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ABSTRACT 

We present a newly developed numerical modulation model to study the transport of galactic and Jovian electrons 
in the heliosphere. The model employs stochastic differential equations (SDEs) to solve the corresponding transport 
equation in five dimensions (time, energy, and three spatial dimensions) which is difficult to accomplish with the 
numerical schemes used in finite difference models. Modeled energy spectra for galactic electrons are compared 
for the two drift cycles to observations at Earth. Energy spectra and radial intensity profiles of galactic and Jovian 
electrons are compared successfully to results from previous studies. In line with general drift considerations, it 
is found that most 100 MeV electrons observed at Earth enter the heliosphere near the equatorial regions in the 
A > 0 cycle, while they enter mainly over the polar regions in the A < 0 cycle. Our results indicate that 100 MeV 
electrons observed at Earth originate at the heliopause with ∼600 MeV undergoing adiabatic cooling during their 
transport to Earth. The mean propagation time of these particles varies between ∼180 and 300 days, depending on 
the drift cycle. For 10 MeV Jovian electrons observed at Earth, a mean propagation time of ∼40 days is obtained. 
During this time, the azimuthal position of the Jovian magnetosphere varies by ∼1◦. At a 50 AU observational 
point, the mean propagation time of these electrons increases to ∼370 days with an azimuthal position change of 
Jupiter of ∼20◦. The SDE approach is very effective in calculating these propagation times. 
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1. INTRODUCTION 
 

Cosmic rays (CRs), as charged particles, propagating through 
the heliosphere are subjected to a variety of physical processes. 
These processes cause changes in CR intensities, referred to as 
CR modulation. The primary aim of CR modulation studies, 
and also the aim of this study, is to model this modulation 
as  realistically  as  possible,  thereby  deepening  our  present 
understanding of the physical processes involved and how they 
affect CRs. To succeed in this purpose, it is necessary to compare 
computational results, at least qualitatively, to CR observations. 

Due to the complexity of the transport equations (TPEs) 
applicable to CR modulation, these equations are typically 
solved numerically, often employing finite difference methods 
(e.g., Jokipii & Kopriva 1979). These methods have several 
disadvantages, most notoriously numerical instability problems 
when solving differential equations in higher dimensions. We 
present a newly developed CR modulation model that solves 
the relevant TPE by means of stochastic differential equations 
(SDEs). This method has several advantages, most notably 
unconditional numerical stability and independence of a spatial 
grid. Also, it will be shown that it is possible to extract additional 

specified by the local interstellar spectrum (LIS), whereafter 
they undergo modulation. The modulation of these electrons was 
studied previously by, e.g., Potgieter & Moraal (1985), Fichtner 
et al. (2000), and Potgieter & Langner (2004). In this paper, we 
aim to gain further insight into the modulation processes pro- 
vided by the SDE approach. The same can be said for the study of 
Jovian electrons. The latter were discovered during the Pioneer 
10 encounter of Jupiter, when it was realized that the Jovian mag- 
netosphere is a very strong source of low energy (∼10 MeV) 
electrons (e.g., Teegarden et al. 1974). Subsequent modeling 
of the Jovian electrons (e.g., Ferreira et al. 2001a) showed that 
these electrons are indeed the dominant CR electron component 
in the inner heliosphere at low energies. See also the reviews 
by Ferreira (2005), Heber & Potgieter (2006, 2008), and Heber 
et al. (2007). 
 

2. THE MODULATION MODEL 
 

For a nearly isotropic pitch-angle CR distribution function 
f (r, θ , φ , E, t ), the transport of CRs inside the heliosphere can 
be described by the well-known Parker (1965) TPE, 

∂j  ( 

physical insights from  this  method. SDEs  were  previously ∂ t 
=  −  V sw + (v d ) · ∇j + ∇ · (Ks · ∇j ) 

used to model the transport of pick-up ions in the heliosphere 
(Fichtner et al. 1996), CR acceleration in astrophysical systems 
(Krü lls & Achterberg 1994), and CR transport (Yamada et al. 
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(ΓEj ) + S,  (1) 

1999; Zhang 1999; Florinski & Pogorelov 2009; Pei et al. 
2010). We follow Pei et al. (2010) and deviate from most 
previous works by solving the set of SDEs directly in spherical 
coordinates instead of  Cartesian coordinates. The model is 
applied to the study of galactic and Jovian electrons, neither 
of which have been studied previously using SDE type models. 

Galactic  electrons  are  assumed  to  enter  the  heliosphere 
isotropically, with their intensities just outside the heliosphere 

which contains all the relevant transport processes inside the 
supersonic solar wind flow (i.e., inside the region between the 
Sun and the solar wind termination shock, TS). The differential 
intensity j is related to f by j =  P 2 f , with P the particle 
rigidity. In the turbulent heliosheath region it has become custom 
to also consider second-order energy effects, e.g., momentum 
diffusion, which can readily be added to the existing TPE (e.g., 
Strauss et al. 2010). 
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In Equation (1), S describes a particle source term, e.g., Jupiter 
as the source of the Jovian electrons, Vsw is the solar wind flow 

which we take, for simplicity, to be directed radially outward 

Vsw  = Vsw er  with a constant speed of Vsw  = 400 km s−1 , (vd ) 
is the pitch-angle averaged guiding center drift velocity, Ks  is 
the symmetric diffusion tensor, given in heliospheric magnetic 
field (HMF) aligned coordinates by 

 
 κ|| 0 0  

 
 

 

and gradient of the HMF and its associated heliospheric cur- 
rent sheet (HCS) causes CRs to subsequently undergo gradient, 
curvature, and HCS drifts. This is quantified in the pitch-angle 
averaged guiding center drift velocity, given in terms of spheri- 
cal components as 

(vd ) = vdr er + vdθ eθ + vdφ eφ .  (7) 

The gradient and curvature components can be calculated 
directly from the HMF as 

Ks ≡ 0 κ⊥θ  0 
0 0 κ⊥r 

, (2)  

 

Pβ  B 
gc      

 

and ∇ · Vsw is the divergence of the solar wind flow, governing 
(vd ) = Q 

3B 
∇ × 

B 
, (8) 

adiabatic energy changes. Inside the TS, ∇ · Vsw   >  0 and 
adiabatic cooling (energy losses) of CRs occurs. The quantity 

 

E + 2E0
 

with Q = ±1 indicating the charge of the CR population, i.e., 
Q = −1 for electrons and β = v/c with c being the speed of 
light (e.g., Jokipii & Kopriva 1979). Drifts in the HCS can be 

Γ 
E + E0 

(3) approximated by the expression 

 

is introduced for shorter notation with E being the kinetic energy 
per nucleon and E0 the rest mass energy per nucleon (e.g., Jokipii 

 

HCS 
( d ) = 

  
d 

0.457 − 0.412 
L 

 

+ 0.0915 
d 2 
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· 
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& Kopriva 1979). At present we thus neglect the modulation 
effects arising from the heliosheath, and the inclusion of these 
will be left for future study. As pointed out by Florinski & 
Pogorelov (2009) these effects may well be significant. 

We adopt a relatively simple expression for the parallel mean 
free path λ||, related to the diffusion coefficient directed parallel 
to the mean HMF by κ|| = v/3λ||, given as 

  λ0 (P /P0 )(1 + r/r0 )   if P    P0
 

Ac Qv(sin ψ er + cos ψ eφ ),  (9) 
 
with rL being the Larmor radius, d the distance from the 
particle’s present position (r, θ , φ) to the HCS, d = |r cos θ |, 
and tan ψ = Ωr sin θ / Vsw (Burger et al. 1985). The HCS drift 
velocity is thus directed perpendicular to the HMF and parallel 
to the HCS itself. Additionally, global CR drifts are believed to 
be reduced due to the presence of turbulence (scattering; e.g., 
Minnie et al. 2007). This is incorporated into the modulation 

λ|| = λ  (1 + r/r )   if P < P
 .  (4) model by defining the drift reduction factor as 

0 0 0  

(ωτs )
2 

Here, λ0  = 0.15 AU, v is the particle speed, P0 = 1 GV, and 
r0  = 1 AU. This form of λ|| is not chosen arbitrarily but based 
on diffusion coefficients used previously in electrons studies 

fs  =  

1 + (ωτs )2 
, (10) 

(e.g., Potgieter & Ferreira 2002), observations of electron mean 
free paths near Earth (e.g., Palmer 1982; Drö ge 2005), and 
new advances in diffusion theory (e.g., Teufel & Schlickeiser 
2003). More complex expressions for λ||  (e.g., Engelbrecht & 

with ω being the particle gyrofrequency and τs   a scattering 
timescale.  Following  Burger  et  al.  (2000)  we  assume  that 
ωτs   ≈ P /P0 , and the total drift velocity, as incorporated in 
the modulation model, becomes 

Burger 2010) will be investigated in subsequent work. The 
essence of  the  modeling studies  in  this  paper  will  remain 

(vd ) = fs ((vd ) + (vd  
HCS 

) (11) 

unaffected. We assume isotropic perpendicular diffusion with 
κ⊥θ   = κ⊥r   = 0.01κ||  (e.g., Giacalone & Jokipii 1999). Note 
that, unlike Pei et al. (2010), we do not include a φ dependence 
in the diffusion coefficients. 

For the HMF, the standard Parker (1958) field is assumed, 
given by 

under the required condition that ∇ · (vd ) = 0. 
The Jovian magnetosphere, being the origin of the Jovian 

electrons, is not handled as a point source, as was mostly done in 
finite difference models (Ferreira et al. 2001a, 2001b). Indeed, 
for studies looking at the global modulation of electrons, the 
volume of the Jovian magnetosphere is negligible compared to 

r0 
B = Ac B0     

r 

l2 
  

 

er − Ωr sin θ 
e 

Vsw 
φ

 

 

H (θ − θ t), (5) 
that of the heliosphere. In this work, the Jovian magnetosphere 
is approximated in spherical coordinates as a volume enclosed 
in a solid angle. The magnetosphere is assumed to be centered 

with B0 a reference value at r0 , Ac  = ±1 determines the polarity 
of the HMF, and Ω the angular velocity of the Sun. Here, √   

at a radial distance of 5.2 AU (in the equatorial plane with 
varying azimuthal position). The magnetosphere is assumed 
to be 100 RJ   wide in the solar direction (with the Jovian 

B0  = 5/ 2 nT, r0  = 1 AU, and Ac  = +1 for the A > 0 HMF radius RJ    = 71492 km), 200 RJ  in latitudinal and azimuthal 
polarity cycle, leading to |B | ∼ 5 nT at Earth. The Heaviside 
step function H (θ − θ t) separates the HMF in hemispheres of 
opposite polarity, i.e., 

extent, and 200 RJ in the tail direction. The modeled intensities 
are, however, insensitive to the actual volume (size) of the 
magnetosphere as  long  as  it  remains  reasonable. Different ⎧ ⎨ 

H (θ − θ 
t) = 

1   if θ < θ t 

0   if θ = θ t 

 

 

(6) 

magnetospheric geometries (e.g., Joy et al. 2002) will be studied 
in the future. 

⎩
−1    if θ  > θ t. 

 
Using a flat current sheet for this initial work to separate hemi- 

spheres of opposite polarity leads to θ t = π/2. The curvature 

3. METHOD OF SOLUTION 
 

The set of SDEs derived in the Appendix is solved in a time 
backward fashion by using the Euler–Maruyama approximation 
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Figure 1. Phase-space trajectories for two pseudo-particles (galactic electrons, black and gray lines) for the A > 0 (left panel) and A < 0 (right panel) HMF polarity 
cycles in terms of backward time s. All pseudo-particles trajectories start at r 0 = 1 AU, θ 0 = π, φ0 = 0, E0  = 100 MeV at s0 and the integration process is continued 

until the HP is reached. 
 

 

(Maruyama 1955). This method utilizes the approximation ds ≈ 
Δs for the backward time parameter s, ds is the infinitesimal 
time change, and Δs = 0.004 days, the time step used in the 
model. For the different phase-space components, xi , this gives 
dxi   ≈ Δxi  in incremental phase-space steps to describe the 
evolution of a phase-space density element from an initially 
specified point (x0 , s0 ) in an iterative fashion 

model a further restriction is put on the time step due to the 
inclusion of the Jovian magnetosphere as a second boundary 
condition: Δs is chosen such that the resulting average spatial 
increment is smaller than the size of the Jovian magnetosphere. 

For  galactic  electrons,  the  outer  integration  boundary  is 
essentially the heliopause (HP), which we define to be spherical 
and located at a radial distance of rHP = 140 AU. If a solution of 
j is required, say at Earth, the integration is started at this position 

 
x

j +1
 

+1 
  j j 

  j
 

(x0     0
 

i , sj
 =  xi  , s  + Δxi , (12) i , s  ) and iteratively, according to Equation (12), follows the 

evolution of the phase-space element until the HP is reached 

with Δx
j  

evaluated at (x
j 
, sj ), until either an integration bound- 

where the LIS is specified. Figure 1 shows sample phase-space 
i  i  trajectories in terms of s. These results will be discussed further 

ary or an integration time limit is reached. The resolution of 
phase space is thus determined by the size of the time increment 
Δs, with smaller values leading to enhanced integration accu- 
racy, but longer integration times. The numerical error on the 
calculated intensities can be decomposed as 

 

E = Esys  + Estat (13) 
 

into  systematic  and  statistical  errors.  The  systematic  error 

in Section 4. The phase-space position at which these density 
elements reach the HP, the so-called exit position, is labeled 
by (xe , se ). We must integrate over all possible trajectories of i 
these phase-space density elements to successfully complete 
the integration process. This is simulated by following a large 
number of these elements up to the integration boundary, and 
then calculating the differential intensity at the initial position, 
j (x0     0

 

depends on the time step Esys  ∝ 
√ 

s, while the statistical error
 

i , s  ), as 

1   
N

 
Δ 

j 
 

i
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i,k     k 

decreases as the number of traced pseudo-particles increase 
Estat   ∝  1/N (e.g., Kloeden & Platen 1999). For the present 

x0 , s0
 

= 
N 

k=1 jLIS   x
e   , se  , (14) 
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Figure 2. Schematic illustration (not to scale) in the equatorial plane of how 
the azimuthal position of the Jovian magnetosphere is varied time dependently 
in the model. At s0  both the observational point (represented by the small 
filled circles at O) and the Jovian magnetosphere (represented by the dashed 

 

In the next section this effect will be discussed further. 
We integrate at least 3000 pseudo-particles for every phase- 

space position, for both galactic, NG , and Jovian electrons, NJ . 
As the fraction of pseudo-particles reaching Jupiter is much less 
than those reaching the HP (about 1%–10%), we generally have 
NG  > NJ   > 3000. 

Solving the set of SDEs in spherical coordinates puts further 
restriction on the integration process, namely, that the spatial 
coordinates must be re-normalized (“re-set”) when moving 
outside the integration domain. These restrictions are 
 

φj  < 0 : φj  → φj  + 2π 
circle) are located at the same azimuthal position, e.g., φ0 = φ0  = 0. During the 
integration process, the azimuthal position of the Jovian magnetosphere changes 

φj  > 2π : φj  → φj  − 2π 

with an angular frequency of −ωJ , while the position of the observation point 
remains unchanged. The pseudo-particle enters the Jovian magnetosphere at the 
time s3 at an azimuthal position φ3 , with ΔφJ  = |φ3  − φ0 |. J  J  J 

 

 

where N is the number of simulated trajectories (i.e., tracing the 
evolution of phase-space elements) that reach the HP, jLIS  is the 
LIS, and k refers to the kth density element. The electron LIS of 
Langner et al. (2001) is used. 

It requires some thought to understand what is physically 
represented by these phase-space trajectories. In essence this is 
a mathematical realization of the evolution of j throughout the 
heliosphere. With j both isotropic and gyrotropic, the trajectory 
of (xi,k , sk ) shows a realization of the evolution of an ensemble 
(averaged over pitch angle and gyrophase) of particles. As this 
still remains only a single realization of the particle ensemble, 
we will refer to these phase-space density elements as pseudo- 
particles. Making this physical connection to the trajectories, we 
are able to calculate various quantities from the pseudo-particle 
trajectories, including the so-called propagation time (i.e., the 
time a pseudo-particle spends propagating from its source to an 
observational point; some authors refer to this as the residence 
time) as 

τk  = 
 
se − s0   (15)

 

θj  < 0 : θj  → |θj |; φj  → φj  ± π 

θj  > π : θj  → 2π − θj ; φj  → φj  ± π. (18) 

 

Although it is computationally expensive to calculate these 
restrictions at each step of the integration process, it is still 
computationally much faster than  solving the  set  of  SDEs 
in Cartesian coordinates and transforming back to spherical 
coordinates at each step. 

For the inner boundary, assumed to be the solar source surface, 
an absorbing boundary condition is used, i.e., pseudo-particles 
with rj   <  rO  = 0.005 AU are lost to the system. A second 
choice of boundary condition would be a reflecting boundary 
condition, i.e., if ri   <  rO  → ri   =  2rO − ri . We however 
find the resulting solutions insensitive to the assumed boundary 
condition. As an initial condition, an empty heliosphere is 
essentially assumed, as discussed in detail by Pei et al. (2010). 

In the numerical scheme, integration is continued in time, for 
each pseudo-particle, until an integration boundary is reached. 
For this paper, all transport parameters are kept time independent 
so that CR intensities converge to constant modulation levels 
in  order  to  compare  our  results  with  alternating  direction 
implicit (ADI) steady-state solutions of the TPE (that is, with 

∂f /∂ t = 0 explicitly in Equation (1)) for solar minimum activity 

  
  

k  k 
 

and thus extract meaningful physical insights from the method 
of solution itself. 

We incorporate the Jovian magnetosphere as a second bound- 
ary condition and not explicitly as a source, i.e., setting S = 0 
in Equation (1). This is done by specifying the volume of the 
magnetosphere VJ . Again starting at (x0 , s0 ) and tracing the 
pseudo-particles until (xe , se ) ∈ VJ , the pseudo-particle is then 
defined to be of Jovian origin. The intensity of Jovian electrons 
is then calculated similarly to Equation (14), but substituting 
jLIS  for the Jovian source function as given by Ferreira et al. 
(2001b). We also incorporate a time dependence in the position 
of VJ  because of Jupiter’s relative position with respect to an 
observer located at (r 0 , θ 0 , φ0 , s0 ). This is illustrated schemat- 
ically in Figure 2. The integration process is started at s0 with 
the Jovian magnetosphere located at (rJ , θJ , φ0 ). The azimuthal 
position of VJ is then varied as 

conditions. However, with the introduction of Jovian electrons, 
the position of the Jovian magnetosphere is changed with time, 
which is not possible to do with steady-state models, so that the 
corresponding solutions are time dependent. 

 

3.1. Benchmarking the Modulation Model 
 

We performed various benchmarking procedures in order to 
validate this modulation approach. Most notable is a comparison 
with the results of Jokipii & Kopriva (1979), who used a finite 
difference method to solve the TPE in two dimensions (i.e., in 
terms of the spatial coordinates r and θ ). The reason for choosing 
their model for benchmarking purposes is that they also used 
a flat HCS. Figure 3 shows the results for galactic protons in 
two HMF polarity cycles, with all modulation parameters taken 
to be the same as given by Jokipii & Kopriva (1979), but with 
the HCS drift approximated by Equation (9). Zhang (1999) 
also benchmarked his SDE model with the results of Jokipii & 

φj +1 j 

J  = φJ  − ωJ Δs,  (16) 
 

with ωJ  = 2π/4333 days the orbital angular velocity of Jupiter. 
A pseudo-Jovian electron will thus encounter Jupiter as a 
different azimuthal position φe , after Jupiter has moved a finite 

Kopriva (1979) and found similar good agreement. Since his 
model was solved in Cartesian coordinates, we conclude that 
our approach, using spherical coordinates, is equally valid and 
reliable. We thus take the good comparison between the three 
models as a vindication of the modeling approach used here. 



6 

   

 

 

 
Figure 3. Benchmarking our three-dimensional SDE model with the earlier 
two-dimensional finite difference model of Jokipii & Kopriva (1979) for the 
modulation of galactic protons at Earth. Their spectra are shown as lines, with 
the filled triangles showing our results for the two polarity cycles. The solid 
line represents the LIS. Here, N = 5000 pseudo-particles were traced for each 
phase-space position in the SDE model. 

 

4. MODELING RESULTS 
 

4.1. Galactic Electrons 
 

Figure 1 shows trajectories for two representative pseudo- 
particles (gray and black lines) for the A > 0 (left panels) and 
A < 0 (right panels) HMF polarity cycles. Here, the phase-space 
position is shown as a function of backward time s, and therefore 
needs some careful interpretation. Particle simulations start at 
Earth (r = 1 AU, in the equatorial plane θ = 90◦) and at an 
energy of 100 MeV. The particle trajectories are then integrated 
in a time backward fashion until the HP is reached. To interpret 
the results in the normal time forward scenario, one must reverse 
the process, i.e., starting at the HP and following the trajectories 
up to Earth. Evidently, CRs undergo diffusive transport from 
the outer to the inner heliosphere. Note that the trajectories 
of the spatial coordinates are by no means smooth, but exhibit 
the stochastic nature of diffusive transport, reflected in the 
numerical model by the inclusion of the Wiener process (See 
the Appendix). The energy coordinate (see panels (b) and (e)), 
on the other hand, is fairly continuous as the evolution of this 
coordinate is governed by deterministic processes. Following 
the energy coordinate from the HP until Earth is reached, it 
is found that for the A  >  0 polarity cycle, the two electrons 
entering the heliosphere at  an  initial energy of  ∼0.6  GeV 
undergo adiabatic cooling to reach Earth with an energy of 
100 MeV. Lastly, the latitude evolution of the particles shows 
the general characteristics of drift effects: For the A > 0 cycle 
(panel (c)), the particles stay relatively close to the equatorial 
plane (where the HCS is located), while for the A < 0 cycle the 
electrons are transported toward the polar regions (panel (f)). 
This leads to the conclusion that galactic electrons reaching 
Earth originate mainly from high latitudes in the A < 0 cycle, 
and mainly from low latitudes in the A > 0 cycle in qualitative 
agreement with ADI numerical models. Notable from panel 
(d) is an apparent jump in the radial position of the simulated 
particle in the A < 0 cycle. Referring to the polar position of 
this particle (panel (f)), we see that at small radial distances 

 

this particle is close to the northern heliospheric pole and due 
to the geometry of the Parker HMF will have an unphysically 
high drift velocity (i.e., vd   →  ∞ when θ → 0, π ) and will 
be transported to the HP very quickly. This is the main reason 
for modifications of the Parker HMF in the polar regions to 
be implemented, i.e., to avoid the discontinuities directly at the 
heliospheric poles (e.g., Jokipii & Kó ta 1989; Smith & Bieber 
1991; Haasbroek & Potgieter 1995). 

Switching to Figure 4 we show in the left panel modeled 
energy spectra at Earth for three cases: a non-drift solution 
(dotted line), a solution for the A  >  0 polarity cycle (dashed 
line), and a solution for the A < 0 cycle (dash-dotted line). The 
solid line shows the assumed unmodulated spectrum (LIS) at the 
HP. Also included are electron observations at Earth from 1977 
(A > 0 cycle) and 1965 (A < 0 cycle) taken from Potgieter & 
Moraal (1985) for a qualitative comparison between modeled 
and observed spectra. This shows that the SDE approach is 
able to reproduce HMF-polarity-dependent modulation at Earth. 
Note that below ∼30 MeV all computed solutions converge to 
the non-drift solution, the reason being the drift suppression 
factor at low energies discussed in the previous section. Again, 
this is in excellent agreement with ADI modeling of galactic 
electrons (Potgieter 1996). 

The right panel of Figure 4 shows the intensity of 100 MeV 
galactic electrons as a function of radial distance for both po- 
larity cycles. Because of drift effects, the solutions for different 
polarity cycles diverge strongly in the inner heliosphere, with 
the effect subsiding with increasing radial distance to the LIS 
values as required. 

In the top panel of Figure 5, the heliocentric exit position of 
100 MeV galactic electrons, traced time backward from Earth, 
for the A  > 0 polarity cycle is plotted in terms of their polar 
and azimuthal angles for 10,000 simulated particles. In this 
polarity cycle, most of the CRs exit near the equatorial regions. 
Again interpreting the results in terms of forward time, evidently, 
the 100 MeV electrons observed at Earth had entered near 
the equatorial regions. This is again a consequence of general 
drift considerations. There is no preferred exit position for the 
azimuthal angle as the Parker HMF has azimuthal symmetry. 
The polar exit position is binned and shown in the bottom left 
panel, and once more the preferred exit of CRs in the equatorial 
regions is clearly seen. Note the logarithmic scaling of the y-axis. 
In the bottom right panel, we bin the exit energy of 100 MeV 
electrons originally released at Earth. From this follows that 
most of the simulated particles exit the heliosphere with a final 
energy of ∼0.7 GeV. We thus conclude that (in the time forward 
case) 100 MeV electrons, observed at Earth, start out at the 
HP as ∼500–1000 MeV electrons which are then adiabatically 
cooled to 100 MeV. 

Figure 6 is similar to Figure 5, but now for the A < 0 polarity 
cycle. In contrast to the A  >  0 polarity cycle, most galactic 
electrons in this HMF cycle exit the heliosphere at/near  the 
heliospheric poles. This is again in accordance with the drift 
consideration in different HMF polarity cycles. An important 
difference is that the peak of the exit energy now occurs at 
lower energies, ∼500 MeV, than in the A > 0 cycle. This is a 
consequence of the difference in propagation times between the 
different drift cycles, a fact that will be explored later in this 
section. 

Figure 7 gives a three-dimensional (in terms of spatial 
coordinates) representation of the same electron trajectories 
shown in Figure 1. The left panel is for the A > 0 cycle, while 
the right panel is for the A  < 0 cycle. All axes are labeled in 
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Figure 4. Left panel shows computed galactic electron energy spectra at Earth with respect to the LIS at 140 AU for three cases: neglecting drifts in the model (dotted 
line), and for the A > 0 (dashed lines) and the A < 0 (dash-dotted line) HMF polarity cycles. Electron observations at Earth for both HMF cycles (A < 0 in 1965 
and A > 0 in 1977), taken from a compilation by Potgieter & Moraal (1985), are shown for qualitative comparison. The right panel shows computed intensities as a 
function of radial distance for both polarity cycles at an energy of 100 MeV. 

 

 

 
Figure 5. Phase-space exit position at the HP for 10,000 simulated particles (galactic electrons) for the A > 0 polarity cycle, initially injected at Earth with an energy 
of 100 MeV. The top panel shows the exit position in terms of latitude (polar angle) and longitude (azimuthal angle), while the bottom left panel shows the same 
scenario, but latitude binned. The bottom right panel shows the binned exit energy for galactic electrons originally released at Earth with energies of 100 MeV. 
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Figure 6. Same as Figure 5, but for the A < 0 polarity cycle. 

 

 

 

 

 
Figure 7. Three-dimensional spatial representation of the particle trajectories shown in Figure 1. Two representative particle trajectories (black and gray lines) are 
shown for the A > 0 (left panel) and A < 0 (right panel) HMF polarity cycles. In the A < 0 cycle, the pseudo-particles (galactic electrons) are transported mainly 
toward higher latitudes, while in the A > 0 cycle, the particles remain confined to low latitudes and drift outward mainly along the HCS. This illustration is consistent 
with the results of galactic electrons shown in the previous figure. 
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Figure 8. Binned propagation times for galactic electrons released at Earth at 100 MeV for the A < 0 (left panel), A > 0 (middle panel), and for the no-drift scenarios 
(right panel). For each computation 10,000 particle trajectories were integrated. 

 

units of AU. This illustration, which is impossible to do with 
non-SDE models, confirms that electrons observed at Earth 
during the A  >  0 cycle drift to the inner heliosphere via the 
equatorial regions and stay close to the HCS until they reach 
Earth. For the A < 0 cycle, exactly the opposite is seen, where 
electrons drift from the polar to equatorial regions to reach Earth. 

In Figure 8, we show the binned propagation times for galactic 
electrons initially released at Earth with an energy of 100 MeV. 
Results are shown for three scenarios: the A < 0 polarity cycle 
(left panel), the A > 0 cycle (middle panel), and the non-drift 
case (right panel). For the latter, the propagation time follows 
a normal distribution, peaking at ∼400  days, while for the 
different drift cycles, the distribution tends to be more Poisson 
like (as CR cannot reach the HP infinitely fast, i.e., τ > 0) with 
lower propagation times. The reason for the shorter propagation 
times, ∼240 days for the A  >  0 cycle and ∼110 days for 
the A  <  0 cycle, is that drifts cause a preferred direction of 
transport for CR electrons, thereby allowing them to escape the 
heliosphere faster, or in the forward in time case, to propagate 
faster from the HP to Earth. The propagation times for the A < 0 
cycle is shorter than for the A > 0 cycle, as galactic electrons 
can more easily escape along the heliospheric poles, but need to 
drift along the HCS in the A > 0 cycle. 

To obtain a representative value for the propagation time, we 
can calculate the expectation value thereof directly from the 
histogram distribution of τ as 

 

M 

be more energetic when they reach the HP. The difference in 
propagation times between the A  >  0 and A  <  0 cycles can 
therefore explain the difference in exit energy shown in Figures 5 
and 6. Moreover, the propagation time for the A  >  0 cycle 
is a factor of ∼2 longer than for the A  <  0 cycle, and it is 
generally expected that the electrons in this cycle will undergo 
more modulation resulting in lower intensities. This is evident 
from Figure 4: at 100 MeV the electron intensities are much 
lower for the A > 0 cycle. Note that the results given here hold 

only in the supersonic solar wind where ∇ · Vsw > 0. It should 
be noted that the discussion does not include the effect that the 
rate of energy loss (or gain) depends on the frame in which the 
CRs are described (Parker 1965; Webb & Gleeson 1979). 
 

4.2. Jovian Electrons 
 

The modeling results shown in this section include both 
the galactic and Jovian electron populations in the modulation 
model. The galactic and Jovian electron intensities are calcu- 
lated simultaneously, but also independently of each other. In 
the following figures, we therefore show galactic and Jovian in- 
tensities separately, as well as the total electron intensity, which 
is merely a linear combination of the separate components. As 
previously stated, Jovian electrons dominate the galactic com- 
ponent at low energies and because the effects of drifts are small, 
even negligible at these low energies, computed intensities are 
only shown for the A > 0 polarity cycle. 

Figure 9 shows computed energy spectra, with the inclusion 

(τ ) =   
l=1 

τl pl , (19) of both galactic and Jovian electrons into the model. The left 
panel shows the galactic contribution (dashed line), the Jovian 
contribution (dash-dotted line), and the linear combination of 

where M is the number of bins and pl  = Nl /N is the probability 
of finding a particle in a particular bin with propagation time 

these components (total, solid line) at Earth in the equatorial 
plane. For these computations, the observer was taken to be 

0
 

τl . Note that 
L

l pl   = 1. The expectation value can also be located at an azimuthal position of φ =  0, while Jupiter’s 
interpreted as the weighted average of the different propagation 
times. For the A  >  0 cycle we find (τ ) =  299 days, for 
the A  <  0 cycle (τ )  = 180 days, and for the non-drift case 
(τ ) = 481 days. The expectation values are in general much 
longer than the peak propagation time due to the long tails in 
the distribution of τ . 

Calculating propagation times allows us to interpret also the 
energy gain (or loss in terms of forward time) of CR propagating 
through the heliosphere. The SDE for the energy coordinate 

position was initially located at φJ   = 0, but allowed to vary 
time dependently during the integration process as discussed 
previously. The right panel is similar, but for an observer located 
at 5 AU. For both computations, the A > 0 cycle is assumed. 
The results show the same qualitative behavior as discussed 
previously by Potgieter & Ferreira (2002), with Jovian electrons 
dominating the combined energy spectrum below ∼10 MeV. 

In Figure 10 we show the computed total electron intensity 
as a function of radial distance at an energy of 4 MeV. For all 

leads to ΔE ∝ τ , and CRs with longer propagation times will simulations, Jupiter’s initial position is kept fixed at φ0
 = 0, 



10 

   

 

J 

 

 
Figure 9. Computed galactic electron (dashed-dotted lines), Jovian electron (dashed lines), and combined electron (i.e., a linear combination of the galactic and Jovian 
intensities, solid lines) spectra at Earth (left panel) and at 5 AU (right panel) for the A > 0 cycle. 

 

 
 

Figure 10. Combined computed galactic and Jovian electron intensities at 4 MeV as a function of radial distance from the Sun, located at the origin. The initial position 
of the Jovian magnetosphere is kept at φ0  = 0, while radial cuts at φ = 0 (toward Jupiter) and φ = π (away from Jupiter) are shown. 

 

 

while the right panel shows a radial cut at φ  =  0 (toward 
Jupiter) and the left at φ  =  π  (away from Jupiter). From 
this figure we see that the Jovian electrons dominate the total 
electron intensity in the inner heliosphere up to ∼20 AU in the 
equatorial plane. This value is however not unique, but depends 
on the diffusion tensor assumed in the modulation model. In 
the inner heliosphere, we see four distinctive peaks in electron 
intensities: the highest one corresponds to the actual position 
of Jupiter, while the three lower peaks correspond to HMF 
crossings of field lines connecting the observational point and 
Jupiter. At r  >  ∼40 AU, the Jovian electron intensities are no 
longer smooth, but exhibit a wavy behavior. This is caused 
by the relative motion of Jupiter (discussed next), allowing 
different field lines to connect the observational point to the 
Jovian magnetosphere during the integration process. 

In the next figure we illustrate the relative motion of the 
Jovian magnetosphere during the integration process as well 
as the propagation time of Jovian electrons. The left panel of 
Figure 11 shows the relative azimuthal motion ΔφJ of the Jovian 
magnetosphere when Jovian electrons of 10 MeV are traced time 
backward from Earth (gray histogram, bottom axis) to the Jovian 
magnetosphere. This azimuthal motion is due to the finite time a 
Jovian electron will spend in the heliosphere while propagating 
from Jupiter to Earth. At these small radial separations between 

the observational point and the source (i.e., ∼5 AU separation 
between Jupiter and Earth), the relative motion of Jupiter is 
small, ∼1◦–2◦,  during the propagation process and can be 
neglected as is done in traditional modulation models. At larger 
radial separations, for an observational point located at 50 AU as 
an example (black histogram, top axis), the effect of a moving 
source however becomes larger, ∼20◦, and contributes to the 
varying electron intensities shown in Figure 10. The expectation 
value is (ΔφJ ) = 4◦ for an observational point located at 1 AU, 
but increases to (ΔφJ ) =  31◦  for an observational point at 
50 AU. The propagation times for Jovian electrons, for the same 
scenarios as in the left panel, are shown in the right panel. 
None of the Jovian electrons reach Earth in less than 5 days, 
with the propagation time peaking at ∼7 days. These relatively 
short propagation times make convection and diffusion the 
effective modulation processes for Jovian electrons in the inner 
heliosphere, because these particles do not reside long enough in 
the heliosphere to undergo significant adiabatic energy changes, 
while drift effects are negligible at these low energies. We find 
(τ ) = 44 days at 1 AU and (τ ) = 369 days at 50 AU. 

Next, the geometrical effect of changing the azimuthal separa- 
tion of Earth (as the observational point) and Jupiter on electron 
intensities is modeled. The resulting Jovian and galactic intensi- 
ties are shown in Figure 12. For these simulations the azimuthal 
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Figure 11. Left panel shows the relative azimuthal motion of Jupiter ΔφJ , when 10 MeV electrons are traced time backward from an observational point at Earth 
(gray histogram, bottom axis) and from an observational point located at 50 AU in the equatorial plane (black histogram, top axis) from the Jovian magnetosphere. 
The right panel shows the corresponding propagation times. At Earth, the relative motion of Jupiter is small, ΔφJ  ∼ 1◦ , and so is the propagation time of ∼7 days. 
For an observer at 50 AU, however, the relative motion of Jupiter is large ΔφJ  ∼ 20◦ , and the propagation time increases to ∼220 days. 

 

 
Figure 12. Top panel shows the assumed time-dependent azimuthal positions of Earth and Jupiter in the modulation model, while the bottom panel shows the effect 
thereof on electron intensities at 4 MeV in the equatorial plane. Jovian intensities are indicated by the triangles and galactic intensities (multiplied by a factor of 10) 
by the filled circles. The solid and dashed lines show sinusoidal fits to the Jovian intensities, with periods of 13.1 and 12 months, respectively. 

 
 

position of Earth is varied in accordance with its orbital pe- 
riod of 2π/365.25 day−1 and Jupiter with its orbital period of 
2π/4333 day−1 . Both Earth and Jupiter are initially located at 
φ = π , as shown in top panel of the figure. In the bottom panel 
the resulting electron intensities at Earth are shown. For galac- 
tic electrons this changing geometry has no effect as the Parker 
HMF is azimuthally symmetric. For the Jovian electrons, on the 
other hand, a clear sinusoidal variation with time is found. If 
the azimuthal position of Jupiter would remain constant over 
time, a sinusoidal variation with a period of 12 months is ex- 
pected due to the movement of Earth (shown as the dash-dotted 
line), but varying the azimuthal separation realistically, we find 
a period of 13.1 months (solid line). This is in accordance with 
the observations of, e.g., Moses (1987), and the ADI modeling 
done previously by Ferreira et al. (2003). 

To further emphasize the spatially three-dimensional nature 
of Jovian electron transport in the inner heliosphere, Figure 13 

shows modeled intensity contours in the equatorial (top panel) 
and meridional (bottom panel) planes at 4 MeV. The position of 
the Jovian magnetosphere is indicated by the blue asterisk (not 
to scale), while intensities are normalized to 100% at Jupiter. 

5. SUMMARY AND CONCLUSIONS 
 

We discussed a newly developed five-dimensional numerical 
modulation model applied to the study of galactic and Jovian 
electrons. Details of the numerical scheme, employing SDEs, 
were given in Section 3, while a derivation thereof will be given 
in the Appendix. 

Benchmarks for the model were shown in Section 3.1. The 
model was benchmarked in particular with energy spectra from 
Jokipii & Kopriva (1979) for galactic protons. Zhang (1999) also 
benchmarked his five-dimensional SDE model, using Cartesian 
coordinates, with the same results. We thus find very good 
comparison with  both  of  these  models  and  take  this  as  a 
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Figure 13. Modeled Jovian electron intensities in the equatorial (top panel) and 
meridional (bottom panel) planes at 4 MeV. The blue asterisk shows the position 
of Jupiter, while the dashed line in the top panel shows an HMF line connecting 
Jupiter to the Sun. 

(A color version of this figure is available in the online journal.) 

 

vindication of our SDE modeling approach where the TPE is 
solved directly in spherical coordinates. 

In Figure 4 the resulting energy spectra for galactic electrons 
were shown for both HMF cycles. A qualitative comparison 
with observations show that the model can reproduce electron 
transport in successive drift cycles. Moreover, Figures 5 and 6 
show the preferred exit position of galactic electrons in both 
HMF cycles which are consistent with drift considerations: in 
the A  >  0 cycle, most of the CR electrons observed at Earth 
propagate through the equatorial regions. In contrast, for the 
A < 0 cycle, they reach Earth mainly through the polar regions. 
This type of study, where the evolution of individual density 
elements is followed, is not possible with traditional ADI type 
models. 

In Figure 8 the calculated propagation times were shown, 
again for galactic electrons in both HMF cycles, showing the 
electrons generally to reside longer in the heliosphere during the 
A > 0 cycle. We find a propagation time of 300 days in the A >  
0 cycle, 180 days in the A < 0 cycle, and 481 days when drifts 
are completely neglected. We also made the connection between 

supersonic solar wind where ∇ · Vsw  >  0 (e.g., Strauss et al. 
2010). It is concluded that 100 MeV galactic electrons observed 
at  Earth  originate  between  500 and 1000  MeV,  undergoing 
adiabatic energy losses during their transport to Earth. Due to 
the difference in the propagation times between consecutive 
drift cycles, these electrons undergo additional energy losses in 
the A > 0 cycle due to the their longer propagation time. The 
ability to calculate the propagation time of CRs is unique to 
SDE type models. 

Energy spectra, as well as radial intensity profiles, with the 
inclusion of both galactic and Jovian electrons into the mod- 
ulation model, were shown in Figures 9 and 10. The same 
qualitative behavior as noted in previous modulation studies 
was found, with Jovian electrons dominating the galactic con- 
tribution at  low  energies in  the  inner heliosphere. Notable 
from Figure 10 is the wavy behavior of the Jovian intensi- 
ties at large radial distances because of the relative motion of 
the Jovian magnetosphere included in the present model and 
shown in Figure 11. For Jovian electrons observed at Earth, 
the motion of the Jovian magnetosphere, ∼4◦,  is negligible, 
while for Jovian electrons reaching 50 AU, this effect can be- 
come quite pronounced, ∼31◦. In essence, this effect is due to 
the difference in propagation times between the two scenar- 
ios: the mean propagation time between Jupiter and Earth is 
∼44 days, while the propagation time between Jupiter and an 
observer located at 50 AU is ∼370 days. Lastly, Figure 12 shows 
that the model is able to reproduce the well-known ∼13 month 
periodicity in Jovian electron intensities as observed at Earth 
over longer timescales. 

It was shown that an SDE-type modulation model can suc- 
cessfully reproduce the modulation of both galactic and Jo- 
vian electrons as studied previously by ADI-type models. The 
method allows us to compute modulation features which are not 
possible with previous modulation models. This includes calcu- 
lating the propagation time that CRs spend in the heliosphere 
and quantifying their energy losses during this period by trac- 
ing pseudo-particle trajectories, yielding deeper insight into the 
modulation process. Because of the numerical stability of the 
SDE method, we can also include in the model detailed (realis- 
tic) descriptions of the heliospheric environment, e.g., including 
the relative motion of Jupiter. 
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APPENDIX 
 

DERIVING AN APPLICABLE SET OF STOCHASTIC 
DIFFERENTIAL EQUATIONS FOR COSMIC RAY 

TRANSPORT 
 

A multidimensional Itō stochastic differential equation (SDE) 
has the general form 

the propagation time and the amount of adiabatic cooling the 
CR experience. This connection is however only valid in the 

dxi  = Ai (xi )ds + 
j 

Bij (xi ) · dWi , (A1) 
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processes  and  s  is  a 
 

∂ 2 j 
 

κθθ ∂ 2 j 
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time parameter (e.g., Gardiner 1983; Kloeden & Platen 1999; 
Øksendal 2003). The first term is  often referred to  as  the 

+ κrr  + 
∂r 2 

+ + 
r 2   ∂θ 2 r 2 sin2 θ ∂φ2 r sin θ ∂r∂φ  

drift term, being continuous and slowly varying, while the 
second term is called the diffusion term and describes a rapidly 

1 
+ 

3r 2 
(r 2 Vsw )  

∂  
(ΓEj ) , (A5) 

∂E  

varying stochastic component. The drift term can also be seen 
as containing deterministic processes, while the diffusion term 
describes random (meaning stochastic of nature) processes via 
the multidimensional Wiener process Wi   = {Wi (s), s       0}. 
The Wiener process has a time stationary normal-distributed 
N (0, 1) probability density with an expectation value of 0 and 
variance of 1, and can be generated numerically as discussed 
later. Throughout this work we make use of the index notation 
i  ∈  {r, θ , φ , E} to describe different components of phase 
space in terms of spherical spatial coordinates and kinetic 
energy. 

where the diffusion coefficients, κij , are given in terms of 
spherical coordinates, related to Ks  in HMF coordinates by 
a rotation about the eθ  axis (e.g., Burger et al. 2008). Note 
that  because  Ks   is  diagonal,  the  elements  κθr    =  κrθ    = 
κθφ  = κφθ  = 0 in terms of spherical coordinates for a Parker 
HMF configuration. Equation (A5) is already in the form of 
Equation (A4) with 

A = [Ar , Aθ , Aφ , AE ],  (A6) 

the different components being 

Various techniques exist to find the equivalent set of SDEs 1 
Ar  = 

1 
(r 2 κrr ) +  

∂κrφ  
− Vsw − vdr ,

 
for a given Fokker–Planck-type equation. In this work we solve 
the resulting set of SDEs in a time backward fashion and make 

r 2  ∂r  
1 ∂ 

r 2 sin θ ∂φ  
vdθ 

 

use of the time backward Kolmogorov equation, given by Aθ  = 
r 2 sin θ ∂θ 

(sin θκθθ ) −  
r  
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∂ρ  ∂ρ  1 
 

∂ 2 ρ Aφ  =
 1 κφφ  
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1 ∂ 

rκrφ    − vdφ    
,
 

− 
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= Ai ∂x  
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2
 Cij ∂x ∂x 

 .  (A2) r 2 sin2 θ  ∂φ  r 2 sin θ ∂r  r sin θ 
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Equations (A1) and (A2) are thus equivalent (i.e., describing 
the same differential equation) to each other by Itō ’s lemma 

 

 

and 

A    (r 2 V   )ΓE,  (A7) 
3r 2  ∂r  

(Gardiner 1983; Kloeden & Platen 1999). In Equation (A2), 
ρ(xi , s | x0 , s0 ) is the conditional probability of finding a phase- 

⎡    
2 
φr  

rr − 

⎤ 

0 
κφr  

space density element, with the initial position (x0 , s0 ), at a 
⎢ 

κφφ √ ⎢ √κ
 κφφ 
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.  (A8)

 
position (xi , s). For Fokker–Planck-type TPEs we can however 
assume ρ  to be proportional to the phase-space density (i.e., 

B± = ±  2 ⎢ ⎢ ⎢ 
θθ 

0 
⎢ 

r √ 
⎢

 

distribution function), ρ ∝ j . Furthermore, we made use of the 
notation Cij  = (B · B T )ij , where T indicates the transpose of 

⎣ 
0 0 

κφφ  
⎦

 

r sin θ 

the tensor. As we solve the set of SDEs time backward, s is a 
parameter indicating backward time, related to normal time t by 

 

t = tN  − s,  (A3) 

 
with tN  being some final time and s     0. We thus integrate the 
set of SDEs from an initial time s = 0, t = tN  time backward up 
to the present time s = tN , t = 0. Lastly, we note that ∂ t = −∂s, 
and Equation (A2) becomes 

In Equation (A8) only the spatial elements are taken into 
account, because the model contains no second-order energy 
effects at present. Note that the magnitude (and form) of Bij is not 
uniquely defined due to the presence of off-diagonal terms (e.g., 
Johnson et al. 2002), but different choices of B give identical 
results as they are mathematically equivalent (e.g., Gardiner 
1983). Throughout this work we use B+ from Equation (A8). 

Combining all of the results, we have the appropriate set of 
SDEs to describe the Parker (1965) TPE, given by 
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ds  
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− Vsw  − vdr  
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i  j 

2 
√ 

rφ rφ  

In  essence,  this  equation  thus  contains  a  mixture  of  time 
backward phase-space coordinates and forward time (Kloeden 

+ 2κrr −  

κφφ 

dWr + √κφφ 
dWφ 

& Platen 1999), but allows us to readily obtain the appropriate r 
1 ∂ vdθ 

  
√

2κθθ 
 

set of SDEs for CR transport: we rewrite the Parker (1965) TPE dθ = (sin θκ   ) 
r 2 sin θ ∂θ r 

ds + dWθ 
r 

in the form of Equation (A4), find the appropriate vector Ai and 
tensor Bij , and substitute these values into Equation (A1). 

r 
1 

dφ = κφφ  
+ 

1 ∂ 
(rκ   ) − vdφ 

ds 
 

Using the assumptions listed in Section (2), the TPE in terms 
of spherical spatial coordinates and energy becomes 
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for the different phase-space components and backward time 
s 0. All transport coefficients are evaluated at the phase- r 
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To simulate independent Wiener processes Wi (s), we make 
use of the relationship 

 

Fichtner, H.,  Potgieter, M.  S.,  Ferreira, S.  E.  S.,  &  Burger, R.  A.  2000, 
Geophys. Res. Lett., 27, 1611 

Florinski, V., & Pogorelov, N. V. 2009, ApJ, 701, 642 
Gardiner, C. W. 1983, Handbook of Stochastic Methods (Germany: Springer)

 

dWi (s) = η(s)
√ 

, (A10)
  

Giacalone, J., & Jokipii, J. R. 1999, ApJ, 520, 204 

ds  
 

with η(s) a Gaussian distributed (equivalent to a N (0, 1) dis- 
tribution) pseudo-random number (PRN) that can be generated 
numerically. To simulate the PRNs we implement the well-tested 
MT19937 version of the Mersenne Twister PRN generating al- 
gorithm (Matsumoto & Nishimura 1998) with a proven period 
of 219937 − 1 to generate standard deviates, i.e., uniformly dis- 
tributed PRNs on the interval f f i ∈ (0, 1] (e.g., Kloeden & 
Platen 
1999), and transform these to Gaussian distributed PRNs by ap- 
plying the so-called polar method (e.g., Rice 1995), also referred 
to as the Box–Muller method (e.g., Box & Muller 1958): if ffi1 (s) 
and ffi2 (s) are independent standard deviates, then 

 

η1 (s) =  −2 ln ffi1 (s) cos(2π ffi2 (s)) 

η2 (s) =  −2 ln ffi1 (s) sin(2π ffi2 (s)) 

 
are independent Gaussian distributed PRNs. Note that when 
using the polar method, we have the restriction that ffi1,2 (s) = 0. 
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