similar.29,30 We therefore adopted a straightforward e
tension developed by Brenner, which is simply an angu
dependent termg(u) in the inner sum of the bond-orde
function, so thatbi j becomes

bi j 5~11x i j !
21/2,

x i j 5 (
k(Þ i , j )

f ik~r ik!gik~u i jk !exp@2m ik~r i j 2r ik!#. ~13!

Here again the cutoff function is included, while the ind
ces monitor the type dependence of the parameters, whi
important for the description of two or more componen
The angular functiong(u) is given by

g~u!5gS 11
c2

d2
2

c2

@d21~11cosu!2#
D . ~14!

For c50 this term equals a constant,g, and the total poten-
tial resembles an EAM potential. At this point it is importa
to recognize that angularity is not only decisive for modeli
of covalent systems but also of metals. Alinaghianet al.,27

for example, showed that shear constants can be describ
a first-nearest-neighbor potential only if the bond order
angular dependent. In this case, the anisotropy ratioc44/C8
can take values smaller than 2.

For convenience, we change the analytical form of
pair-like expressions given in Eq.~10! to the physically more
instructive, fully equivalent Morse-like structures

VR~r !5
Do

S21
exp@2bA2S~r 2r o!#,

VA~r !5
SDo

S21
exp@2bA2/S~r 2r o!#, ~15!

whereDo is the dimer binding energy andr o the equilibrium
distance.

We now have an energy functional that should be suita
for describing Pt-Pt, C-C, and Pt-C within a single formalis
as defined in Eqs.~11!–~15!. Despite the semiempirical cha
acter of this approach, the number of freely adjustable
rameters is not more than six for each interaction type,
these can be derived systematically, as follows.

If the binding energyDo and the ground-state frequenc
of the dimer molecule are known, thenb is simply obtained
from the expression
19512
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A2Do /m
, ~16!

wherek is the wave number andm the reduced mass. Th
parameterS can be determined by the Pauling criterion th
relates the equilibrium bonding distancer b and the energy
per bondEb :

Eb52Doexp@2bA2S~r b2r o!#. ~17!

When fitting lattice parameters and cohesive energies
structures with different atomic coordinations, Eq.~17! must
be fulfilled. This is extremely decisive for the transferabili
of the potential, as will be shown in the following section

III. TOTAL-ENERGY CALCULATIONS

In order to gain insight into the chemistry and bondin
especially of the Pt-C interaction, total-energy calculatio
were carried out in the framework of the density-function
theory.31 All results reported here were obtained using t
codeCASTEP~Ref. 32! with ultrasoft pseudopotentials by Le
~us-PP! and alternatively with norm-conserving pseudop
tentials~nc-PP! using the scheme of Troullier-Martin.33 Ex-
change and correlation were included using the Perd
Wang form of the general-gradient approximation~GGA!.34

Calculations of the Pt fcc structure within the local-dens
approximation~LDA ! ~Refs. 35 and 36! showed a significant
overestimation of the bulk modulus, and therefore they w
not used here. This seems to be a shortcoming of the L
rather than a consequence of using nonrelativistic den
functionals for the heavy element Pt, since our nonrelativis
calculations within the GGA are in good agreement w
experimental data for fcc Pt.

For all calculated structures the cutoff energies a
k-points were chosen to achieve a convergence better
0.01eV/atom. Total energies for platinum in the fcc, bcc,
and diamond structures were calculated. Stoichiometric
was investigated in theB2 structure~CsCl!, theB1 structure
~NaCl!, and in a zinc-blende lattice. The minimum energ
lattice constant, bulk modulus, and pressure derivative of
bulk modulus were calculated by fitting the Birch
Murnaghan equation of state to energy-volume data.37,38

IV. CARBON

For modeling the interaction of pure carbon we adop
the C-C parameters given in Brenner’s original hydrocarb
potential.25 Since Brenner proposed two different parame
sets, we compared the Pauling relation@Eq. ~17!# to experi-
mental data and DFT calculations available in t
literature.39 Brenner’s parameter set I delivers an excellent
for both the graphite and diamond structures, whereas s
yields a bond length for graphite that significantly devia
from the experimental data, as illustrated in Fig. 1. The ov
all correspondence to the bond-order relation, however
better for parameter set II. Since this latter parameteriza
has a square-root-dependent bond-order, it is fully equiva
to the ansatz chosen for the potential in this study and th
4-3
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fore used here. The corresponding C-C parameters are l
in Table V. Additional information can be found in the orig
nal paper.

A specific feature of Brenner’s potential is the ove
binding term, which corrects the unphysical interpolation
single- and double-bonds for some atomic configurations
is therefore customary to replace the bond-order function
the corrected version

bi j̄ 5
bi j 1bji

2
1Fi j , ~18!

as described in Ref. 25. Since this correction affects o
interactions of pure carbon, we consider the overbinding c
rection as a necessary option to use in all applications wh
chemical bonds between carbon atoms of different coord
tions become important. In those cases where only ideal
bon structures are involved, this correction might be left o

Finally, we compared the structural data obtained
CASTEP to other calculations and experiments in order

FIG. 1. Comparison of the Pauling energy-bond relation
given by the Brenner potential~Ref. 25! to literature data. Starting
from left, the solid data points refer to experimental data for2,
graphite and diamond, as well as theoretical values from LD
calculations~Ref. 39! for carbon in sc, bcc and fcc structures. T
open points represent the corresponding values obtained by th
potential for carbon.
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verify the chosen pseudopotential method for carbon. Ap
from the bulk modulus, the results achieved by the nor
conserving pseudopotentials are in excellent agreement
experimental data~see Table I!. With the ultrasoft pseudopo
tentials the bulk modulus is closer to the experimental val
but the lattice constant is slightly too low. Altogether, th
calculations agree very well with data obtained with a simi
method,39 and thus serve to validate our choice of pseudo
tentials for carbon.

V. PLATINUM

A thorough set of experimental data on the thermom
chanical properties of Pt is available. Platinum, howev
does not exhibit solid structures other than the fcc phase
that detailed information on the bonding behavior in und
coordinated environments is not experimentally accessi
We investigated, therefore, the bonding of several hypoth
cal solid structures with different coordinations by means
DFT calculations using both norm-conserving and ultras
pseudopotentials together with nonlocal gradient correcti
in the exchange and correlation functionals.

From the total-energy calculations, lattice constants, b
moduli and cohesive energies were extracted. As show
Table II the energy differences calculated with both types
pseudopotentials are fully consistent, while the bond leng
calculated with the norm-conserving pseudopotentials t
to be generally larger. The lattice constant for the fcc str
ture is about 2% too high for the nc-PP and somewhat clo
to the experimental value for the us-PP. After rescaling
bond lengths to the experimental value of the Pt fcc pha
the calculations yield consistent data for all structures.

In order to rationalize whether the analytical potential
presented before is capable of describing energy and bon
of Pt, the Pauling relationship@Eq. ~17!# was examined. Here
the quantitiesb, r o , andDo are in principle given by the
dimer properties, and therefore onlyS is an adjustable pa
rameter. The literature values that can be found for Pt2 dimer
properties are, however, fairly diverse~see Table II!. We
therefore allowed the dimer properties to vary within t
limits of the literature values, and found that the best
could be obtained for a dimer bond distance of 2.384
which is in line with the theoretical values (2.39–2.40 Å
The bond strength was chosen to be close to the averag

s

T

ull
nsity
DFT
TABLE I. Diamond structure calculated within the DFT GGA using ultrasoft pseudopotentials and de
mixing, as well as Troullier-Martins pseudopotential with all band minimalization. Results of the L
calculation by Furthmu¨ller et al. are given for comparison~Ref. 39!.

Diamond LDFT~Ref. 39! nc-PP GGA-DFT us-PP GGA-DFT Expt

V (Å3) 5.498 5.674 5.531 5.673
ao (Å3) 3.530 3.567 3.539 3.567
r b (Å3) 1.528 1.544 1.532 1.544
B (GPa) 460 425~1! 439~1! 443
B8 3.64 3.66~2! 3.63~2!
4-4
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TABLE II. Calculated structural and cohesive properties of Pt in various phases: Given are volume per atomV, lattice constantao ,
cohesive energy per atomEcoh , cohesive energy per bondEb , bond lengthr b , and pressure derivative of bulk modulusB8. Compared are
theoretical results, experimental numbers, and the predictions of the analytical potential. DFT calculations were done within the G
CASTEP with ultrasoft pseudopotentials and density mixing, as well as the Troullier-Martins pseudopotential with all-band minimal
Reference data for the Pt2 dimer were taken from the literature as indicated.

Theory Experiment Analytical Pot.

Yang et al. ~LDA-DFT!
~Ref. 56!

Vargaet al. ~RDFT!
~Ref. 57!

Tayler et al.
~Ref. 58!

Guptaet al.
~Ref. 59!

Pt2

r b (Å3) 2.40 2.39 2.34 2.384
Ecoh (eV) 1.65 1.97 1.57 1.855 1.8415
Eb (eV) 3.3 3.94 3.14 3.71 3.683
vo (cm21) 218 234 218 259 236

Diamond nc-PP GGA-DFT us-PP GGA-DFT bi j 50.7761

V (Å3) 24.48~2! @23.14# a 24.65~5! @23.81# 24.51
ao (Å3) 5.807@5.699# 5.821@5.753# 5.811
r b (Å3) 2.515@2.468# 2.521@2.491# 2.516
Ecoh (eV) 24.703 24.587 24.662
Eb (eV) 22.352 22.294 22.331
B ~GPa! 123~1! 117~1! 115.3
B8 5.31~2! 5.57~8! 5.15

SC bi j 50.6348

V (Å3) 18.66@17.62# 18.44~5! @17.80# 17.99
ao (Å3) 2.652@2.602# 2.642@2.611# 2.621
r b (Å3) 2.652@2.602# 2.642@2.611# 2.621
Ecoh (eV) 5.296 25.277 24.866
Eb (eV) 21.765 21.759 21.622
B ~GPa! 182~3! 183~2! 177.6~2!

B8 5.32~6! 5.53~4! 5.39

bcc bi j 50.5661b

V (Å3) 16.25~2! @15.37# 15.86~2! @15.30# 14.81
ao (Å3) 3.192@3.133# 3.166@3.128# 3.094
r b (Å3) 2.765@2.713# 2.741@2.709# 2.680
Ecoh (eV) 25.641 25.691 25.276
Eb (eV) 21.410 21.423 21.319
B ~GPa! 240~1! 246~2! 245.5
B8 5.25~4! 5.66~4! 5.51

fcc Ref. 60 MacFarlaine
~Ref. 61!

bi j 50.4751

V (Å3) 15.91~2! @15.02# 15.58~3! @15.02# 15.02 15.02
ao (Å3) 3.992@3.917# 3.965@3.917# 3.917 3.917
r b (Å3) 2.823@2.77# 2.803@2.77# 2.770 2.770
Ecoh (eV) 25.77c 25.77c 25.77 25.77
Eb (eV) 20.962 20.962 20.962 20.962
B ~GPa! 260~2! 265~3! 288.4 282.6
B8 5.4~1! 5.9~2! 5.64

aNumbers given in brackets are rescaled to the experimental bond length in fcc-Pt.
bThe bcc properties were calculated under the assumption of first-nearest-neigbor interaction. Later, the cutoff radius was chos
second-neighbor interaction occurs for bcc. This leads to a better agreement of the potential with the reference data.

cValue taken from experimental data.
195124-5
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the theoretical numbers. The ground-state oscillation
quency that determinesb was set to 234 cm21, which again
is close to the average of the literature values.

In the next step, the parameterSwas adjusted by compar
ing Eq. ~17! with the bond lengths and bond strengths of
reference structures. Figure 2 shows the corresponding
in semi-logarithmic presentation. The properties of the d
mond, sc and bcc phases follow almost a linear relations
On the transition from bcc to fcc a significant deviation fro
this behavior occurs, which cannot be described within
present model. By connecting the data points of the fcc ph
and the dimer, however, a reasonable agreement with all
erence structures is achieved. Note that this line present
mathematically possible minimum configurations for a giv
parameter setS, Do , r o , andb and is inpedendent of th
analytical form and parametrization ofbi j̄ .

For comparison, data obtained with Baskes’ modifi
embedded-atom potential~MEAM ! ~Ref. 7! are shown in the
same plot. Obviously, the MEAM follows an almost line
relation as well, but predicts a significantly smaller change
bond lengths with varying coordination. In principle, a sim
lar fit is also possible with the present bond-order poten
but only at the expense of a realistic description of the dim
Since possible applications of this potential may inclu
simulation studies where dimer and cluster properties ar
importance, we have chosen the parameterS that provides
reasonable agreement with all reference data, including
for lower coordinations.

With the complete set of dimer parameters, the effect

FIG. 2. Fit of the Pauling energy-bond relation to the Pt-data
Shown are the literature values of the dimer and fcc structure
gether with the results of nonlocal DFT calculations for diamo
sc,bcc and fcc structures. The bond lengths calculated from D
have been rescaled to the experimental bond length in fcc-Pt.
analytical Pt potential is represented by the solid line. The o
squares and diamonds show the nc-PP and us-PP DFT calcula
respectively. Open circles are the equilibrium energies and dista
for the corresponding structures as calculated with the MEAM
tential of Baskes~Ref. 7!. Black squares indicate the correspondi
minimum configurations of the different solid structures as cal
lated with the analytical potential.
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bond order for the reference structures can be calculated
rectly either from the bond lengths,r b, or energies,Eb, with
the equations

bi j̄ 5~Eb /Do! [12(1/S)] ~19!

and

bi j̄ 5exp$b@A2/S2A2S#~r b2r o!%. ~20!

Figure 3 shows the result for the energies and scaled b
lengths obtained from the us-PP DFT calculation. If angu
dependencies are neglected (c50), the parameterg can be
adjusted to the fcc phase, which allows the bond order to

t.
o-
,
T
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n
ns,
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-

FIG. 3. Effective bond-order parameters as derived for the
erence data from us-PP DFT calculations using Eqs.~19! and ~20!
compared with the analytically calculated bond-order. The so
circles describe the full potential including angularity, the solid li
is the best fit of the bond-order without angular dependence.

FIG. 4. Fit of the Pauling energy-bond relation to the Pt
dataset. Open squares represent literature values for the Pt-C d
properties, the open circle the Dmol result. The other open sym
show the DFT-results obtained by using us- and nc- pseudopo
tials. The solid line with filled symbols refers to the analytical p
tential.
4-6
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calculated as a simple function of coordination. Obvious
the square-root-dependent form is a reasonable approx
tion. It can be seen, however, that the analytically calcula
values underestimate the bond–order for the lower coord
tions if angularity is not included~see Fig. 4!.

Therefore, the potential parameters determining the bo
order including angularity were also fit. In doing so, a n
merical fitting scheme was applied that included the ela
properties in the reference data set. The resulting param
are given in Table V. The analytically calculated effecti
bond order for the reference structures is now significan
improved by including the angular dependence as show
Fig. 3. The cohesive properties of all structures compare
the DFT reference data are summarized in Table II. In g
eral the numbers are in excellent agreement with the D
results and experiments. For the sc and bcc phases, how
the absolute values of the cohesive energies are about
too small, which is a direct consequence of the bond or
which only allows one to fit the bond lengths of these str
tures properly. Even the bulk moduli of all solid phases
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very well reproduced, including the fcc phase, although no
of them was part of the fitting procedure. This is a dire
consequence of the proper choice forb which determines the
curvature of the potential given by the dimer oscillation fr
quency. Additionally,B8, the pressure derivative of the bul
modulus, which was calculated from the Birch-Murnagh
equation fits the numbers derived from total energies ca
lations very well. This is a significant result, sinceB8 is
directly related to the global Gru¨neisen parameter, and ther
fore a proper description of anharmonic effects can be
pected from this potential. The most relevant properties
the fcc solid structure are summarized in Table III, and co
pared with established potentials for Pt.4,5,7,22,40,41

A noteworthy feature of the present model is the corr
description of the elastic moduli. The inclusion of angular
makes possible anisotropy ratios smaller than two. The s
is true for the MEAM, but all other models fail to reproduc
this property. Only the calculated shear modulusc44 is some-
what too high, with the given parameter set. An alternat
parameterization given in Appendix A does reproduce
ison
AM is
ed
TABLE III. Materials properties of platinum as derived using the Pt potential of this work in compar
to experimental data and other Pt potentials. BO is the bond-order potential derived in this work, ME
the modified embedded-atom method of Baskes~Ref. 7!, EAM is the embedded-atom potential as propos
by Foileset al. ~Refs. 4 and 40!, OJ is the short-range potential by Oh and Johnson~Ref. 41!, FS is the
Finnis-Sinclair type potential of Sutton and Chen~Ref. 5!, while TB means the empirical tight-binding
potential of Cleri and Rosato~Ref. 22!. Given are the cohesive energy per atomEcoh, lattice constantao ,
elastic modulici j , bulk modulusB, pressure derivative of the bulk modulusB8, Young’s modulusC8,
anisotropy ratioc44/C8, melting pointTmelt , vacancy formation energyEf ,vac and relaxation volumeDVvac,
interstitial formation energyEf , int, and relaxation volumeDVint and surface energiesEs . V is the ideal
atomic volume.

Expt. BO MEAM EAM OJ FS TB

Ecoh (eV) 5.77~Ref. 60! 5.77 5.77 5.77 5.77 5.86 5.853
ao (Å) 3.92 ~Ref. 60! 3.92 3.92 3.92 3.92 3.92 3.924
c11 ~GPa! 358 ~Ref. 61! 351.5 347 303 312 314 341
c12 ~GPa! 253 ~Ref. 61! 248.1 251 273 268 258 273
c44 ~GPa! 77.4 ~Ref. 61! 89.5 76.9 68 63.3 74 91
B ~GPa! 288.4~Ref. 61! 282.6 283 283 283 277 296
B8 ~5.4–5.9!a 5.52 5.64
C8 ~GPa! 52.2 ~Ref. 61! 51.6 48.06 15.0 22 28 34.0
c44/C8 1.48 ~Ref. 61! 1.73 1.6 4.53 2.88 2.64 2.68
Tmelt ~K! 2045 ~Ref. 62! 2100~20! 1530 ~Ref. 63! 1794~29! ~Ref. 64!
Ef ,vac (eV) 1.35~Ref. 65! 1.21 ,1.3b 1.68 1.48 1.17
DVvac/V 20.2 ~Ref. 66! 20.33 20.45 20.73
Ef , int (eV) 3.5~6! ~Ref. 67! 5.34 7.20c 4.67
DVint /V 1.8 ~Ref. 65! 1.86 2.18c

Es (eV/Å2):
~100! 0.114~Ref. 42! 0.123 0.135 0.103
~111! 0.092~Ref. 42! 0.091 0.103 0.089
~110! 0.243~Ref. 42! 0.119 0.133 0.109
~110!~231! 0.112

aResults of DFT calculations.
bCalculated for an unrelaxed lattice.
cThis value is the interstitial formation energy we have calculated for the$100% dumbell, which is the
lowest-lying energy interstitial type in fcc metals. The values given by Foileset al. ~Ref. 40! ~3.24 eV and
DVint /V51.4) correspond to a tetrahedral defect position.
4-7
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second order elastic constants, extremely well, but it d
poorly in predicting the melting temperature.

The melting point was determined by monitoring the p
tential energy of an NPT ensemble containing both solid
liquid phases at a given temperature. For zero pressure
determined the temperature where the relative size of the
regions does not change, and therefore the average inte
velocity is zero. We found that the melting point is mos
affected by the choice of the cutoff range, and therefore
adjusted the parametersRcut andD using the known melting
temperature of Pt. In doing so we calculated a melting po
of 2100~20! K, which is in very good agreement with th
experimental value of 2045 K. The fairly long range of t
cutoff improves, at the same time, the description of the
structure since it now reaches the second-nearest-neig
shell.

Defect properties were also examined. The relaxation v
ume of the interstitial fits the experimental number alm
perfectly, but the formation energy is 5.31 eV compared
3.5~6! eV obtained by experiment. Although this is a signi
cant error, it is still an improvement over the energy of 7.
eV obtained with Foile’s EAM potential. Here it is wort
noting that the number of 3.2 eV, as reported in Foiles or
nal paper corresponds to a spurious defect structure and
to the @100# split interstitial. Both the calculated vacanc
formation energy and the vacancy relaxation volume ag
reasonably well with experiment. Even surface formation
ergies match recent DFT calculations.42 The significant de-
viation for the~110! surface might be a consequence of n
glecting atomic relaxations in the DFT calculations.

An important result gleaned from this study is that sho
ranged bond-order potentials offer a realistic description
thermomechanical properties for Pt and potentially of ot
d-transition metals. The quality of the potential is at lea
comparable to the MEAM, and gives, in general, bet
agreement with reference data, both fitted and nonfitted,
the EAM models without angularity.

VI. PLATINUM-CARBON

Platinum and carbon do not form thermodynamica
stable compounds, and consequently little information
available in the literature to guide the parameterization. T
chemical interaction of Pt-C is mostly considered to be n
bonding, although this is only true when carbon bonds
fully saturated. There are many experiments, however,
are characterized by the chemical interaction of carbon
platinum. Cepeket al.43 deposited fullerene clusters o
Pt~111! surfaces, and found strong covalent bonds with v
small charge transfer. Hecqet al.44 reported the existence o
a superficial compound PtCx(x'1) in polycrystalline films
of platinum containing up to 17% carbon that were synt
sized by dc reactive sputtering. A superlattice structure
platinum-carbon was proposed by Westmacott, Dahmen,
Witcomb,45 based on their observations of an ordered str
ture of Pt7C in the vicinity of grain boundaries following
quenching or irradiation. Finally, Shuvaevet al.46 reported a
six-fold coordinated Pt-C compound which was synthesi
by co-evaporation of carbon and platinum and character
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by extended x-ray absorption fine-structure~EXAFS! analy-
sis. Interestingly, experimental results on solid solubility
carbon in platinum are very inconsistent. While Silleret al.47

reported solubilities of up to 4 atomic percent, Rut’kov a
co-workers48,49 suggested equilibrium concentrations th
were three orders of magnitude smaller. Theoretical stud
of solid Pt-C structures have, to our best knowledge, o
been performed by Guillermetet al.,50 who investigated the
NaCl structure of 5d transition metals including PtC with a
linear muffin-tin-orbital method.

In light of the sparse experimental information availab
several DFT calculations were carried out to guide the fitt
of the potential. For zinc-blende (B3), CsCl (B2), and NaCl
(B1) structures with a stoichiometric basis of Pt and C
oms, bond distances as well as total energies were calcul
The cohesive energies were then determined using the
total energies from DFT calculations of pure carbon a
platinum and the corresponding experimental cohesive e
gies.

The energetically most favored configuration is the Na
lattice. For this structure the calculated bond length
2.237 Å is somewhat higher than the value of 2.0 Å o
tained from fitting EXAFS data. Shuvaevet al.46 reported
however, that the best experimental fit was achieved for
ordination number six, which confirms our DFT result. F
the same structure Guillermetet al.50 calculated a bond
length of 2.05 Å and a cohesive energy of212.3 eV/f.u.,
which is about 2 eV lower than our value calculated w
GGA-DFT ~see Table IV!.

Additional DFT calculations showed that theB1 andB2
phases of PtC are stable with respect to shear deforma
while zinc blende is not. The latter was therefore not cons
ered for the potential fitting.

Dimer properties of platinum monocarbide are reported
Ref. 51 and in a much earlier paper by Singhet al.52 The two
calculations give consistent values for the bond lengths
oscillation frequencies, but they differ for the bonding e
ergy. Since theoretical calculations on PtC dimer proper
are not available, we additionally performed a DFT calcu
tion using the codeDMOL ~Ref. 53! with BLYP ~Ref. 54!
functionals. In contrast to the literature values, the calcu
tion predicts theA1P state as the lowest lying energy co
figuration with significantly different dimer properties.

In order to fit the reference data, the parameterr o was
chosen in accordance to theDMOL calculations whileDo was
adopted from Ref. 52. The parameterb was set so that both
the bulk modulus of theB1 structure and the ground-sta
oscillation frequency are well reproduced. A comparison
the reference data with the predictions of the analytical
tential is given in Table IV!. The corresponding potentia
parameters are listed in Table V. Although this parameter
reproduces the essential features of the Pt-C interaction,
based on a minimal set of input data and therefore mi
need to be refitted if more detailed reference data beco
available.

VII. CONCLUSIONS

We present an analytical potential that allows us to mo
chemical bonding in mixed metallic-covalent systems us
4-8
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TABLE IV. Calculated structural and cohesive properties of Pt-C in various hypothetical phases: v
per formula unitV, lattice constantao , cohesive energy per formula unitEcoh/atom, cohesive energy pe
bondEb , and pressure derivative of bulk modulusB8. Compared are results of DFT calculations within t
GGA usingCASTEPwith ultrasoft pseudopotentials and density mixing~us-PP!, as well as Troullier-Martins
pseudopotentials with all band minimalization~nc-PP!.

Pt-C CRC~Ref. 51! Singh ~Ref. 52! Dmol Anal. Pot.

r b (Å3) 1.6767 1.677 1.844 1.84
Ecoh/f.u. (eV) 5.3 4.4 5.3
Eb (eV) 6.2 5.3 4.4 5.3
vo (cm21) 1051.13 1051.18 706 928

B1 (NaCl) nc-PP us-PP LMTO~Ref. 50! bi j 50.8306

V (Å3/f.u.) 22.712~11! 22.405~3! 18.58 22.41
ao (Å3) 4.495 4.475 4.205 4.476
r b (Å3) 2.274 2.237 2.1 2.238
Ecoh/f.u. (eV) 210.271 210.266 212.67 210.271
Eb (eV) 21.711 21.711 22.11 21.711
B (GPa) 261~1! 271~1! 274
B8 4.96~4! 4.95~5! 4.87

B2 (CsCl) bi j 50.7790

V (Å3/f.u.) 22.29~3! 20.62
ao (Å3) 2.814 2.742
r b (Å3) 2.437 2.375
Ecoh/f.u. (eV) 28.973 29.27
Eb (eV) 21.122 21.159
B (GPa) 240~1! 291
B8 5.22~4! 4.94
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a single functional form. Our model makes use of the insi
that chemical bonding of most covalent systems a
d-transition metals can be described within a seco
momentum tight-binding approach. We show that the or
nal version of Brenner’s carbon potential can be used
modeling Pt as well as Pt-C if angular contributions are
cluded. This ansatz can have an tremendous importanc

TABLE V. Parameter set of the relevant interaction types.
parameters are pair type dependent.

Pt-Pt Pt-C C-C

g 8.54231024 9.731023 2.081331024

S 2.24297 1.1965 1.22
b (Å21) 1.64249 1.836 2.1
Do (eV) 3.683 5.3 6.0
r o (Å) 2.384 1.84 1.39
c 34.00 1.23 330
d 1.1 0.36 3.5
2m (Å21) 2.67 0.0 0.0
Rcut (Å) 3.1 2.65 1.85
D (Å) 0.2 0.15 0.15

aIf simulations of amorphous structures are intended, a modi
cutoff range should be used~Ref. 68!.
19512
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atomic scale computer simulations of a wide class of ma
rials problems where bonding interactions between cova
and metallic systems are important. Due to the limited nu
ber of adjustable parameters the model allows a system
fit of materials properties.
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APPENDIX A: ALTERNATIVE PARAMETER SET FOR
PLATINUM

In the course of this study several parameterizations w
tested, mostly due to the uncertainties in the dimer para
eters. WithDo53.71 eV, r o52.34 Å, b51.65921 Å21,
g52.64331024, S51.79493, c521.36, d50.589, 2m
52.69 Å21, Rcut53.1 Å, D50.2 Å, improved elastic
properties were found for platinum (c115258.9 GPa,c12
5253.4 GPa, andc44581.0 GPa). The vacancy formatio
energy, however, is only 0.74 eV, and the melting point go

l

d
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to about 1500 K, while surface energies and interstitial f
mation energy~4.05 eV! are still in very good agreemen
with the reference data. Even the simplified version witho
angularity ~c50, g50.20967, Rcut53.4 Å, and D
50.2 Å) delivers a reasonable description of most prop
ties except for the surface properties and might be usefu
the quantification of models that rely on bond counting.

APPENDIX B: MODIFICATION OF THE REPULSIVE
POTENTIAL

In applications where one needs to take high-energ
(Ekin@10 eV) collisions between atoms into account, it
necessary to modify the repulsive part of the potential
realistically describe such collisions. To this end, we fi
derive an accurate repulsive pair potential for a dimer usin
density-functional theory method. We then construct a to
potentialVTot using

VTot~r !5VR~r !@12F~r !#1@VEq~r !#F~r !, ~B1!
s
-
s

.

s

d

a

h

h
In
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whereVEq is the potential for states close to equilibriu
described in the main text, and the Fermi function

F~r !5
1

11e2bf (r 2r f )
. ~B2!

The value of the constantsbf andr f are chosen such tha
the potential is essentially unmodified at the equilibrium a
longer bonding distances, and that a smooth fit at short s
rations with no spurious minima is achieved for all realis
coordination numbers.

Using this approach we obtainedr f51.5 Å and bf
510.0 1/Å for the Pt-Pt interactions, andr f50.7 Å and
bf59.0 1/Å for C-C interaction as well asr f50.8 Å and
bf58.0 1/Å for Pt-C interactions. These same values a
give a smooth fit to the Ziegler-Biersack-Littmark univers
repulsive potential.55
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