
Vol. 2, No. 2, March–Aprile 2006

Modeling the .NET CLR

Exception Handling Mechanism for

a Mathematical Analysis

Nicu G. Fruja, Computer Science Department, ETH Zürich, Switzerland
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We provide a mathematical reference model for the exception handling mecha-

nism of the Common Language Runtime (CLR), the virtual machine underlying

the interpretation of .NET programs. The model filles some gap in the ECMA

standard for CLR and is used to sketch the exception handling related part of a

soundness proof for the CLR bytecode verifier.

1 INTRODUCTION

This work is part of a larger project [17] which aims at establishing some important prop-

erties of C♯ and CLR by mathematical proofs. Examples are the correctness of the byte-

code verifier of CLR [11], the type safety (along the lines of the first author’s correctness

proof [14, 15] for the definite assignment rules) of C♯, the correctness of a general com-

pilation scheme. We reuse the method developed for similar work for Java and the Java

Virtual Machine (JVM) in [25]. As part of this effort, in [5, 13, 20] an abstract interpreter

has been developed for C♯, including a thread and memory model [24, 23]; see also [8]

for a comparative view of the abstract interpreters for Java and for C♯.

In [16] an abstract model is defined for the CLR virtual machine without the exception

handling instructions, but including all the constructs which deal with the interpretation of

the procedural, object-oriented and unsafe constructs of .NET compatible languages such

as C♯, C++, Visual Basic, VBScript, etc. The reason why we present here a separate model

for the exception handling mechanism of CLR is to be found in the numerous non-trivial

problems we encountered in an attempt to fill in the missing parts on exception handling

in the ECMA standard [10]. Already in JVM the most difficult part for the correctness

proof of the bytecode verifier was the one dealing with exception handling (see [25, §16]).

The concrete purposes we are pursuing in this paper are twofold. First, we want to define

a rigorous ground model (in the sense of [3]) for the CLR exception mechanism, to be

used as reference model for the exception handling related part of a correctness proof for

the bytecode verifier [11]. Secondly, we want to clarify the numerous issues concerning
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exception handling which are left open in the ECMA standard, but are relevant for a

correct understanding of the CLR mechanism.

The ECMA standard for CLR contains only a few yet incomplete paragraphs about

the exception handling mechanism. A more detailed description of the mechanism can

be found in one of the few existing documents on the CLR exception handling [9]. The

CLR mechanism has its origins in the Windows NT Structured Exception Handling (SEH)

which is described in [22]. What we are striving for, the CLR type safety, is proved for

a subset of CLR in [19]. However, that paper does not consider the exception handling

classified in [19, §4] as a fairly elaborate model that permits a unified view of exceptions

in C++, C♯
, and other high-level languages. So far, no mathematical model has been

developed for the CLR exception handling. The JVM exception mechanism, which differs

significantly from the one of CLR, has been investigated in [6, 25].

We use three different methods to check the faithfulness (with respect to CLR) of the

modeling decisions we had to take where the ECMA standard exhibits deplorable gaps.

First of all, the first author made a series of experiments with CLR, some of which are

made available in [12] to allow the reader to redo and check them. We hope that these pro-

grams will be of interest to the practitioner and compiler writer, as they show border cases

which have to be considered to get a full understanding and definition of exception han-

dling in CLR. Secondly, to provide some authoritative evidence for the correctness of the

modeling ideas we were led to by our experiments, over the Fall of 2004 the first author

had an electronic discussion with Jonathan Keljo, the CLR Exception System Manager,

which essentially confirmed our ideas about the exception mechanism issues left open in

the ECMA documents. Last but not least a way is provided to test the internal correct-

ness of the model presented in this paper and its conformance to the experiments with

CLR, namely by an executable version of the CLR model, using AsmL [1]. The AsmL

implementation of the entire CLR model is available in [21].

Since the focus of this paper is the exception mechanism of CLR, we assume the

reader to have a rough understanding of CLR. We also refer without further explanations

to the model EXECCLRN defined in [16], which describes what the machine does upon

its ”normal” (exception-free) execution.

Our model for CLR together with the exception mechanism comes in the form of an

Abstract State Machine (ASM) CLRE . Since the intuitive understanding of the ASMs

machines as pseudo-code over abstract data structures is sufficient for the comprehension

of CLRE , we abstain here from repeating the formal definition of ASMs which can be

found in the AsmBook [7]. However, for the reader’s convenience we summarize here

the most important ASM concepts and notations that are used in this paper. A state of an

ASM is given by a set of static or dynamic functions. Nullary dynamic functions corre-

spond to ordinary state variables. Formally all functions are total. They may, however,

return the special element undef if they are not defined at an argument. In each step, the

machine updates in parallel some of the functions at certain arguments. The updates are

programmed using transition rules P, Q with the following meaning:
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f (s) := t update f at s to t

if ϕ then P else Q if ϕ, then execute P, else Q

P Q execute P and Q in parallel

let x = t in P assign t to x and then execute P

P seq Q execute P and then Q

P or Q execute P or Q

We stress the fact that in one step, an ASM fires simultaneously all its rules (syn-

chronous parallelism).

Notational convention Beside the usual list operations (e.g., push, pop, top, length, and

·)1, we use split(L,1) to split off the last element of the list L, i.e., split(L,1) is the pair

(L′, [x]) where L′ · [x] = L.

The paper is organized as follows. In Section 2, we list a few notations defined in [16]

and used in this paper. Section 3 gives an overview of the CLR exception handling mecha-

nism. The elements of the formalization are introduced in Section 4. Section 5 defines the

so-called StackWalk pass of the exception mechanism. The other two passes, Unwind and

Leave are defined in Section 6 and Section 7, respectively. The execution rules of CLRE

are introduced in Section 8. Section 9 considers the refinements that shall be applied to

our model in order to also treat the handling of the special ThreadAbortException.

In Section 10 we illustrate a verification usage of the mathematical CLRE model by pro-

viding the exception handling related details of a soundness proof of (a model of) the

CLR bytecode verifier. A preliminary version of this paper appeared in [18].

2 PRELIMINARIES

We summarize briefly the notations introduced in [16] that are relevant for the exception

handling mechanism. For a detailed description we refer the reader to [16].

A method frame consists of a program counter pc : Pc, local variables addresses

locAdr : Map(Local, Adr), arguments addresses argAdr : Map(Arg, Adr), an evaluation

stack2 evalStack : List(Value), and a method reference meth : MRef . The frame denotes

the currently executed frame. Accordingly, pc gives the program counter of the current

frame, locAdr the local variables addresses of the current frame, etc.

The stack of call frames is denoted by frameStack and is defined as a list of frames.

Note that we separate the current frame from the stack of call frames, i.e., frame is not

contained in frameStack. The macros PUSHFRAME and POPFRAME are used to push and

pop the frame, respectively.

PUSHFRAME ≡ push(frameStack, frame)

1The “·” denotes the operation append for lists.
2In order to simplify the exposition we describe here the evalStack as a list of values though [16] defines

it as a list of pairs from Value × Type.
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Fig. 1 The CLRE machine

CLRE ≡ if switch = ExcMech then

EXCCLR

elseif switch = Noswitch then

INITIALIZECLASS or EXECCLRE(code(pc))

POPFRAME ≡ let (frameStack′, [(pc′, locAdr′, argAdr′, evalStack′, meth′)]) =
split(frameStack, 1) in

pc := pc′

locAdr := locAdr′

argAdr := argAdr′

evalStack := evalStack′

meth := meth′

frameStack := frameStack′

3 THE GLOBAL MACHINE STRUCTURE

Every time an exception occurs, the control is transferred from “normal” execution (in

EXECCLRE) to a so-called “exception handling mechanism” which we model as a sub-

machine EXCCLR. To switch from normal execution (read: in mode Noswitch) to this

new component, the mode is set to, say, switch := ExcMech which interrupts EXECCLRE

and triggers the execution of EXCCLR. The machine EXECCLRE is an extension of the

exception-handling-free machine EXECCLRN by a submachine which executes instruc-

tions related to exceptions (like Throw, Rethrow, etc.); it will be defined in Fig. 4. Due to

the very weak conditions imposed by the ECMA standard on class initialization, the over-

all structure of CLRE has to foresee that the initialization of a beforefieldinit3

class may start at any moment, as analyzed in detail in [13]; this explains the definition

of CLRE as a machine which, in the normal execution mode (see also the remark be-

low) non-deterministically chooses whether to start a class initialization or to execute the

current instruction code(pc) pointed at by the program counter pc (see Fig. 1).

The exception handling mechanism proceeds in two passes. In the first pass, the

runtime system runs a “stack walk” searching, in the possibly empty exception handling

array associated by excHA : Map(MRef , List(Exc)) to the current method, for the first

handler that might want to handle the exception:

• a catch handler whose type is a supertype of the type of the exception, or

3The ECMA standard states in [10, Partition I, §8.9.5] that, if a class is marked beforefieldinit,

then the class initializer method is executed at any time before the first access to any static field defined for

that class.

4 JOURNAL OF OBJECT TECHNOLOGY VOL 2, NO. 2



3 THE GLOBAL MACHINE STRUCTURE

• a filter handler – to see whether a filter wants to handle an exception, one

has first to execute (in the first pass) the code in the filter region: if it returns 1, then

it is chosen to handle the exception; if it returns 0, this handler is not good to handle

the exception.

Visual Basic and Managed C++ have special catch blocks which can “filter” the

exceptions based on the exception type and / or any conditional expression. These are

compiled into filter handlers in the Common Intermediate Language (CIL) bytecode.

The filter handlers bring considerable complexity to the exception mechanism.

The ECMA standard does not clarify what happens if the execution of the filter or

of a method called by it throws an exception. The currently handled exception is known as

an outer exception while the newly occured exception is called an inner exception. As we

will see below, the outer exception is not discarded but its context is saved by EXCCLR

while the inner exception becomes the outer exception.

If a match is not found in the faulting frame, i.e., the frame where the exception has

been raised, the calling method is searched, and so on. This search eventually terminates:

Backstop entry The excHA of the entrypointmethod has as last entry a so-called

backstop entry placed by the operating system which can handle any exception.

When a match is found, the first pass terminates and in the second pass, called “unwind-

ing of the stack”, CLR walks once more through the stack of call frames to the handler

determined in the first pass, but this time executing the finally and fault4 handlers

and popping their frames. It then starts the corresponding exception handler.

Class initialization vs. Exception mechanism Although the ECMA standard [10, §8.9.5]

says that a beforefieldinit class can be initialized at any time (before an access to

one if its static fields occurs), it is not clear whether the .NET implementation follows the

same line and allows such initialization to happen, for example, even during the purely

administrative handler search EXCCLR has to accomplish to provide the specified effect

of exception handling code, formally when switch = ExcMech. As one can see in Fig. 1,

our model rules this out and considers that no initialization can happen when switch is

ExcMech. This does not exclude initializations to be triggered during the execution of

filter or handler code (when switch is different from ExcMech).

However, our model can be refined to allow class initializers to be non-deterministically

triggered when switch is ExcMech:

• A stack switchStack of switch values is added.

• Assume that switch is ExcMech and the run-time system decides to initialize a

beforefieldinit class. In this case, the current value of switch, i.e., ExcMech,

is pushed onto switchStack, and the macro INITIALIZECLASS is executed.

4Currently, no language (other than CIL) exposes fault handlers directly. A fault handler is simply

a finally handler that only executes in the exceptional case.
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Fig. 2 The predicates isInTry, isInHandler and isInFilter

isInTry(pos, h) ⇔ tryStart(h) ≤ pos < tryStart(h) + tryLength(h)
isInHandler(pos, h) ⇔ handlerStart(h) ≤ pos < handlerStart(h) + handlerLength(h)
isInFilter(pos, h) ⇔ filterStart(h) ≤ pos < handlerStart(h)

• The rule for Return instructions is refined to reflect the special semantics of a

Return instruction of a .cctor of a beforefieldinit class: frame is dis-

carded, and switch is set to the topmost value on switchStack.

4 THE GLOBAL STRUCTURE OF EXCCLR

In this section, we provide some detail on the elements, functions and predicates needed

to turn the overall picture into a rigorous model.

The elements of an exception handling array excHA : Map(MRef , List(Exc)) are

known as handlers and can be of four kinds. They are elements of a set Exc:

ClauseKind = catch | filter | finally | fault

Exc = Exc ( clauseKind : ClauseKind

tryStart : Pc

tryLength : N

handlerStart : Pc

handlerLength : N

type : ObjClass

filterStart : Pc )

Any 7-tuple of the above form describes a handler of kind clauseKind which “protects”

the region5 that starts at tryStart and has the length tryLength, handles the exception in

an area of instructions that starts at handlerStart and has the length handlerLength –

we refer to this area as the handler region; if the handler is of kind catch, then the

type of exceptions it handles is provided, whereas if the handler is of kind filter,

then the first instruction of the filter region is at filterStart. In case of a filter

handler, the handler region starting at handlerStart is required by the ECMA standard to

immediately follow the filter region – in particular we have filterStart < handlerStart.

We often refer to the sequence of instructions between filterStart and handlerStart − 1 as

the filter region. We assume that a filterStart is defined for a handler if and only if the

handler is of kind filter, otherwise filterStart is undefined.

To simplify the presentation, we define the predicates in Fig. 2 for an instruction located

at program counter position pos ∈ Pc and a handler h ∈ Exc. Note that if the predicate

isInFilter is true, then filterStart is defined and therefore h is of kind filter. Based on

5We will refer to this region as protected region or try block.
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the lexical nesting constraints of protected blocks specified in [10, Partition I,§12.4.2.7]

which we assume in the model, one can prove the following property:

Disjointness 1 The predicates isInTry, isInHandler and isInFilter are pairwise disjoint.

We also assume all the constraints concerning the lexical nesting of handlers specified

in the standard [10, Partition I,§12.4.2.7]. The ECMA standard [10, Partition I,§12.4.2.5]

ordering assumption on handlers is:

Ordering assumption If handlers are nested, the most deeply nested handlers

shall come in the exception handling array before the handlers that enclose them.

To handle an exception, the EXCCLR needs to record:

• the exception reference exc,

• the handling pass,

• a stackCursor, i.e., the position currently reached in the stack of call frames (a

frame f ) and in the exception handling array of f (an index in excHA),

• the suitable handler determined at the end of the StackWalk pass (if any); this is the

handler that is going to handle the exception in the pass Unwind – until the end of

the StackWalk pass, handler is undefined.

According to the ECMA standard [10, §12.4.2.8, Partition I], every normal execution

of a try block or a catch/filter handler region (not to be confused with a filter

region) must end with a Leave(target) instruction. When doing this, EXCCLR has to

record the current pass and stackCursor together with the target up to which every in-

cluded finally code has to be executed.

ExcRec = ExcRec ( exc : ObjRef

pass : {StackWalk,Unwind}
stackCursor : Frame × N

handler : Frame × N )

LeaveRec = LeaveRec ( pass : {Leave}
stackCursor : Frame × N

target : Pc )

We list some constraints which will be needed below to understand the treatment of these

Leave instructions.
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Leave constraints:

1. It is not legal to exit with a Leave instruction a filter region or a

finally/fault handler region.

2. It is not legal to branch with a Leave instruction into a handler region from

outside the region.

3. It is legal to exit with a Leave a catch handler region and branch to any

instruction within the associated try block, so long as that branch target

is not protected by yet another try block.

4. A Leave instruction is executed only upon the normal exit from a try

block or a catch/filter handler region.

5. The target of any branch instruction, in particular of Leave(target), points

to an instruction within the same method as the branch instruction.

The nesting of passes determines EXCCLR to maintain an initially empty stack of

exception records or leave records for the passes that are still to be performed.

passRecStack : List(ExcRec ∪ LeaveRec) passRecStack = [ ]

In the initial state of EXCCLR, there is no pass to be executed, i.e., pass = undef .

Only one handler region per try block? The ECMA standard specifies in [10, Partition

I,§12.4.2] that a single try block shall have exactly one handler region associated with

it. But the IL assembler ilasm does accept also try blocks with more than one catch

handler block. This discrepancy is solved if we assume that every try block with more

than one catch block, which is accepted by the ilasm, is translated in a semantics-

preserving way as follows:

.try {
block

} catch block1

catch block2

=⇒

.try {
.try {

block

} catch block1

} catch block2

We can now summarize the overall behavior of EXCCLR, which is defined in Fig. 3

and analyzed in detail in the following sections, by saying that if there is a handler in

the frame defined by stackCursor, then EXCCLR will try to find (when StackWalking)

or to execute (when Unwinding) or to leave (when Leaveing) the corresponding handler;

otherwise it will continue its work in the invoker frame or end its Leave pass at the target.
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5 THE STACKWALK PASS

During a StackWalk pass, EXCCLR starts in the current frame to search for a suitable

handler of the current exception in this frame. Such a handler may exist if the search

position n in the current frame has not yet reached the last element of the array excHA of

handlers of the corresponding method m.

existsHanWithinFrame(( , , , , m), n) ⇔ n < length(excHA(m))

If there are no (more) handlers in the frame fr pointed to by stackCursor, then the

search has to be continued at the invoker frame fr′. This means to reset the stackCursor to

point to the invoker frame, which precedes fr in the frame stack combined with frame:

SEARCHINVFRAME(fr) ≡ let · [fr′, fr] · = frameStack · [frame] in

RESET(stackCursor, fr′)

There are three groups of possible handlers h EXCCLR is looking for in a given frame

during its StackWalk:

• a catch handler whose try block protects the program counter pc of the frame

pointed at by stackCursor and whose type is a supertype of the exception type;

matchCatch(pos, t, h) ⇔ isInTry(pos, h) ∧ clauseKind(h) = catch ∧ t � type(h)

• a filter handler whose try block protects the pc of the frame pointed at by

stackCursor;

matchFilter(pos, h) ⇔ isInTry(pos, h) ∧ clauseKind(h) = filter

• a filter handler whose filter region contains the pc of the frame pointed at

by stackCursor. This corresponds to an outer exception described below.

The order of the if clauses in the let statement from the rule StackWalk in Fig. 3 is not

important. This is justified by the following property:

Disjointness 2 For every type t, the predicates matchCatcht, matchFilter and isInFilter

are pairwise disjoint6.

6By matchCatcht we understand the predicate defined by the set {(pos, h) | matchCatch(pos,t,h)}.
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The above property can be easily proved using the definitions of the three predicates and

the property Disjointness 1.

The handler pointed to by the stackCursor, namely hanWithinFrame(( , , , , m), n),
is defined to be excHA(m)(n). If this handler is not of one of the three types above, then

the stackCursor is incremented to point to the next handler candidate in the excHA:

GOTONXTHAN ≡ stackCursor := (fr, n + 1)
where stackCursor = (fr, n)

The Ordering assumption stated in Section 4 and the lexical nesting constraints stated

in [10, Partition I,§12.4.2.7] ensure that if the stackCursor points to a handler of one of

the three types above, then this handler is the first such handler in the exception handling

array (starting at the position indicated in the stackCursor).

Handler Case 1 If the handler pointed to by the stackCursor is a matching7 catch,

then this handler becomes the handler to handle the exception in the pass Unwind. The

stackCursor is reset to be reused for the Unwind pass: it shall point to the faulting frame,

i.e., the current frame. Note that during StackWalk, frame always points to the faulting

frame except in case a filter region is executed. However, the frame built to execute a

filter is never searched for a handler corresponding to the current exception.

FOUNDHANDLER ≡
pass := Unwind

handler := stackCursor

RESET(s, fr) ≡ s := (fr, 0)

Handler Case 2 If the handler is a filter, then by means of EXECFILTER its filter

region is executed. The execution is performed in a separate frame constructed espe-

cially for this purpose. However this detail is omitted by the ECMA standard [10]. The

currently-to-be-executed frame becomes the frame for executing the filter region. The

faulting exception frame is pushed on the frameStack. The current frame points now to

the method, local variables and arguments of the frame in which stackCursor is, it has the

exception reference on the evaluation stack evalStack and the program counter pc set to

the beginning filterStart of the filter region. The switch is set to Noswitch in order to

pass the control to the normal machine EXECCLRE .

7We use the actualTypeOf function defined in [16] to determine the runtime type of the exception.
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Fig. 3 The exception handling machine EXCCLR

EXCCLR ≡ match pass

StackWalk → if existsHanWithinFrame(stackCursor) then

let h = hanWithinFrame(stackCursor) in

if matchCatch(pos, actualTypeOf (exc), h) then

FOUNDHANDLER

RESET(stackCursor, frame)
elseif matchFilter(pos, h) then EXECFILTER(h)
elseif isInFilter(pos, h) then EXITINNEREXC

else GOTONXTHAN

else SEARCHINVFRAME(fr)
where stackCursor = (fr, ) and fr = (pos, , , , )

Unwind → if existsHanWithinFrame(stackCursor) then

let h = hanWithinFrame(stackCursor) in

if matchTargetHan(handler, stackCursor) then

EXECHAN(h)
elseif matchFinFault(pc, h) then

EXECHAN(h)
GOTONXTHAN

elseif isInHandler(pc, h) then

ABORTPREVPASSREC

GOTONXTHAN

elseif isInFilter(pc, h) then

CONTINUEOUTEREXC

else GOTONXTHAN

else

POPFRAME

SEARCHINVFRAME(frame)

Leave → if existsHanWithinFrame(stackCursor) then

let h = hanWithinFrame(stackCursor) in

if isFinFromTo(h, pc, target) then

EXECHAN(h)
if isRealHanFromTo(h, pc, target) then

ABORTPREVPASSREC

GOTONXTHAN

else

pc := target

evalStack := [ ]
POPREC

switch := Noswitch

EXECFILTER(h) ≡ pc := filterStart(h)
evalStack := [exc]
locAdr := locAdr′

argAdr := argAdr′

meth := meth′

PUSHFRAME

switch := Noswitch

where stackCursor = (( , locAdr′, argAdr′, , meth′), )
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Handler Case 3 The stackCursor points to a filter handler whose filter region

contains the pc of the frame pointed at by stackCursor.

Exceptions in filter region? It is not documented in the ECMA standard what hap-

pens if an (inner) exception is thrown while executing the filter region during the

StackWalk pass of an outer exception. The following cases are to be considered:

• if the inner exception is taken care of in the filter region, i.e., it is successfully

handled by a catch/filter handler or it is aborted because it occured in yet

another filter region of a nested handler (see the isInFilter clause), then the

given filter region continues executing normally (after the exception has been

taken care of);

• if the inner exception is not taken care of in the filter region, then it will be

discarded (via the CONTINUEOUTEREXC macro defined in Section 6) after its

finally and fault handlers have been executed (see Tests 6, 8, and 9 in [12]).

Therefore, in this case EXCCLR exits via the macro EXITINNEREXC the StackWalk

and starts an Unwind pass, during which all the finally/fault handlers for the

inner exception are executed until the filter region where the inner exception

occured is reached.

EXITINNEREXC ≡
pass := Unwind

RESET(stackCursor, frame)

6 THE UNWIND PASS

As soon as the pass StackWalk terminates, the EXCCLR starts the Unwind pass with

the stackCursor pointing to the faulting exception frame. Starting there, one has to

walk down to the handler determined in the StackWalk, executing on the way every

finally/fault handler region. This happens also in case handler is undef . When

Unwinding, the EXCCLR searches for one of the following four handlers:

• the matching target handler, i.e., the handler determined at the end of the StackWalk

pass (if any) – handler can be undef if the search in the StackWalk has been exited

because an exception was thrown in a filter region. For the matching target

handler case, the two handler and stackCursor frames in question have to coincide.

We say that two frames are the same if the address arrays of their local variables

and arguments as well as their method names coincide.

matchTargetHan((fr′, n′), (fr′′, n′′)) ⇔ sameFrame(fr′, fr′′) ∧ n′ = n′′

sameFrame(fr′, fr′′) ⇔ pri(fr
′) = pri(fr

′′),∀i ∈ {2, 3, 5}
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• a matching finally/fault handler whose associated try block protects the pc;

matchFinFault(pos, h) ⇔ isInTry(pos, h) ∧ clauseKind(h) ∈ {finally,fault}

• a handler whose handler region contains pc;

• a filter handler whose filter region contains pc;

The order of the last three if clauses in the let statement of the rule Unwind in Fig. 3 is

not important. It only matters that the first clause is guarded by matchTargetHan.

Disjointness 3 The predicates matchFinFault, isInHandler and isInFilter are pairwise

disjoint.

The property follows from the definitions and the property Disjointness 1.

The Ordering assumption in Section 4 and the lexical nesting constraints given in [10,

Partition I,§12.4.2.7] ensure that if the stackCursor points to a handler of one of the above

types, then this handler is the first handler in the exception handling array (starting at the

position indicated in the stackCursor) of any of the above types.

If the handler pointed to by the stackCursor is not of any of the above four types, the

stackCursor is incremented to point to the next handler in the excHA.

Handler Case 1 The handler pointed to by the stackCursor is the handler found in the

StackWalk. Then the handler region of handler is executed through EXECHAN: the pc is

set to the beginning of the handler region, the exception reference is loaded on the evalu-

ation stack (when EXECHAN is applied for executing finally/fault handler regions,

nothing is pushed onto evalStack), and the control switches to EXECCLRE .

EXECHAN(h) ≡
pc := handlerStart(h)
evalStack := if clauseKind(h) ∈ {catch,filter} then [exc]

else [ ]
switch := Noswitch

Handler Case 2 The handler pointed to by the stackCursor is a matching finally or

fault handler. Then its handler region is executed with initially empty evaluation stack.

At the same time, the stackCursor is incremented through GOTONXTHAN.

Handler Case 3 The handler region of the handler pointed to by stackCursor contains pc.

Exceptions in handler region? The ECMA standard does not specify what should hap-

pen if an exception is raised in a handler region. The experimentation in [12] led to the

following rules of thumb for exceptions thrown in a handler region, in a way similar to

the case of nested exceptions in filter code:
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• if the exception is taken care of in the handler region, i.e., it is successfully handled

by a catch/filter handler or it is discarded (because it occured in a filter

region of a nested handler), then the handler region continues executing normally

(after the exception is taken care of);

• if the exception is not taken care of in the handler region, i.e, escapes the handler

region, then the following two actions are taken:

– the previous pass of EXCCLR is aborted through ABORTPREVPASSREC;

ABORTPREVPASSREC ≡ pop(passRecStack)

– the exception is propagated further via GOTONXTHAN in the Unwind pass which

sets the stackCursor to the next handler in excHA.

This implies that an exception can go “unhandled” without taking down the process,

namely if an outer exception goes unhandled, but an inner exception is successfully han-

dled. In fact, the execution of a handler region can only occur when EXCCLR runs in

the Unwind or Leave pass: in Unwind, handler regions of any kind are executed whereas

in Leave only finally handler regions are executed. If the raised exception occured

while EXCCLR was running an Unwind pass for handling an outer exception, the Unwind

pass of the outer exception is stopped and the corresponding pass record is popped from

passRecStack (see Tests 1, 3 and 4 in [12]). If the exception has been thrown while

EXCCLR runs a Leave pass for executing finally handlers on the way from a Leave

instruction to its target, then this pass is stopped and its associated pass record is popped

off passRecStack (see Test 2 in [12]).

Handler Case 4 The handler pointed to by the stackCursor is a filter handler whose

filter region contains pc. Then the execution of this filter region must have trig-

gered an inner exception whose StackWalk led to a call of EXITINNEREXC. In this

case, the current (inner) exception is aborted, and the filter considered as not pro-

viding a handler for the outer exception. Formally, CONTINUEOUTEREXC pops the

frame built for executing the filter region, pops from the passRecStack the pass record

corresponding to the inner exception and reestablishes the pass context of the outer ex-

ception, but with the stackCursor pointing to the handler following the just inspected

filter handler. The updates of the stackCursor in POPREC and GOTONXTHAN are

done sequentially such that the update in GOTONXTHAN overwrites the update in the

macro POPREC. Note that by these stipulations, there is no way to exit a filter re-

gion with an exception. This ensures that the frame built by EXECFILTER for executing a

filter region is used only for this purpose.

The execution of POPFRAME is safe since the frameStack cannot be empty at the

time when CONTINUEOUTEREXC is fired. [10, Partition II, §12.4.2.8.1] states that the

control can be transferred to a filter region only through EXCCLR. Since pc is in
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a filter region, an EXECFILTER should have been already executed. But in this

case, a new frame is pushed on the frameStack. Hence, frameStack is not empty when

CONTINUEOUTEREXC is executed.

CONTINUEOUTEREXC ≡
POPFRAME

POPREC seq GOTONXTHAN

POPREC ≡ if passRecStack = [ ] then

SETRECUNDEF

switch := Noswitch

else let (passRecStack′, [r]) = split(passRecStack, 1) in

if r ∈ ExcRec then

let (exc′, pass′, stackCursor′, handler′) = r in

exc := exc′

pass := pass′

stackCursor := stackCursor′

handler := handler′

if r ∈ LeaveRec then

let (pass′, stackCursor′, target′) = r in

pass := pass′

stackCursor := stackCursor′

target := target′

passRecStack := passRecStack′

SETRECUNDEF ≡ exc := undef

pass := undef

stackCursor := undef

target := undef

handler := undef

If the Unwind pass exhausted all the handlers in the frame indicated in stackCursor,

the current frame is popped from frameStack and the Unwind pass continues in the in-

voker frame of the current frame. Note that the execution in the else clause of the macros

POPFRAME and SEARCHINVFRAME is safe as frame has a caller frame, i.e., frame can-

not be the frame of the entrypoint. This is because Backstop entry guarantees that

the else clause is not reachable if frame is the frame of the entrypoint. The same

argument can be invoked also in case of SEARCHINVFRAME in the StackWalk pass.

Exceptions in class initializers? If an exception occurs in a class initializer .cctor,

then the class shall be marked as being in a specific erroneous state and the specific excep-

tion TypeInitializationException is thrown. This means that an exception can
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and will escape the body of a .cctor only by a TypeInitializationException.

Any further attempt to access the corresponding class in the current application domain

will throw the same TypeInitializationException object. This detail is not

specified by the ECMA standard but it seems to correspond to the actual CLR imple-

mentation and it complies with the related specification for C♯ in the ECMA standard

(see Test 7 in [12]). Therefore, we assume that the code sequence of every .cctor

is embedded into a catch handler. This catch handler catches exceptions of type

Object, i.e., any exception, occured in .cctor, discards it, creates an object of type

TypeInitializationException8 and throws the new exception.

7 THE LEAVE PASS

The EXCCLR machine gets into the Leave pass when EXECCLRE executes a Leave in-

struction, which by the Leave constraints can happen only upon a normal termination of

a try block or of a catch/filter handler region. One has to execute the handler

regions of all finally handlers on the way from the Leave instruction to the instruction

whose program counter is given by the Leave target parameter. The stackCursor used

in the Leave pass is initialized by the frame of the Leave instruction (see Fig. 4). In the

Leave pass, the EXCCLR machine searches for

• finally handlers that are “on the way” from the pc to the target,

• real handlers, i.e., catch/filter handlers that are “on the way” from the pc to

the target – more details are given below.

Handler Case 1 The handler pointed to by stackCursor is a finally handler on the

way from pc to the target position of the current Leave pass record. Then the handler

region of this handler is executed (see first Leave rule in Fig. 3).

Handler Case 2 The stackCursor points to a catch/filter handler on the way from

pc to target. Then the previous pass record on passRecStack is discarded (see second

Leave rule in Fig. 3). In fact, the discarded record refers to the Unwind pass for handling

an exception by executing the catch/filter handler pointed at by stackCursor, thus

terminating the handling of the corresponding exception.

isFinFromTo(h, pos′, pos′′) ⇔ clauseKind(h) = finally ∧ isInTry(pos′, h)∧
¬isInTry(pos′′, h) ∧ ¬isInHandler(pos′′, h)

isRealHanFromTo(h, pos′, pos′′) ⇔ clauseKind(h) ∈ {catch,filter}∧
isInHandler(pos′, h) ∧ ¬isInHandler(pos′′, h)

8In the real CLR implementation, the exception thrown in .cctor is embedded as an inner exception

in the TypeInitializationException. We do not model this aspect here.
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Although the two if clauses in the let statement from the Leave pass are executed in

parallel, it is never the case that the embedded EXECHAN and ABORTPREVPASSREC

are simultaneously executed. The reason is given by the following property which can be

easily proved using the definitions of the predicates:

Disjointness 4 The predicates isFinFromTo and isRealHanFromTo are disjoint.

For each handler EXCCLR inspects also the next handler in excHA. When the handlers

in the current method are exhausted, by the Leave constraints this round of EXCCLR is

terminated, and the execution proceeds at target: pc is set to target, the context of the

previous pass record on passRecStack is reestablished, and the control is passed to normal

EXECCLRE execution (see Fig. 3).

8 THE RULES OF EXECCLRE

The rules of EXECCLRE in Fig. 4 specify the effect of the CIL instructions related to

exceptions. Each of these rules transfers the control to EXCCLR. Throw pops the topmost

evaluation stack element (see Remark below), which is supposed to be an exception

reference. It loads the pass record associated to the given exception: the stackCursor is

initialized for a StackWalk by the current frame and 0. If the exception mechanism is

already working in a pass, i.e., pass 6= undef , then the current pass record is pushed

onto passRecStack.

LOADREC(r) ≡
if r ∈ ExcPass then

let (exc′, pass′, stackCursor′, handler′) = r in

exc := exc′

pass := pass′

stackCursor := stackCursor′

handler := handler′

else let (pass′, stackCursor′, target′) = r in

pass := pass′

stackCursor := stackCursor′

target := target′

if pass 6= undef then PUSHREC

PUSHREC ≡
if pass = Leave then push(passRecStack, (pass, stackCursor, target))
else push(passRecStack, (exc, pass, stackCursor, handler))

If the exception reference found on top of the evalStack by the Throw instruction is null,

a NullReferenceException is thrown. For a given class c, the macro RAISE(c) is
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Fig. 4 The rules of EXECCLRE

EXECCLRE(instr) ≡
EXECCLRN(instr)
match instr

Throw → let r = top(evalStack) in

if r 6= null then

LOADREC((r, StackWalk, (frame, 0), undef ))
switch := ExcMech

else RAISE(NullReferenceException)

Rethrow → LOADREC((exc, StackWalk, (frame, 0), undef ))
switch := ExcMech

EndFilter → let val = top(evalStack) in

if val = 1 then

FOUNDHANDLER

RESET(stackCursor, top(frameStack))
else GOTONXTHAN

POPFRAME

switch := ExcMech

EndFinally → switch := ExcMech

Leave(target) → LOADREC((Leave, (frame, 0), target))
switch := ExcMech

defined by the following code template9:

RAISE(c) ≡ NewObj(c :: .ctor)
Throw

This macro can be viewed as a static method defined in class Object. Calling the macro

is then like invoking the corresponding method.

The ECMA standard states in [10, Partition III,§4.23] that the Rethrow instruction is

only permitted within the body of a catch handler. However, in reality it is allowed also

within a handler region of a filter (see Test 5 in [12]) throwing the same exception

reference that was caught by this handler, i.e., the current exception exc of EXCCLR.

Formally, this means that the pass record associated to exc is loaded on EXCCLR.

In a filter region, exactly one EndFilter is allowed, namely its last instruction,

which is supposed to be the only one used to normally exit the filter region (see the

9The NewObj instruction called with an instance constructor c::.ctor creates a new object of class c,

and then calls the constructor .ctor.
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remark above on exceptions in a filter region). EndFilter takes an integer val from the

stack that is supposed to be either 0 or 1. In the ECMA standard, 0 and 1 are assimi-

lated with “continue search” and “execute handler”, respectively. There is a discrepancy

between [10, Partition I,§12.4.2.5] which states Execution cannot be resumed at the loca-

tion of the exception, except with a user-filtered handler – therefore a “resume exception”

value in addition to 0 and 1 is foreseen allowing CLR to resume the execution at the point

where the handled exception has been raised— and [10, Partition III,§3.34] which states

that the only possible return values from the filter are “exception continue search”(0)

and “exception execute handler”(1).

If val is 1, then the filter handler to which EndFilter corresponds becomes the

handler to handle the current exception in the pass Unwind. Remember that the filter

handler is the handler pointed to by the stackCursor. The stackCursor is reset to be used

for the pass Unwind: it will point into the topmost frame on frameStack which is actually

the faulting frame. If val is 0, the stackCursor is incremented to point to the handler

following our filter handler. Independently of val, the current frame is discarded to

reestablish the context of the faulting frame. Note that we do not explicitly pop val from

the evalStack since the global dynamic function evalStack is updated anyway in the next

step through POPFRAME to the evalStack′ of the faulting frame.

The EndFinally instruction terminates (normally) the execution of the handler region

of a finally or of a fault handler. It transfers the control to EXCCLR. A Leave

instruction loads a pass record corresponding to a Leave pass.

Remark The reader might ask why the instructions Throw, Rethrow, and EndFilter do

not set the evalStack. The reason is that this set up, i.e., the emptying of evalStack,

is supposed to be either a side-effect (the case of the Throw and Rethrow instructions)

or ensured for a correct CIL (the case of the EndFilter instruction). Thus, the Throw

and Rethrow instructions pass the control to EXCCLR which, in a next step, will exe-

cute10 a catch/finally/fault handler region or a filter code or will propagate

the exception in another frame. All these “events” will “clear” the evalStack. In case of

EndFilter, the evalStack must contain exactly one item (an int32 which is popped off

by EndFilter). Note that this has to be checked by the bytecode verifier (see Fig. 5) and

is not ensured by the exception handling mechanism.

9 THE THREADABORTEXCEPTION

There is one exception, i.e., ThreadAbortException [2], whose handling needs an

extension of our exception model. When a call is made to Thread::Abort to termi-

nate a thread, the system throws a ThreadAbortException in the target thread.

ThreadAbortException is a special exception (known also as an “unstoppable”

exception) that can be caught by application code, but is rethrown at the end of the

catch/filter handler region unless the method Thread::ResetAbort is called.

When the ThreadAbortException is raised, the exception mechanism executes any

10One can formally prove that there is such a “step” in the further run of the EXCCLR.
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finally/fault handler regions for the target thread.

As the ECMA standard [10] does not specify the special handling of this exception,

we did not include it in our basic model. However, the model is flexible enough to be

refined in a few places (in the sense of ASM refinements defined in [4]) to also cover the

handling of this “unstoppable” exception:

• The universe ExcRec of exception records is refined to include an object reference

denoted discardedTAE.

ExcRec = ExcRec ( exc : ObjRef

pass : {StackWalk,Unwind}
stackCursor : Frame × N

handler : Frame × N

discardedTAE : ObjRef )

Assume that a ThreadAbortException is handled by the exception handling

mechanism EXCCLR. If another exception, say exc, is raised, and the handling

of exc attempts to discard the ThreadAbortException, then the discarded

ThreadAbortException reference is stored in discardedTAE.

Let us assume that the current thread is going to be aborted. We assume that

an exception record associated to a ThreadAbortException is loaded into

EXCCLR. The discardedTAE component of the record is set to the exception refer-

ence. Thus, the components exc and discardedTAE are the same.

• The macro ABORTPREVPASSREC used in the isInHandler clause of the Unwind

rule is refined to also “transfer” the abort request (if any), i.e., the current exception

will take over the ThreadAbortException reference (if any) carried by the

discarded exception record:

ABORTPREVPASSREC ≡
pop(passRecStack)
let r = top(passRecStack) in

if r ∈ ExcRec then

let ( , , , , discardedTAE′) = r in

if discardedTAE′ 6= undefined then

discardedTAE := discardedTAE′

Similarly, POPREC used in the isInFilter clause of the Unwind rule is refined to

“transfer” the ThreadAbortException that has to be raised later again. Note

that in this way a ThreadAbortException can escape a filter region.

Also, the macro SETRECUNDEF is refined to also reset discardedTAE to undefined.
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• The isRealHanFromTo clause of the Leave rule in Fig. 3 is modified to rethrow the

discarded ThreadAbortException:

let r = top(passRecStack) in

let ( , , , , discardedTAE′) = r in

if discardedTAE′ 6= undefined then

POPREC seq

exc := discardedTAE′

pass := StackWalk

stackCursor := (frame, 0)
handler := undefined

discardedTAE := discardedTAE′

else pop(passRecStack)

Note that the incrementation of the stackCursor through GOTONXTHAN shall not

be anymore done in the isRealHanFromTo clause but only for the isFinFromTo

clause.

• The special semantics of invoking the Thread::ResetAbort method has to be

added to the definition of the machine CLRE in Fig. 4. Beside executing the method

body, the invocation also aborts the ThreadAbortException. Note that the

abort does not stop the handling of the ThreadAbortException but only its

“unstoppable” attribute. In other words, after the ThreadAbortException is

handled by EXCCLR, the execution continues normally and the exception is not

raised automatically again.

The abort is realized by setting to undefined the discardedTAE component of the

exception records on passRecStack11.

10 THE BYTECODE VERIFICATION

The bytecode verifier statically checks the type-safety of the bytecode and therefore its

soundness is critical for the security model. We show in this section how one can use

the mathematical model introduced in the previous sections in the soundness proof of

the .NET CLR bytecode verifier specified in [10, Partition III]. We provide arguments

to establish the soundness of the bytecode verification in case exception handling related

steps could be performed by the code, assuming the soundness for the verification of

code related only to exception free (EXECCLRN ) execution. More precisely, we sketch

a proof that, for methods accepted by the verifier, the execution of instructions related

to exceptions does not violate any of the following properties: type safety, i.e., every

instruction will always execute with arguments of expected types, bounded evaluation

11One can formally prove that, at a given time, there exists at most one exception record that has the

discardedTAE component defined.
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Fig. 5 Verifying the instructions related to exceptions

check(meth, pos, evalStackT) ⇔ match code(pos)
Throw → top(evalStackT) ⊑ object

Rethrow → True

EndFilter → evalStackT = [int32]
EndFinally → True

Leave( ) → True

stack, i.e., the evaluation stack will never exceed a bound computed by the compiler,

program counter safety, i.e., the program counter will always point to a valid code index.

What the verifier checks

For the soundness proof, we do not rely upon any particular bytecode verifier but list only

the assumptions we need on the execution of the bytecode verification as described in [10,

Partition III]. The bytecode verification is performed on a per-method basis. The verifier

simulates all possible control flow paths through the code, attempting to associate a valid

type stack state12 with every reachable instruction. The type stack state evalStackT spec-

ifies for each slot of evalStack a required type in that slot and thereby also the number

of values on the evalStack at that point in the code. Before simulating the execution of

an instruction, the verifier checks whether certain conditions are satisfied. We specify in

Fig. 5 by means of the predicate check the conditions checked by the verifier for the in-

structions related to exceptions. The checks for a single instruction operate on evalStackT .

The relation ⊑ denotes the compatibility relation between types; for a formal definition

see [11].

In JVM, the Throw instruction expects an object of type Throwable on the stack.

The CLR bytecode verifier is not so strict: it requires that the top stack element is of

type object. The EndFilter instruction which terminates the execution of a filter

region expects an integer on the stack and that the stack contains only this integer. For the

instructions Rethrow, EndFinally, and Leave nothing has to be checked.

Since the bytecode verifier works on a stack of types and not of values, at branching

points in the control-flow it has to consider every successor that may be possible at run-

time. Therefore, the type stack state for an instruction at pos yields constraints on how

to match the type stack states of all instructions that are runtime possible control-flow

successors of pos. In Fig. 6, we define the function succ which, given an instruction and a

type stack state, computes the successor code indices together with their type stack states.

Each instruction can throw exceptions. This assumption is realistic since the spe-

cial ExecutionEngineException may be thrown at any time during the execution

of a program. Therefore, for an instruction at pos, all the handlers h that protect pos

12The ECMA standard uses the name stack state. However, we prefer type stack state since we have a

more complex notion of state and also more than one stack.
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Fig. 6 The type stack state successors of the instructions related to exceptions

succ(meth, pos, evalStackT) = excHandlers(meth, pos) ∪
match code(pos)

Throw → ∅
Rethrow → ∅
EndFilter → ∅
EndFinally → {(target, [ ]) | target ∈ LeaveThroughFin(meth, pos)}
Leave(target) → if {h ∈ excHA(meth) | isFinFromTo(h, pos, target)} = ∅ then

{(target, [ ])}
else ∅

are included into the set of possible successor type stack states by means of a func-

tion excHandlers. Upon entering a catch handler, the type stack state contains only

the type type(h) of exceptions that h is “handling” whereas, upon entering a filter

region or a filter handler region, the type stack state is [object]. In case of a

finally/fault handler, the type stack state is [ ]. Except for the case of a filter re-

gion, the successor code index is given by handlerStart(h). In case of a filter region,

the successor is filterStart(h).

excHandlers(meth, pos) = { (handlerStart(h), [type(h)]) | h ∈ excHA(meth)
and isInTry(pos, h) and clauseKind(h) = catch} ∪
{ (filterStart(h), [object]), (handlerStart(h), [object])
| h ∈ excHA(meth) and isInTry(pos, h) and clauseKind(h) = filter} ∪
{ (handlerStart(h), [ ]) | h ∈ excHA(meth) and isInTry(pos, h)
and clauseKind(h) ∈ {finally,fault} }

Beside the successors defined by excHandlers, in case of the instructions Throw,

Rethrow, and EndFilter there are no other successors (see Fig. 6). In case of an EndFinally

instruction succ yields also the targets of Leave instructions that could trigger the exe-

cution of the finally handler to which the EndFinally instruction corresponds. The

associated type stack state is the empty list. The set LeaveThroughFin of these possible

targets is defined as follows.

LeaveThroughFin(meth, pos) = { target ∈ Pc | ∃ pos′ ∈ Pc such that

code(pos′) = Leave(target) and for the h such that

[h′ ∈ excHA(meth) | isFinFromTo(h′, pos′, target)] = [. . . , h]
holds [h′ ∈ excHA(meth) | isInHandler(pos, h′)] = [h, . . .] }

Thus, target is an element of LeaveThroughFin(meth, pos) for an EndFinally instruction

at pos if this EndFinally corresponds to the last finally handler “on the way” from a
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Leave(target) instruction to the instruction at target. By definition, the set LeaveThroughFin

is empty for an EndFinally instruction which corresponds to a fault handler (because

the predicate isFinFromTo evaluates to false for fault handlers). This means that the

EndFinally instruction which terminates the execution of a fault handler region has no

successors (beside those defined in excHandlers).

We now explain the definition of succ in the case of a Leave instruction. If there is

no finally handler “on the way” from the Leave instruction to its target, the target in-

struction with an empty type stack state is an additional successor. If there is a finally

handler “on the way”, say h, the successor given by the instruction at handlerStart(h) is

already considered in excHandlers, so that in this case succ provides no additional suc-

cessor.

The context of the verifier soundness proof

Instead of a particular bytecode verifier, we use a characterization of the type properties of

bytecode that is accepted by the verifier. This leads us to Definition 1 of well-typedness

of a method, which we consider as a requirement for every method to be accepted by

the verifier. The auxiliary relation ⊑len of pointwise compatibility of type stack states is

defined for lists of types L′, L′′ of lengths m, n as follows:

L′ ⊑len L′′ ⇔ m = n and L′(i) ⊑ L′′(i) for every i < m.

Definition 1 (Well-typed method) A method mref is called well-typed if there exists a

family of type stack states (evalStackTi)i∈D over a domain D which satisfies the condi-

tions:

(wt1) The elements of D are valid code indices of mref.

(wt2) 0 ∈ D.

(wt3) evalStackT0 = [ ].

(wt4) If i ∈ D, then check(mref, i, evalStackTi) is true.

(wt5) If i ∈ D and (j, evalStackT ′) ∈ succ(mref, i, evalStackTi), then j ∈ D and

evalStackT ′ ⊑len evalStackTj .

The domain D collects the code indices which are reachable from the code index 0. (wt1)

states that D consists of valid code indices only, and (wt2) says that 0 is in the domain.

(wt3) requires the type stack state to be empty upon the method entry. (wt4) ensures that

the type stack states satisfy all type-consistency checks. (wt5) says that a successor type

stack state has to be more specific than the type stack state associated to the successor

index. In particular, this means that the type stack state asserted in any successor shall be

more specific but of the same length as the predecessor type stack state. The condition is

related to the rules described in [10, Partition III, §1.8.1.3] for “merging” type stack states.

When simulating the control flow paths, the verifier merges the simulated type stack state

with the existing type stack state at any successor instruction in the flow. If the numbers
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of slots in the two type stack states differ, the merge fails. Otherwise, the merge of the

type stack states is computed slot-by-slot. A precise abstract definition of the structurally

similar JVM bytecode verifier formalizing such merge rules is provided in [25, §17].

The proof for CLRE

In this section, we show how to extend the soundness proof from EXECCLRN to CLRE .

The soundness theorem proved for the exception-free machine EXECCLRN guarantees

that the following type-safety invariants hold at runtime for well-typed methods.

(pc) pc ∈ D, i.e., the program counter pc is always a valid code index;

(stack1) the current evalStack has the same length as evalStackTpc;

(stack2) the values on the current evalStack are compatible with the corresponding types

assigned in evalStackTpc;

(loc) all the local variables have values compatible with the declared local variable types;

(arg) all the arguments have values compatible with the declared argument types;

(init) an “uninitialized” object can only occur in an object class constructor .ctor of an

appropriate class (see the object initialization rules in [10, Partition III, §1.8.1.4]);

(field) all fields of an object class instance are compatible with the declared field types;

(box) the value type instance embedded into a boxed value (object) is of the expected

value type;

As one can easily see in the proof of Theorem1, the invariants (loc)-(box) are not

affected by computation steps of EXCCLR. It suffices therefore to consider here only

the invariants (pc), (stack1), and (stack2). The formalization of the invariant (stack2)

involves a typing judgment ⊢ val : t defined in [11] and interpreted as follows: the type

of the value val is a subtype of the type t.

Theorem 1 (Soundness of Bytecode Verification) The following invariants are satisfied

by every frame in every runtime state of CLRE for every well-typed method meth:

(pc) pc ∈ D

(stack1) length(evalStack) = length(evalStackTpc)

(stack2) ⊢ evalStack(j) : evalStackTpc(j), for every j < length(evalStack)
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Proof. The proof assumes the proof for EXECCLRN and proceeds by induction on the

run of CLRE . In the initial state of CLRE , the invariants for the single existing frame

(of the .entrypoint method) are satisfied. In fact, this frame satisfies pc = 0 and

evalStack = [ ]. Thus, (pc) holds by (wt2) and (stack1), and (stack2) follows from (wt3).

In the induction step, we proceed by case distinction on code(pc), whether EXECCLRE

has the control (switch = Noswitch) or EXCCLR (switch = ExcMech). In the second case,

we make an additional case distinction on pass. Due to space limitations we present here

only some characteristic subcases that can occur in each case.

Case 1 switch = Noswitch. The subcases code(pc) ∈ {Throw, Rethrow, EndFinally} are

trivial because they do not affect neither pc nor evalStack.

Subcase 1.1 code(pc) = EndFilter. Then CLRE executes POPFRAME, and sets switch

to Noswitch. POPFRAME reestablishes the context of the invoker frame of frame. The

induction hypothesis guarantees that the invariants hold for the new current frame, namely

the caller frame of frame.

Subcase 1.2 code(pc) = Leave(target). When executing Leave(target), EXECCLRE

loads the leave record (Leave, (frame, 0), target) onto the passRecStack and gives the con-

trol to EXCCLR, i.e., sets switch to ExcMech. As the invariants are not affected, the claim

follows from the induction hypothesis.

Case 2 switch = ExcMech. We present two subcases out of three.

Subcase 2.1 pass = Leave. Let s and target be the current value of the stackCursor and

the target associated to this Leave pass, respectively.

Subcase 2.1.1 existsHanWithinFrame(s) is true. Let h be the handler pointed to by s.

If isRealHanFromTo(h, pc, target) is true, EXCCLR executes ABORTPREVPASSREC and

GOTONXTHAN which do not influence the invariants. Therefore, the claim follows from

the induction hypothesis.

If isFinFromTo(h, pc, target) is true, EXCCLR executes the macros EXECHAN(h) and

GOTONXTHAN. EXECHAN(h) sets pc to handlerStart(h), evalStack to [ ] (since by the

definition of isFinFromTo, h is a finally handler) and switch to Noswitch. By the defi-

nition of excHandlers, we get that (handlerStart(h), [ ]) is in the set excHandlers(meth, pc)
and therefore in succ(meth, pc, evalStackTpc). This together with (pc) and (wt5) imply

handlerStart(h) ∈ D and [ ] ⊑len evalStackThandlerStart(h). This means that the invari-

ants (pc), (stack1), and (stack2) are preserved for the current frame (the last two invari-

ants hold since evalStackThandlerStart(h) is necessarily [ ]).

Subcase 2.1.2 existsHanWithinFrame(s) is false. In this case, EXCCLR sets pc to target,

evalStack to [ ], switch to Noswitch and executes POPREC. From the definition of the

Leave rules in EXECCLRE and EXCCLR, it follows that code(pc) = EndFinally or

code(pc) = Leave(target).

If code(pc) is the EndFinally instruction, the definition of the function succ implies

(target, [ ]) ∈ succ(meth, pc, evalStackTpc).

If code(pc) is an instruction Leave(target), then by the definition of Subcase 2.1.2, the

set {h ∈ excHA(meth) | isFinFromTo(h, pc, target)} is empty. Then the definition of succ

implies (target, [ ]) ∈ succ(meth, pc, evalStackTpc).
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Thus, in every case holds (target, [ ]) ∈ succ(meth, pc, evalStackTpc). This together with

(pc) and (wt5) implies target ∈ D and [ ] ⊑len evalStackT target. Consequently, the in-

variants (pc), (stack1), and (stack2) hold for the current frame (the last two hold since

evalStackT target shall be [ ]).

Subcase 2.2 pass = StackWalk. Let s be the current value of the stackCursor.

Subcase 2.2.1 existsHanWithinFrame(s) is true. Let h be the handler pointed to by s and

pos the program counter of the frame pointed to by s.

If h satisfies matchFilter(pos, h), then EXCCLR executes EXECFILTER(h) which loads

on the frameStack a frame with pc set to filterStart(h) and evalStack to [exc]. From the

definition of matchFilter, we have isInTry(pos, h) and clauseKind(h) = filter. By

this and the definitions of succ and excHandlers, we get (filterStart(h), [object]) ∈
succ(mref , pos, evalStackTpos) where mref is the method of the frame pointed to by s.

The definition of EXECFILTER implies that mref is also the method of the new current

frame. Thus, (filterStart(h), [object]) ∈ succ(meth, pos, evalStackTpos). This, (pc),

and (wt5) imply filterStart(h) ∈ D and [object] ⊑len evalStackTfilterStart(h). In particular,

this means that (pc) holds in the new state and that evalStackTfilterStart(h) = [object].
From (wt4) applied to the Throw instruction that threw exc, we know that the type of exc is

a subtype of object. Since evalStack = [exc], it follows that the invariants (stack1) and

(stack2) hold in the new state.

In all the other cases, EXCCLR executes submachines that do not update pc or evalStack,

so that the claim follows from the induction hypothesis.

Subcase 2.2.2 existsHanWithinFrame(s) is false. Then SEARCHINVFRAME is executed,

without affecting any of the invariants. ⊓⊔

Remark From the proof point of view, the case when a method raises an exception is

treated as if the corresponding call instruction in the invoker frame would have thrown the

exception. Similarly, the case when a class initialization (that might happen at any time

if the class is beforefieldinit) throws a TypeInitializationException is

considered as if the instruction executed just before the initialization would have thrown

the TypeInitializationException. Both cases could also be treated (modulo

the corresponding exception object on the evalStack) as if the current instruction would

be Throw.

11 CONCLUSION

We have defined an abstract model for the CLR exception handling mechanism. It lays

the ground for a mathematical correctness proof of the CLR bytecode verifier. Through

a mathematical analysis we discovered a few gaps in the ECMA standard for CLR. Our

model fills these gaps.
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