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Modeling the Nonlinear Cortical Response in
EEG Evoked by Wrist Joint Manipulation
Martijn P. Vlaar, Georgios Birpoutsoukis, Member, IEEE , John Lataire, Member, IEEE ,

Maarten Schoukens, Member, IEEE , Alfred C. Schouten, Johan Schoukens, Fellow, IEEE ,

and Frans C. T. van der Helm

Abstract— Joint manipulation elicits a response from
the sensors in the periphery which, via the spinal cord,
arrives in the cortex. The average evoked cortical response
recorded using electroencephalography was shown to be
highly nonlinear; a linear model can only explain 10% of
the variance of the evoked response, and over 80% of the
response is generated by nonlinear behavior. The goal of
this paper is to obtain a nonparametric nonlinear dynamic
model, which can consistently explain the recorded cor-
tical response requiring little a priori assumptions about
model structure. Wrist joint manipulation was applied in ten
healthy participants during which their cortical activity was
recorded and modeled using a truncated Volterra series.
The obtained models could explain 46% of the variance
of the evoked cortical response, thereby demonstrating
the relevance of nonlinear modeling. The high similarity
of the obtained models across participants indicates that
the models reveal common characteristics of the under-
lying system. The models show predominantly high-pass
behavior, which suggests that velocity-related information
originating from the muscle spindles governs the cortical
response. In conclusion, the nonlinear modeling approach
using a truncated Volterra series with regularization, pro-
vides a quantitative way of investigating the sensorimotor
system, offering insight into the underlying physiology.
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I. INTRODUCTION

H
EALTHY movement control requires proprioceptive

information from the periphery to reach the cortex; this

sensory information is required for generating internal models

enabling accurate planned movements (feedforward control)

and for generating appropriate responses to disturbances

(feedback control). Understanding the relationship between a

movement and the cortical response improves the understand-

ing of the sensorimotor system and can aid in unravelling

sensorimotor dysfunction in movement disorders. Studying

the dynamic relations within the sensorimotor system requires

applying a proprioceptive stimulus, a clear task instruction

and a cortical measurement technique with high temporal

resolution such as electroencephalography (EEG) or mag-

netencephalography. EEG is a noninvasive technique with

mild experimental restrictions with respect to movement and

is widely available. Applying a continuous proprioceptive

stimulus by manipulation a joint (e.g. wrist or finger) allows

for studying the system in steady-state, i.e. when it is con-

tinuously and consistently engaged in processing sensory

signals.

Cortical responses to continuous proprioceptive stimulation

in healthy individuals have been investigated during both act-

ive [1]–[3] and passive [2] conditions using EEG. These stud-

ies revealed that the system under study is highly nonlinear.

Therefore, studies using linear analysis techniques [1], [2]

provide limited information about the functioning of the

sensorimotor system; a linear approach to model the relation

between proprioceptive stimulus and evoked cortical response

can only capture 10% of the relationship [2]. Nonlinear

modeling of this relation has not been done before. Compared

to linear system identification techniques, nonlinear system

identification techniques are less well developed, often com-

putationally demanding and generally require some a priori

knowledge.

This study sets out to obtain a nonparametric nonlin-

ear dynamic model which consistently (i.e. consistently

over different input signals) describes the relation between

wrist movement and the average evoked cortical response

recorded using EEG. The system is modeled using a trun-

cated Volterra series with regularization [4]. Such a model

requires limited a priori knowledge about the system, while

1534-4320 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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allowing for a quantitative description of the dynamics

of the sensorimotor system. The obtained models demon-

strate how frequencies in the proprioceptive perturbation

signal affect the frequency content of the evoked cortical

response. Additionally, the noise in the response is quantified

and a distinction is made between linear, 2nd order, and

higher order nonlinear contributions to the evoked cortical

response.

The experimental setup, used perturbation signals and mod-

eling approach are presented in the Methods section. The

Results section provides the characteristics of the recorded cor-

tical signals, the performance of the models and their dynamic

behavior. The Discussion section interprets the models based

on physiology and provides a reflection on the approach,

including suggestions for future work.

II. METHODS

A. Participants and Experimental Protocol

Ten healthy right-handed participants (age range

22-25 years; 5 men) participated in the study [2]. The study

was approved by the local ethics committee and all participants

gave written informed consent prior to participation. Data of

these participants were collected in a previous study; a sum-

mary of the relevant aspects of the experimental protocol will

be presented here, for a full description the reader is referred

to [2]. Participants were seated with their right forearm

fixated to an arm support and their hand strapped to the

handle of a robotic manipulator (Wristalyzer by MOOG Inc,

Nieuw-Vennep, The Netherlands). Participants were instructed

to relax their wrist and not react to the continuous angular

perturbation applied by the robotic manipulator.

The perturbation signals were random phase multisine sig-

nals (i.e. the sum of several sinusoids, each with a random

phase). In multisine perturbation signals, there is full control

over the frequency content, leading to several advantages over

random signals when performing system identification [5].

These advantages include the ability to detect even and odd

nonlinear behavior, which is facilitated by the use of multi-

sine signals with only odd frequency lines excited [5]. The

perturbations were multisine signals with a period of 1 s,

resulting in a fundamental frequency of 1 Hz. Only selected

odd harmonics of the fundamental frequency were excited,

namely 1, 3, 5, 7, 9, 11, 13, 15, 19, and 23 Hz. Exciting

the nonlinear system using different phase realizations of

a multisine signal (i.e. same amplitude per frequency, yet

other random phases) allows for using different data sets

for estimation and validation when modeling. Seven different

multisine realizations were generated which were alternatingly

applied during 49 trials of 36 seconds. Six seconds were

removed from each trial to reduce transient effects, resulting

in a total of 1470 recorded periods, i.e. 210 periods available

for each of the seven realizations.

The angular perturbations had a root-mean-square (RMS)

of 0.02 rad (see left insert in Fig. 1) and were applied with

the wrist in a relaxed angle (i.e. slight flexion). The signals

were designed to have equal power on the first three excited

frequencies and a decreasing power for the higher frequencies

Fig. 1. Experimental setup. The right forearm of the subject is strapped
into an armrest and the right hand is strapped to the handle, requiring
no hand force to hold the handle. Participants were instructed to gaze at
the screen, which showed a static target. The top-right insert shows a
schematic representation of the composition of one 36s trial. Each lobe
represents one 1s period of the perturbation signal and the three different
colors represent different multisine realizations. Highlighted periods are
excluded, leaving ten periods per realization in each trial for analysis.
The bottom-left insert shows one of the realizations of the perturbation
signal. The bottom-right insert shows a close up of the hand in the robotic
manipulator. The wrist joint was aligned to the axis of rotation of the
manipulator.

(−20dB/decade slope), which is a tradeoff between reduced

predictability of the signal (to prevent anticipation) and capa-

bilities of the robotic manipulator.

Cortical activity was sampled at 2048 Hz from 126 elec-

trodes using an EEG amplifier (Refa by TMSi, Oldenzaal,

The Netherlands). The handle angle of the robotic manipulator

was, via a galvanic isolation transformer (TMSi, Oldenzaal,

The Netherlands), recorded by the same amplifier.

B. Preprocessing

EEG data were high-pass filtered using a fourth order

Butterworth filter with a cut-off frequency of 1Hz, which was

applied in two directions to achieve zero-phase filtering. Inde-

pendent component analysis (ICA) [6] was performed using

the Infomax algorithm [7] as implemented in CUDAICA [8].

Subsequently, the data at component level were segmented

into periods, resulting in x [c,m,p](n), where x is the response,

c = 1, . . . , C is the component (C = 125), m = 1, . . . , M

is the multisine realization (M = 7), p = 1, . . . , P is the

period (P = 210) and n = 1, . . . , N is the time index.

An ideal filter was used to remove line noise (50 Hz) and

to remove all frequencies from 100 Hz onward; i.e. signals

were transformed to the frequency domain using the discrete

Fourier transform (DFT) [9], all mentioned frequency lines

were set to zero, and the signals were converted back to the

time domain using the inverse DFT. Subsequently, all signals

were resampled to 256 Hz (N = 256 samples).

To characterize the response of each component both the

power in the average response (1) as well as the sample
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variance (2) were calculated at each frequency
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where X ( f ) is the DFT of x(n).

To find the component which is most associated with

the perturbation signals, the noise-to-signal ratio (NSR) was

calculated; the component with the lowest NSR demonstrates

the most consistent response. The NSR is defined as

N S R[c,m] =

∑

f ∈F

σ̂
2[c,m]
X ( f )

∑

f ∈F

Ê
[c,m]
X ( f )

, (3)

where F is the set of considered frequencies. For each

participant, the NSR of each component c was determined by

calculating the NSR over all frequencies and by subsequently

averaging across realizations m. The signal of the component

with the lowest NSR is defined as y[m,p](n) and this signal was

used for subsequent modeling. This signal was averaged over

the recorded periods to reduce noise, and was subsequently

defined as y[m](n) and transformed to the frequency domain

using the DFT, resulting in Y [m]( f ). Similarly, the recorded

input signal (i.e. wrist joint angle) was averaged over the

recorded periods, giving u[m](n) and transformed to the fre-

quency domain, resulting in U [m]( f ). The preprocessed data

have been made available at http://ieeexplore.ieee.org.

C. Distinguishing the Spectral Contributions

The frequency content of the response of a static nonlinear

system is governed by the order of the system as well as by the

frequency content of the input signal. A quadratic static nonlin-

ear system (y = u2, which is an even nonlinearity) generates

an output spectrum containing all possible combinations of

two (positive or negative) input frequencies. In the case where

only one input frequency is excited (e.g. f0), the output will

contain f0 + f0 = 2 f0, and also f0 − f0 = 0. This concept

extends for higher order systems and is described in more

detail in [10, p. 43, Fig. 9].

By the virtue of exciting only the odd frequency lines

in the perturbation signals, the frequencies in the averaged

output signal can be split into four groups. The first frequency

group ( f{1}) consists of the excited frequencies in the input

signal. The response at these frequencies will represent the

linear contributions as well as part of the higher order odd

(e.g. 3rd, 5th and 7th order) nonlinear contributions. The second

group ( f{2}) consists of all the frequencies that can come

from 2nd order nonlinear contributions ( f{1},1 ± f{1},2), as well

as part of the higher order even (e.g. 4th and 6th order)

nonlinear contributions. The third group ( f{3}) consists of all

Fig. 2. Block schematic of the model structure. The top branch is a linear
model which governs the output at the excited frequencies (i.e. f{1}). This

model is estimated by calculating the linear frequency response function.
The bottom branch is a nonlinear model which is estimated using two
terms of the Volterra series, namely the 2nd order kernel h2 and the

0th order kernel h0. The 2nd order kernel governs the output at f{2}. The

0th order kernel is included to account for the potentially nonzero-mean
signals generated by the 2nd order kernel.

odd frequencies not in f{1}, which are the result of higher

order odd (3rd order or higher) nonlinear contributions. The

fourth and final group ( f{4}) consists of all even frequen-

cies not in f{2}, which are the result of higher order even

(4th order or higher) nonlinear contributions. The total power

in the signal can be split amongst these frequency groups to

determine their individual contributions. Additionally, in all

frequency groups there are still noise contributions present,

given that the NSR is not reduced to zero. The NSR per

frequency group is calculated using (3). The noise level in the

averaged output signals puts a theoretical limit on the modeling

accuracy, as that portion of the output data cannot be explained

by a model.

D. Model Structure

The block scheme in Fig. 2 illustrates the modeling

approach. The relation between joint angle (input) and cortical

response as represented by the selected component (output)

is modeled. The model consists of two parallel branches,

specifically one 1st order and one 2nd order model. The latter

also includes a 0th order model; due to filtering, the recorded

output signal is zero-mean, yet the 2nd order model should not

be restricted to produce a zero-mean output. The models in the

two branches can be obtained in two separate modeling steps,

as the 1st order model can only affect the output at f{1}, and the

2nd order model can only affect the output at f{2} (i.e. using

an odd perturbation signal, the two models are orthogonal).

As a final step the two models are combined.

The 1st order (linear) model h1 will be estimated in the

frequency domain at the excited frequencies ( f{1}) in the input

and at the same frequencies in the output, resulting in the

best linear approximation (BLA) [5]. The frequency domain

representation of this model is defined as H1( f ).

The 2nd order (nonlinear) model is estimated using a trun-

cated Volterra series expansion [11], which is similar to a

Taylor series expansion, yet it includes dynamics. Regular-

ization is used to incorporate prior information during the

modeling procedure. Namely, by assuming that the model

parameters are correlated and that the models decay to zero

after a certain time, appropriate penalties can be imposed on

the model estimation, which results in estimated models of
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Fig. 3. Example of a function h2(τ1, τ2). The model corresponds to
a Wiener-structure with a linear system followed by a square-operator.
The left plot shows a 3D view of the model h2. The right plot shows
the same model from a top view, with additionally an indication of the
directions µ and ν, along which the smoothness and decay rate of the
model were quantified during regularization. The colors of the surface
indicate amplitude.

substantially lower uncertainty. Regularization has previously

been applied to linear [12], [13] and nonlinear [14], [15] model

estimation, such that prior information about the estimated

models is used during the identification step. Regulariza-

tion imposing correlation and model decay for estimation of

Volterra kernels has only recently been introduced [4].

E. Volterra Kernel Estimation Using Regularization

The true underlying even nonlinear contributions in the

output y at f{2} (defined as y2) are modeled with two terms

of a discrete-time Volterra series [11], namely the 2nd order

kernel h2 and the 0th order kernel (i.e. constant term) h0:

ymod,2 (n) =

d2−1
∑

τ1=0

d2−1
∑

τ2=0

h2 (τ1, τ2) u (n − τ1) u (n − τ2) + h0

(4)

where u(n) denotes the recorded joint angle, ymod,2(n) repre-

sents the modeled cortical response at f{2} (including 0 Hz),

h2(τ1, τ2) is the 2nd order Volterra kernel, τ1 and τ2 denote lag

variables, and d2 corresponds to the memory of h2. Without

loss of generality, the estimated Volterra kernels are consid-

ered to be symmetric. An example of a function h2(τ1, τ2)

is given in Fig. 3. Given the measured signals u and y,

the goal is to efficiently estimate the Volterra kernel coeffi-

cients h0 and h2(τ1, τ2). Equation (4) can be rewritten into a

vectorial form as:

ȳmod,2 = K

[

h0

θ2

]

(5)

where θ2 ∈ R
nθ2 is a vectorized version of h2, nθ2 denotes

the number of coefficients in h2, K ∈ R
(N ·M )× (nθ2+1) is the

regressor matrix, and ȳmod,2 ∈ R
(N ·M ) contains the modeled

output.

The regressor matrix K contains the input signal, which

includes samples from time instants before the beginning of

the input signal (u(n), n < 0); however, due to the periodicity

of the data the signal at those time instants is known.

The model parameters h0 and θ2 are estimated by minimiz-

ing the regularized least squares cost function:
[

ĥ0

θ̂2

]

= arg min
θ

∣

∣

∣

∣

∣

∣

∣

∣
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θ2
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P
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[

h0
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=
(

K T K + σ 2
P

−1
)−1

K T ȳ2 (6)

where ȳ2 is the vectorized recorded output data, which is

assumed to be contaminated by zero mean i.i.d. white noise

with finite variance σ 2. The first term of the summation in the

cost function minimizes the difference between the recorded

output and the modeled output in a least-squares sense.

Matrix P penalizes the parameters such that prior information

about the underlying dynamics of the true system is taken

into account. The regularization matrix P ∈ R
(nθ2+1)·(nθ2+1)

is constructed using a Bayesian perspective as explained

in [12] and [15]. The matrix P is a block-diagonal covariance

matrix:

P =

[

P0 0

0 P2

]

, (7)

where P0 = E
[

h0hT
0

]

, P2 = E
[

θ2θ
T
2

]

and E [·] denotes the

mathematical expectation operator.

The prior information encoded in the matrix P assumes

that the Volterra kernels used to describe the true system are

decaying and smooth. The property of decaying refers to the

fact that h2(τ1, τ2) → 0 for τ1, τ2 → ∞. For the discrete-time

Volterra series used in the current study, a smooth estimated

kernel means that there exists a certain level of correlation

between neighboring coefficients, which decreases the larger

the distance between two Volterra coefficients. The properties

of decaying and smoothness for the 2nd order Volterra kernel

are encoded into the matrix P2. The (i, j)-element, which

corresponds to E
[

θ2,iθ2, j

]

∀i, j where θ2,iθ2, j denote two

Volterra coefficients in θ2, is given by [4]:

P2 (i, j) = ce−αµ||µi |−|µ j ||e−βµ
||µi |+|µ j ||

2 e−αν||νi |−|ν j ||

× e−βν
||νi |+|ν j ||

2 (8)

where the coordinate system µ, ν is rotated 45 degrees

counter-clockwise with respect to coordinate system τ1, τ2

(see Fig. 3):
[

µi

νi

]

=

[

cos(45°) −sin(45°)

sin(45°) cos(45°)

] [

τ1,i

τ2,i

]

(9)

The so-called hyper-parameters αµ and αν are used to control

the smoothness property of the coefficients along the µ and ν

direction, respectively. The hyper-parameters βµ and βν deter-

mine the decay rate along the µ and ν direction, respectively.

Hyper-parameter c is a scaling factor used to determine the

optimal trade-off between the measured data and the prior

information encoded in P2.

F. Efficient Tuning of the Prior Knowledge

All the hyper-parameters in (8), namely c, αµ, βµ, αν , βν ,

σ 2 and P0 are tuned using the input and output data by

maximizing the marginal likelihood of the measured out-

put [16]. Once the optimal values for these hyper-parameters

are obtained, the model can be estimated from (6). Note that

the memory length d2 of the second order kernel is estimated

separately (see Section II-I). Tuning the hyper-parameters

in (8) is a non-convex optimization problem. To facilitate

the algorithm and increase the probability of reaching the

global maximum, the hyper-parameter space is restricted.

Specifically: (i) c, σ 2,P0 > 0 because they are all directly
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linked to a measure of variance; (ii) The upper bound for

αµ and αν is 2 samples−1 which results in no correlation

between the coefficients in the corresponding direction. The

lower bound is set equal to 1/(5d2) samples−1, which would

result in a strong correlation between all the coefficients

of h2(τ1, τ2) and therefore an almost flat surface; and (iii) the

upper bound for βµ and βν is 2 samples−1, which means

that the estimated surface will decay in general almost imme-

diately after one or two lags. The lower bound is set equal

to 3/d2 samples−1, which means that the estimated model

will have virtually decayed to zero at the truncation lag of

the model imposed by the memory d2 [see (4)]. To further

minimize the risk of resulting in a local maximum of the non-

convex marginal likelihood function, the models presented in

this paper have been obtained after multi-start optimization of

the hyper-parameters.

G. Preparing the Data for Modeling

The perturbation signals were designed to have power at

particular frequencies: the excited frequencies. Any power in

the recorded wrist joint angle signal (i.e. the input to the

human) at the unexcited frequencies was assumed to be due to

nonlinear behavior of the robotic manipulator or noise; namely

it is assumed that the human does not influence the angle of

the robotic manipulator. The power at these frequencies was

checked to be minimal and was subsequently removed from

the recorded input signal to prevent the estimated model from

using the power at the unexcited frequencies to explain the

recorded output signals.

The recorded signals for the seven realizations were scaled

to set their RMS to approximately one. The same scaling was

applied to each realization to maintain their interrelations. The

scaling was performed for both the input and output signals

to prevent numerical problems in the nonlinear optimization

of the hyper-parameters.

There is a time delay between the applied joint manipulation

at the wrist and the evoked response in the cortex, which is a

consequence of the limited conduction velocity in the afferent

nerve fibers as well as of synapses in the pathway. For all

participants the recorded output signals were shifted in time

to impose a time delay of 20 ms.

H. Model Estimation Procedure

There are M = 7 multisine realizations available in the

input and output data. Out of those seven, six realizations are

used for estimation and the remaining realization is used for

validation to assess the quality of the model. This procedure

is repeated seven times to achieve seven-fold cross-validation,

resulting in seven models for each branch in Fig. 2.

The linear and odd nonlinear contributions are modeled

at the excited frequencies ( f{1}) in the input and output by

calculating the average linear frequency response function for

the different sets of estimation realizations:

Ĥ
[v]
1

(

f{1}

)

=
1

M − 1

∑

w∈Wv

Y [w]
(

f{1}

)

U [w]
(

f{1}

)

Wv = {w ∈ R | 1 ≤ w ≤ M, w �= v}. (10)

Here, Ĥ
[v]
1 is the model obtained when using realization v for

validation, and U and Y are the frequency domain representa-

tion of the input (angle) and the output (selected independent

component) respectively.

The even nonlinear contributions are also modeled using

alternatingly six realizations for estimation and one for vali-

dation. The 0th and 2nd order kernels are estimated using (6),

from f{1} in the input signal to f{2} in the output signal. As the

required memory for the 2nd order kernel is unknown, different

memory lengths in the range 10 to 75 samples (approximately

40 to 300 ms) are tried. This results in a set of models

ĥ
[v,d2]
0 and ĥ

[v,d2]
2 (τ1, τ2), where v is the realization used for

validation and d2 is the number of samples included as

memory of the model [see Eq. (4)].

I. Selecting the Memory Length of the 2nd Order Kernel

Modeling the 1st order contributions (the BLA) generates

one model for each validation realization and does not require

further model selection.

For the 0th and 2nd order Volterra kernel, the modeling error

on the validation datasets was calculated for all lags

ε[v,d2] =

N
∑

n=1

(

y
[v,d2]
mod,2 (n) − y[v] (n)

)2
, (11)

where ε is the sum-squared error and y
[v,d2]
mod,2 (n) is the modeled

output using the corresponding 0th and 2nd order models

(i.e. ĥ
[v,d2]
0 and ĥ

[v,d2]
2 (τ1, τ2)), with validation dataset v as

input. The set of 0th and 2nd order models which demonstrated

the lowest error were selected and were defined per validation

realization v as ĥ
[v]
0 and ĥ

[v]
2 (τ1, τ2). The obtained set of

2nd order models was transformed to the frequency domain

using the two-dimensional DFT at a frequency resolution

of 1 Hz, resulting in Ĥ
[v]
2 ( f1, f2).

J. Model Evaluation

The performance of the set of seven models for both the

1st and the 2nd order was evaluated by calculating the variance

accounted for (VAF) on the validation data. As there are seven

models available, the VAF is reported as its mean across the

seven models including the standard deviation. The modeled

output was calculated by summing the output of the 0th,

1st and 2nd order models

y
[v]
mod,val (n) = ĥ

[v]
′0

+ y
[v]
mod,val,1 (n) + y

[v]
mod,val,2 (n), (12)

from which the mean was removed. The VAF can be calculated

on the 1st and 2nd order contributions separately, or on the total

modeled output using

V AF
[v]
val =

⎛

⎝1 −
var

(

y
[v]
val (n) − y

[v]
mod,val (n)

)

var
(

y
[v]
val (n)

)

⎞

⎠ · 100%.

(13)

For completeness, the VAF was also calculated on the data

used for estimation. This was achieved by calculating the

modeled output using the estimation data and concatenating

the result into y
[v]
mod ,est,c. The six estimation realizations of
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Fig. 4. Signal characteristics and models for each participant (represented by columns). Row A: Topographic representation of the weighing of
electrodes in the independent component with the lowest NSR. Row B: Power distribution over four frequency groups in the output signal, indicated
with four colors. The black and blue indented segment represent the VAFval for the 1st and 2nd order models respectively. Shaded segments
represent the noise level in that frequency group. See Fig. 5 for a detailed explanation for one representative participant. Row C: 1st order model for
validation realization 5 (linear frequency axis). Row D: 2nd order model for validation realization 5 (linear frequency axis). See Fig. 6 for a detailed
explanation for one representative participant.

the recorded averaged output signals y[m] were concatenated

into y
[v]
est,c, enabling calculation of the VAF on the estimation

data.

III. RESULTS

A. Component Selection

Fig. 4A shows for each participant the topographic repre-

sentation of the independent component (IC) with the lowest

noise-to-signal ratio (NSR). These components for all partic-

ipants suggest a similarly located cortical source in the con-

tralateral sensorimotor cortices. For each participant, the signal

of the shown component was used for modeling.

B. Signal Characteristics and Model Fit
Table I reveals that the noise level in the averaged recorded

output signal is around 8% for all participants, indicating

that the maximum achievable total VAF is around 92%.

Additionally, Table I shows the ability of the models to fit

both the validation and estimation.

Fig. 5 illustrates for one representative participant how each

set of frequencies contributes to the averaged recorded output

signal, and further splits the power into modeled (validation)

data, unmodeled data and noise. Fig. 4B reveals that the

bulk of the power in the averaged recorded output signal is

concentrated in f{2} and that the contribution of f{3} and f{4}

is small. This finding supports this paper’s modeling approach,

which focusses on the 1st (linear) and 2nd order (nonlinear)

contributions in the recorded output signal.

Between the two models included, the main contribution in

terms of VAF comes from the 2nd order model (around 39%).

TABLE I

NOISE LEVELS AND MODEL FITS

The model performance strongly depends on which realiza-

tions were used for estimation and which for validation.

The VAF obtained from 1st order model (around 8%) is

comparable to that obtained from modeling the electrode level

response [2]. Besides the modeled data (46%) and the remain-

ing noise in the averaged cortical signals (8%), there is still

approximately 46% of unmodeled data.
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Fig. 5. Power distribution over frequency groups in the output signal
for one representative participant (participant 4). Narrow bar on the
left indicates the relative power in the four frequency groups. Wide
bar segments on the right further split the power per frequency group
into noise (shaded segments without text), unmodeled, and modeled
data (the black and blue indented segment represent the VAFval for

the 1st and 2nd order model respectively). In this example, the total
noise contributions are 6% and the total VAF on the validation data
is 50%, where the 1st and 2nd order models explain 13% and 37%
respectively (numbers from Table I). The power in f{3} and f{4} cannot
be explained using the current model structure.

C. Representative Models

Fig. 4C and Fig. 4D show for each participant one represent-

ative model for the 1st and 2nd order respectively (a detailed

example of a 2nd order model is given in Fig. 6). Models obtai-

ned for the different validation realizations were very similar.

The obtained 1st and 2nd order models for all validation

realizations can be found online at http://ieeexplore.ieee.org.

The 1st order models shown in Fig. 4C on average only

describe 8% of the output data, yet there exists a similarity

for models obtained for the different participants; all 1st order

models attenuate the low frequencies and amplify the high

frequencies.

Fig. 6 shows the two-dimensional frequency response func-

tions (gain and phase) of the obtained 2nd order model for

one representative participant. Fig. 6 clearly illustrates which

input frequencies contribute to the output. The model has the

highest gain in the bottom-right corner, where high frequency

input combinations generate low frequency output through

intermodulation (e.g. f1 = 23 Hz and f2 = −19 Hz in the

input signal contribute to f1 + f2 = 4 Hz in the output signal).

The other region with high gains is found in the top right

corner, which is again where the high frequencies interact. The

lowest gains are found in the region where the low frequencies

in the input interact. This same behavior can be observed in

the models for all participants, as shown in Fig. 4D. Similarly

to the 1st order model, the 2nd order models seem to exhibit

high-pass behavior.

The memory of the selected 2nd order kernels [d2 in (4)]

strongly depended on which realization was used for validation

Fig. 6. Frequency domain representation of a 2nd order model (gain and
phase) for one representative participant (participant 4) for validation
realization 5. The obtained surface is symmetrical with respect to the

line f1 = f2, as f1 and f,2 are exchangeable in Ĥ2

(

f1, f2
)

. Additionally,

as the model at the negative frequencies is the complex conjugate of the
model at the same positive frequencies, the full behavior of the model
can be represented using one quarter of the entire surface. Red lines
and numbers at the right vertical axes indicate the frequencies (in Hz)
in f{2} in the output signal that result from the excited input frequency
combinations f{1},1 (on the x-axes) and f{1},2 (on the y-axis) that are
indicated by the black dots. The gain plot on the left reveals that
combinations of low input frequencies are strongly attenuated (i.e. gains
are very low). The highest gains are found in the bottom right corner;
in this region the model generates low-frequent output (as indicated by
the red numbers) through the intermodulation of the high-frequencies
in the input signal. Relatively high gains are also found in the top right
corner; in this region the model generates high-frequent output through
the intermodulation of again the high-frequencies in the input signal. This
behavior can be classified as high-pass behavior.

and therefore varied within each participant (combined stan-

dard deviation of 15 samples). However, the average mem-

ory across realizations was similar across participants, with

an average memory of 33 samples (standard deviation of

4 samples), corresponding to approximately 130 ms at a

sampling rate of 256 Hz.

For each participant, the seven different models obtained

from cross-validation were very similar. This holds for both the

1st order and the 2nd order models. Interestingly, the models

obtained from the different participants are also similar; all

obtained models strongly attenuate the low-frequent input sig-

nal and amplify the high-frequent input, resulting in high-pass

behavior. The difference between the 1st order and 2nd order

model is that although the 2nd order model acts as a high-

pass filter, most power in the output is generated at the low

frequencies.

IV. DISCUSSION

The goal of this study was to obtain a dynamic nonparamet-

ric nonlinear model that could explain the observed cortical

response recorded using EEG and evoked by continuous

wrist joint manipulation. The high similarity in the cortical
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response across participants, in terms of location, distribution

of power over frequencies, and observed dynamics in both the

1st order (linear) and 2nd order (nonlinear) parts of the model,

allow for confident interpretation of the results. On average,

46% of the variance of the evoked cortical response could

be modeled by the proposed approach; additionally, a clear

distinction was made between parts of the cortical signal which

could and could not be modeled. Around 8% of the averaged

cortical signals could be attributed to noise. The obtained

models reveal attenuation of low frequencies and amplification

of high frequencies; this behavior can be interpreted as high-

pass filtering, probably linked to dominant contributions from

velocity-related information via Ia afferents originating from

the muscle spindles. This study provides first evidence that the

nonlinear cortical response to a proprioceptive stimulus can be

quantitatively modeled, as was demonstrated using a truncated

Volterra series expansion.

A. Selection of Cortical Response

This study focusses on the response most associated with

the perturbation signal (i.e. with the lowest NSR). The inde-

pendent component with the lowest NSR reveals a source

at a similar location for each participant, namely the con-

tralateral sensorimotor cortices. This finding is in line with

previous literature on somatosensory evoked responses evoked

by tactile stimulation of the hand [17] and by wrist joint

manipulation [1], and is also expected based on where afferent

fibers carrying proprioceptive and tactile information reach the

cortex [18]. Besides the similarity in location, these selected

cortical responses shared more characteristics across partici-

pants. The power distribution over frequencies is very much

alike, where most power is concentrated in f{2} (see Fig. 4B).

Additionally, the dynamics for both the 1st and 2nd order

model revealed a comparable high-pass behavior for all partic-

ipants. These similarities point towards a generalizable cortical

response to the applied joint manipulation.

Although the participants also have other components which

show a response related to the perturbation signal, none of

those were as strong as the one selected for modeling. The

number of independent components which could be repre-

sented well by a dipolar cortical source (residual variance

<20% as determined using a dipole fitting algorithm and a

standard head model) and which had relatively small noise

contributions (NSR <30%), was on average 2.3 (standard

deviation of 1.3) components. The power in the excited

frequencies ( f{1}) in these components was on average 25.4%

(standard deviation of 12.6), indicating that a linear model

(the BLA) would also have limited performance for the

other components associated with the perturbation signal.

Other brain regions which are known to be active during

somatosensory stimulation under passive conditions include

the posterior parietal cortex [19] and the secondary somatosen-

sory cortices [20]. The anatomical pathway for both tactile

and proprioceptive information is the dorsal column-medial

lemniscus pathway. This pathway connects the sensors in the

periphery to the contralateral primary somatosensory cortex

with only two intermediate synapses, namely in the spinal

cord and the thalamus. Responses in other cortical areas are

likely to be relayed by the primary somatosensory cortex to

the secondary somatosensory cortex and the posterior parietal

cortex [18]. In those cortical regions the somatosensory signals

are further processed and integrated with motor control. The

proposed modeling approach could also be applied to other

parts of the cortex that respond to an external somatosensory

stimulus.

B. Physiological Origin of the Evoked Cortical Response

The imposed joint rotation is registered by the sensory

organs in the periphery and is transported to the cortical

regions, where the response is recorded using EEG. This study

cannot differentiate to what extent the obtained models are

governed by the dynamics of the sensors or by the dynamics in

the pathways between sensors, spinal cord and brain regions.

The applied joint manipulation stimulated at least the mus-

cle spindles, Golgi tendon organs (GTO), joint capsules, and

tactile sensors (e.g. Meissner’s corpuscles, Pacinian corpus-

cles and Merkel’s discs). Applying anesthesia which blocks

afferents from tactile sensors and joint capsules did not sub-

stantially alter the evoked cortical response to passive finger

flexion [21], to passive wrist extension [22], or to passive

plantar flexions of the ankle [23]. Additionally, GTO do not

generate strong signals under passive conditions, as a slack

muscle has lower stiffness than the fibrils of the tendon

that activate the GTO. Therefore, it is argued that in this

particular study under passive conditions theevoked cortical

response is mainly generated by muscle spindles. Muscle

spindles sense both length and changes in length (i.e. velocity

information). There are two types of fibers originating from

the muscle spindles Information is transmitted via Ia and II

afferent fibers, which have a high and medium conduction

velocity respectively. The II afferent fibers provide position

information, while Ia afferent fibers provide either velocity

or position information, where the former is dominant during

movement. The observed high-pass behavior could originate

from the velocity sensitivity of the Ia afferents.

The contribution of the afferent pathways in the observed

dynamic behavior is less clear. Insight can be obtained by

including a measurement point within those pathways, for

example by measuring the output of the muscle spindles using

microneurography [28].

A possible explanation for the even nonlinear relation

between joint manipulation and cortical response is found

in the signals generated by muscle spindles in antagonistic

muscles (i.e. wrist flexor and extensor); muscle spindles reg-

ister velocity mainly when the muscle is lengthened and less

when shortened [24], which might be altered by fusimotor

activity [25], [26]. This unidirectional sensitivity makes the

muscle spindle behave like a half-wave rectifier for velocity

input. In contrast to the stretch reflex, which will activate

different muscles depending on stretch direction, the cortical

response to either direction generates similar responses in the

cortex [27], [28] of which the locations are probably too near

to be distinguishable when using EEG; possibly, the half-wave

rectifiers in antagonistic muscle pairs together behave as a

full-wave rectifier. The resulting insensitivity to direction is a

typical characteristic of even nonlinear behavior.
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C. Relation to Previous Continuous Joint
Manipulation Studies

Cortical responses evoked by continuous mechanical stim-

ulation have been studied before (see [29] for an overview);

however, most of those studies stimulate the tactile system

using high frequent vibrations. The number of studies that

apply continuous joint manipulation is limited. The studies

that do so, investigate the relation between joint movement and

evoked cortical response by perturbing with one specific peri-

odic joint perturbation signal and quantify the relation between

stimulus and cortical response using either linear coher-

ence [1], [30] or higher order cross-spectral coherence [31].

Linear coherence in combination with periodic perturbation

signals impedes the detection of nonlinear behavior [32] and

the obtained coherence is a mix of linear and nonlinear con-

tributions. In contrast, higher order cross-spectral coherence

(e.g. bi-coherence) does allow for the detection of nonlin-

ear interactions. Although coherence can detect the strength

of the coupling between input and output signal at certain

frequencies, it fails to inform on how much of the output

signal reflects that specific coupling. For example, in the case

of significant coherence it can be concluded there exists a

consistent relation between a frequency (or combination of

frequencies) in the input and a frequency in the output signal;

however it is unclear to what extent the output signal at that

frequency is governed by the input signal at the investigated

frequency. In contrast, the current study provides an approach

for quantifying the nonlinear interactions in the sensorimotor

system through a nonlinear dynamic model, which creates

insight into which input frequencies in the perturbation signal

govern the observed cortical response.

The use of multiple different perturbation signals is essential

when modeling a nonlinear system; as the superposition prin-

ciple does not hold, the model obtained from one perturbation

signal is not generalizable to other perturbation signals, even

if they have similar characteristics (e.g. RMS and excited

frequencies). In the current study, this can be illustrated by

estimating the linear relation between the input and output

signals for just one realization of the perturbation signal;

the resulting frequency response function does not reveal the

high-pass behavior observed when using multiple realizations

for estimation, and the VAF on any other realization is very

poor.

Regardless of which approach is used to investigate the non-

linear relation between joint movement and cortical response,

when exciting the system with one specific perturbation signal

it is difficult to investigate the characteristics of the underlying

system; the cortical response could drastically change when

a different perturbation signal is used. Evidently, the use of

a repeatedly applied transient stimulus, which is the most

common EEG recording paradigm when the investigating

somatosensory system, suffers from the same weakness.

D. Reflection on the Experiment

To further improve the perturbation signals for use in

nonlinear modeling there are several options. Firstly, by using

a longer period more frequencies can be accommodated.

This would allow for including lower frequencies and more

intermediate frequencies, thus creating a richer perturbation

signal. Secondly, more phase realizations could be used,

as apparently the seventh (i.e. validation) realization is in

many cases still very different from the six used for modeling.

By exciting the system with more phase realizations, the

nonlinearity of the system is explored in more detail, which

allows for more accurate modeling. Lastly, recording more

periods per realizations would further reduce the noise level,

although the noise is currently not the main issue as the

noise level is much lower than the level of unexplained

variance (8% and 46% respectively, see Table I). As one

might expect, any of these three improvements would be

accompanied by increased recording time.

The current study investigates the relation between joint

manipulation and cortical response under passive conditions,

i.e. without voluntary muscle activation. Under both passive

or active conditions, any cortical efferent motor drive is not

likely to be periodic to the perturbation; feedforward control

synchronized to the perturbation would require a predictable

perturbation signal, and feedback control via the cortex would

be ineffective due to the relative large time delay of a cortical

reflex loop. Thus, the evoked cortical response recorded during

the execution of a task as described in the current study would

reflect mainly sensory information processing.

In this study the joint was studied in a specific ‘operating

point’. This point constitutes, amongst other aspects, the angle

in which the wrist is studied, the frequency content and

amplitudes of the perturbation signal, task instruction, and the

efferent motor drive. With a change in any of these parameters

the operating point could change, possibly requiring a different

model. The current study illustrates that by controlling the

‘operating point’, it is possible to obtain similar models across

participants.

E. Reflection on Modeling Approach

In the current study, the system under study is described

by a 1st and 2nd order model. The power in f{3} and f{4} is

small (around 10%, see Fig. 4B), indicating that the cortical

response has little power at frequencies which can only be

generated by 3rd and higher order nonlinearities. However,

from this observation it cannot be concluded that there are

no nonlinearities in the system higher than the 2nd order;

high frequencies generated by higher order nonlinearities

could be attenuated by low-pass dynamics. Any attempt to

model higher order odd nonlinear behavior would result in a

maximal VAF increase of around 9%, which corresponds to

the unmodeled signal in f{1} and f{3}. It would be beneficial

to include higher order even Volterra kernels (e.g. a 4th order

model); if the system under study indeed includes a rectifier as

proposed before, higher order even kernels would be needed

to better approximate that behavior. However, the estimation

of higher order Volterra kernels would increase the number

of parameters to be estimated, and therefore might require an

experiment with a richer perturbation signal (i.e. more excited

frequencies and increased period length).

Signals recorded at the scalp were decomposed in inde-

pendent components using ICA. There are signal separation

techniques which possibly result in a lower NSR [e.g. 33],
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thus increasing the quality of the data used for modeling and

the maximum attainable VAF. These techniques have been

mainly developed for separating cortical responses evoked by

transient stimulation; their effectiveness for responses evoked

by continuous stimulation needs to be further investigated.

All analyses were performed on data which was averaged

across periods. The responses in a single period could not be

observed due to the high NSR. Through averaging the NSR is

improved; however, differences between responses in different

periods (i.e. time-varying behavior) can no longer be observed.

The time-variance of the periodic response was shown to

be small in a previous study using the same experimental

setup [29]. It would be interesting to further quantify the

contributions of time-variance to the NSR. This could be

achieved by performing an experiment with a high number

of consecutively recorded periods, allowing for increased

frequency resolution.

For all participants a time delay of 20 ms was imposed in

the model, which is based on findings in literature for transient

wrist joint manipulation [22], [28] as well as for electrical

stimulation at the median nerve [22]. Although the actual time

delay is participant specific (e.g. depending on arm length),

due to the small differences observed in literature, here the

time delay was set to 20 ms for all participants in the study.

The best performing 2nd order models had an average

memory of about 130 ms; hence, the impulse response of such

a model will, including the imposed time delay of 20 ms, have

an approximate duration of 150 ms. Such a response duration

is close to those obtained in the contralateral sensorimotor

cortex by applying a brief transient stimulus [28], [34].

Nonparametric modeling of a nonlinear system using a

Volterra series has the major advantage of requiring limited

a priori information about the exact nature of the nonlinearity,

making it a powerful tool for exploring the characteristics of

the nonlinear system under study. Hammerstein or Wiener

cascades (e.g. the combination of a static nonlinearity with

linear dynamics) are also often used to model nonlinear

(neuro-)physiological systems [35], for example to study the

relation between electrical nerve stimulation and muscle force

output [36] or to study muscle reflexes due to joint move-

ment [37]. The number of parameters required to estimate

Hammerstein or Wiener cascades is substantially lower than

for Volterra series estimation, but require prior assumptions

about the nonlinearity. The drawback of a high number of

parameters required for Volterra series estimation is mitigated

by the use of regularization. Especially in the case of noisy

data, regularization can reduce the uncertainty of the obtained

models substantially. Nonparametric modeling is a necessary

step before obtaining a quantitative dynamic nonlinear para-

metric model, which would provide crucial insights in the

cortical involvement in processing of sensory information and

cortical involvement in for example reflex modulation.

V. CONCLUSIONS

• A nonparametric nonlinear modeling approach requiring

little assumptions is able to capture 46% of the relation

between joint manipulation and evoked cortical response.

• For each participant, the similarity among the models

obtained when using different parts of the data for esti-

mation provides confidence in the estimated models.

• The observed consistency of the obtained models across

participants indicates that these models are able to capture

the behavior of the sensorimotor system.

• Multisine perturbation signals with only odd frequency

lines excited reveal dominant even nonlinear behavior

in the cortical response evoked by joint manipulation.

Additionally, the odd and even contributions can be

modeled separately due to orthogonality of odd and even

models when using such a perturbation signal.
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