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Abstract

We demonstrate a photonic analog of twisted bilayer graphene that has ultra-flat photonic bands and exhibits

extreme slow-light behavior. Our twisted bilayer photonic device, which has an operating wavelength in the C-band

of the telecom window, uses two crystalline silicon photonic crystal slabs separated by a methyl methacrylate

tunneling layer. We numerically determine the magic angle using a finite-element method and the corresponding

photonic band structure, which exhibits a flat band over the entire Brillouin zone. This flat band causes the group

velocity to approach zero and introduces light localization, which enhances the electromagnetic field at the expense

of bandwidth. Using our original plane-wave continuum model, we find that the photonic system has a larger band

asymmetry. The band structure can easily be engineered by adjusting the device geometry, giving significant freedom

in the design of devices. Our work provides a fundamental understanding of the photonic properties of twisted bilayer

photonic crystals and opens the door to the nanoscale-based enhancement of nonlinear effects.

Introduction

Over the past decade, the stacking and twisting of two-

dimensional (2D) materials have led to the development

of novel materials with remarkable electronic properties.

For example, in twisted bilayer graphene (TBG), an

engineered material consisting of two stacked layers of

graphene that are rotated relative to each other, at the so-

called magic angle of θ ¼ 1:1�, the Fermi velocity drops to

zero and the energy bands near the Fermi energy become

flat1. These flat bands have high effective mass and half-

filled correlated insulating states, resulting in super-

conductivity due to the formation of moiré superlattices

and Dirac cone hybridization2,3. Exploring these unusual

phenomena is central in the developing field of quantum

twistronics4,5. The concept of twistronics has been

extended to include the study of nano-light properties in

materials like TBG and twisted α-MoO3
6–9. Recently, it

was shown that applying the ideas of twistronics to both

1D and 2D photonic moiré lattices in dielectric nano-

photonic materials leads to slow-light effect10,11, light

localization/delocalization phenomena12, and tunable

resonant chiral behavior13. However, the connection

between atomic twistronics and its nanoscale photonic

analog has not been thoroughly explored.

Many concepts in condensed matter theory have pho-

tonic analogs. For example, photonic systems with non-

trivial topological invariants are the photonic analog of

the anomalous quantum Hall effect and the anomalous

quantum spin hall effect14–22. The periodic dielectric

lattice of honeycomb lattice photonic crystals with “arti-

ficial atoms” (the unit cell in the dielectric structure) is

analogous to the hexagonal atomic lattice of graphene.

Indeed, these materials have been shown to give rise to

topological photonics23–29. In this context, it is natural to

expect two layers of twisted honeycomb photonic crystal

slabs to have similar physics as TBG. Yet, while the

microscale analog to TBG has recently been demon-

strated through phononic crystals and microwave pho-

tonic crystals30,31, and while tunable light properties have

been observed in metamaterials with moiré patterns32–36,

a nanoscale photonic band structure similar to the band
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structure in TBG-like systems has not been reported.

Here, we correct that deficit.

In this paper, we report on the modeling of twisted bilayer

photonic crystals (TBPhCs) consisting entirely of dielectric

materials. We find that TBPhCs have a photonic band

structure that is similar to the electronic band structure of

TBG. At a twist angle of 1.89°, the resulting moiré flat bands

have group velocities (vg) that vanish at the K point leading

to an extreme slow-light effect. In analogy to the confine-

ment of electronic wavefunctions in magic-angle TBG, we

observe low-loss light localization in this linear periodic

photonic system. Unlike Anderson localization in optical

quasicrystals, the localization we observe does not require

disorder12,37. As many photonic crystal and crystal analogy,

TBPhCs and TBGs are that photonic states are not as tightly

bound as their electronic counterparts and that the photonic

system has a larger band asymmetry. The tunneling layer

between the PhC slabs and the geometry of the slabs provide

additional degrees of freedom for engineering the photonic

band structure.

A major advantage of TBPhCs over conventional slow-

light media is that TBPhCs display slow-light behavior over

an extremely narrow bandwidth. We can therefore design

versatile TBPhCs that operate across a broad range of visible

and infrared frequencies, which can be used to realize slow-

light and flat-band applications. These TBPhCs open the

door to studying strong light-matter interactions, such as

nanoscale-based enhancement of nonlinear effects, where a

combination of light localization, low loss, and slow light is

required38–41. In addition, they can be used to investigate

flat-band phenomena and wave-packet localization in 2D

systems at the nanoscale. Finally, the flexibility in designing

TBPhCs permits simulating and exploring the band struc-

ture behavior of their electronic counterparts.

Results

Here we introduce a dielectric photonic crystal platform

that hosts a band structure analogous to TBG. We start with

a monolayer 2D honeycomb photonic crystal inspired by

graphene28. The 2D photonic crystal is a silicon membrane

with C6v symmetry-protected triangular shape air holes (Fig.

1a). By placing two photonic crystal slabs close to each other,

the guided resonances in the two slabs couple through an

evanescent tunneling pathway (Fig. 1b). We use a finite-

element method (COMSOL Multiphysics) to numerically

calculate the band structure. In the monolayer band struc-

ture, the lowest singly degenerate quasi-transverse-electric

(quasi-TE) band is well isolated from other higher-order
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Fig. 1 Twisted bilayer photonic crystals. a Bilayer photonic crystal (BPhC) consisting of a tunneling layer with a low refractive index sandwiched

between two twisted dielectric layers. The 2D photonic crystal is a d= 220-nm-thick crystalline silicon membrane (nSi ¼ 3:48) with C6v symmetry-

protected triangular shape air holes. The triangular holes have a side length of b ¼ 279nm and the unit cell pitch is a ¼ 478nm. The interlayer

tunneling membrane has a thickness of h ¼ 250nm and the refractive index of polymethyl methacrylate (PMMA) is nPMMA ¼ 1:48. b Two layers are

separated by PMMA with only a subwavelength distance h, suggesting an evanescent coupling between two layers of photonic crystals. c Moiré

pattern for a TBPhC, where the two dielectric layers are rotated by angle θ with respect to each other around the AA-stacked center. In a moiré

pattern, lattice structure locally resembles the regular stacking arrangement such as AA, AB, and BA. d Evanescent waves from two layers of photonic

crystals are mostly coupled in the AA-stacked region
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bands (see Fig. 2a). The C6v symmetry of the lattice also

protects a Dirac-like crossing at the K point centered at the

Dirac cone frequency (fDC), which is equivalent to the Fermi

level in graphene (see Fig. 2a). In this monolayer PhC, quasi-

TE electromagnetic modes that primarily propagate through

air holes are weakly coupled with neighboring holes,

mimicking how electrons hop between carbon atoms in

graphene. The nearest- and next-nearest-neighbor coupling

strength of electromagnetic modes can be controlled inde-

pendently by varying the monolayer geometry, providing a

platform to implement a broad class of tight-binding mod-

els. Building off this monolayer band structure, two sheets of

photonic crystals are then coupled by an interlayer tunneling

membrane to accurately recreate the AB- and AA-stacked

configurations of bilayer graphene. In the AA-stacked con-

figuration, two layers of PhCs are exactly aligned, while in

the AB-stacked configuration, the top layer honeycomb

center lies over one of the bottom layer’s triangular airhole

centers. The band structure of the AA-stacked configuration

looks like two copies of the monolayer bands with a vertical

offset of the Dirac cones at the K point (see Fig. 2b). The

AB-stacked configuration has a pair of touching parabolic

bands with additional parabolic bands away from the

touching bands (see Fig. 2c). Note that the AB- and BA-

stacked configurations give identical band structures but not

identical eigenmodes. The frequency separation between the

bands in both stacking configurations is controlled by the

tunneling strength between the two PhC layers, which is set

by the properties of both tunneling membranes and the PhC

layers.

Next, we consider two adjacent PhC layers twisted by an

angle θ relative to one another. This produces a moiré

pattern with a macroscopic periodicity of distinct AA and

AB/BA stacking regions that grow in size as the angle

decreases (Fig. 1c). Because our finite-element calculation

relies on the existence of Bloch waves (see Fig. S1), we

ensure that the structures created by twisting two lattices

relative to each other are exactly periodic, or commen-

surate, by considering only specific twist angles42,

θ ¼ 2arcsinarcsin
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3n2 þ 3nþ 1
p

� �

8 n 2 Zþ

ð1Þ

The twist angle θ controls the energy scale (E= hf) at

which the Dirac cones of the two PhC layers intersect in
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Fig. 2 Band structures. Band structure of the monolayer (a), AA-stacked (b), and AB-stacked BPhCs (c). In b–d, the insets show the respective real-

space configuration of the crystal unit cells. Band structure obtained from the finite-element calculation (black dots) and fitted continuum model

band structure (blue line) of d θ ¼ 3:89� , e θ ¼ 2:65� , and f θ ¼ 1:89� . At small angles, the Dirac cones from each layer are pushed together and

hybridized due to the interlayer tunneling
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momentum space. When this energy scale is comparable

to the interlayer tunneling strength, band hybridization

induces moiré flat bands (see Fig. S2). The moiré flat

bands are fully compressed around the Dirac cone fre-

quency fDC and degenerate at the superlattice K point (see

Fig. 2d–f). Our TBPhCs therefore reproduce a similar

band-flattening mechanism as TBG, eventually becoming

flat with a zero K point group velocity (vg ðKÞ ¼ 0) at a

“magic angle” of 1.89°.

Quasi-TE modes in the moiré bands have symmetry

properties and spatial profiles that agree with electronic

wavefunctions in magic-angle TBG43. For the monolayer

PhC slab, the quasi-TE modes are located across the

entire supercell (Fig. 3a). When two layers of PhC are

twisted, evanescent modes are coupled more strongly in

the AA site than in the AB site (Fig. 1d). For large angles,

the moiré quasi-TE modes start to localize around the AA

site (Fig. 3b, c). At the magic angle θ ¼ 1:89�, as vg ðKÞ
vanishes, the quasi-TE modes become mostly localized

around the AA site (Fig. 3d). This type of localization is

observed over most of the Brillouin zone except at the Γ

point, where the AA site has zero-mode intensity due to

the symmetry (see Fig. S3)43. The moiré modes, including

non-flattened moiré modes, are all low-loss modes with

quality factors (Q-factors) varying from 2´ 105 to 1 ´ 107.

While large, these Q-factors are finite in contrast to the

infinite Q-factors of the monolayer and AA/AB-stacked

photonic crystals modes (see Fig. S4). The localization and

high Q-factor properties of the moiré modes are impor-

tant in the realization of device-based enhancement of

nonlinear effects.

Compared to TBG’s electronic band structure, the Dirac

cone frequency fDC of the TBPhCs depends more strongly

on twist angle and moves 0.2 THz between 3:48� and

1:89� (0.51% of its’ first nearest-neighbor coupling

amplitude, which in TBG would correspond to a roughly

15meV variation in Dirac cone energy). Moreover, com-

pared to graphene, the band structure of TBPhCs has a

greater asymmetry in both the moiré bandgaps (Δfgap) and

K point group velocities (vg ðKÞ) (see Fig. 2f). The bandgap
above the flat band is twice as larger as that below the flat

band (see Fig. 4a). We also find that at angles >3�, the
bottom bands show a much slower dispersion than the

top bands.

To investigate the origin of these differences, we also

calculated the band structure using a plane-wave con-

tinuum model and by considering a low-energy expansion

of the TBG’s band structure. The effective Hamiltonian

consists of Dirac Hamiltonians from both layers, sampled

on momenta that are scattered by the moiré reciprocal

lattice, and off-diagonal interlayer tunneling terms5. We

begin with the block diagonal part, which is the Dirac

Hamiltonians of each monolayer given in terms of the

relative momentum q away from that layer’s K point

(Oðq2Þ):

Hgr Kþ qð Þ � �a t1 � 2t3ð Þ
ffiffiffi

3
p

2
σ ´ q � 3a2t2

4
q2 � 3t2

ð2Þ

where σ is the 2 ´ 2 Pauli matrices, a is the lattice

constant, and the ti is the ith nearest-neighbor couplings

in a tight-binding picture for graphene. Note that

although we use tight-binding coefficients to parameterize

our model here, it is still a Bloch wave expansion of

photonic crystal states. Some of the unconventional

behavior can already be explained by this monolayer

Hamiltonian. Due to relatively strong tunneling between

the photonic states of the two layers, if the effective

second nearest-neighbor coupling term (t2) changes by a

fraction of a THz as a function of twist angle, then the

Dirac cone frequency fDC will also vary with twist

angle because of the last term in Eq. 2. A large t2 also

explains the difference between the top and bottom

νg (K) at large angles, due to the frequency-asymmetric

q2 term.

AA

AB BA

AA

Mono

a 51.0a 79.0a
105.0a

1

H
z

–1

� = 3.89° � = 2.65° � = 1.89°a b c d

Fig. 3 Mode localization in the twisted bilayer photonic crystals. a For monolayer photonic crystal slab, the quasi-TE modes at the K points are

itinerant and persist across the entire supercell. b, c At large angle like 3.89° and 2.65°, the quasi-TE modes become localized on the AA-stacked

region in the center of the supercell as θ decreases. d The quasi-TE modes are mostly localized when θ ¼ 1:89�
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We now move to the block off-diagonal terms in the

effective Hamiltonian. The interlayer tunneling in TBG

between pairs of orbital types of different layers (say, AA

or AB) varies smoothly with the periodicity of the moiré

superlattice (see Fig. 1d). This justifies their para-

meterization by just the first-order Fourier coefficients,

commonly labeled ω0 for tunneling between orbitals of

the same type (AA and BB) and ω1 for orbitals of differing

types (AB and BA)1. To open up significant superlattice

gaps, ω0 must be smaller than ω1, with ω0 ¼ 0 maximizing

the superlattice gap, while ω1 defines the effective tun-

neling strength for the magic-angle condition44. This

simple model produces similar bandgaps above and below

the Fermi energy. DFT calculations of lithium-

intercalated TBG, however, show a large disparity in the

top and bottom gaps45. This asymmetry was attributed to

the Li atoms preferentially enhancing or screening the

tunneling between the layers at different energies, affect-

ing the effective interlayer tunneling strength for the top

and bottom bands differently. As the photonic crystal

states are not as tightly bound as the pz orbitals in gra-

phene (see our estimations of the monolayer’s ti values

below), having an asymmetry in the effective interlayer

tunneling at high and low frequency is even less surprising

here. Therefore, we fit our continuum model to the

TBPhC band structures obtained by finite-element mod-

eling by tuning variables in the following manner: for the

monolayer model, we pick fixed values of t1, t2, and t3

across all twist angles, but shift the Dirac cone frequency

to a constant value; for the interlayer tunneling, we pick

ω0 and ω1 independently for the top and bottom bands,

giving four variables: ωt
0; ωt

1; ωb
0; ωb

1. In addition, near the

magic angle, these terms should become similar, so we

allow them to generically depend on θ.

We find that ½t1; t2; t3� ¼ ½�39; 17;�5�THz works well

for all twist angles. For the low-energy Hamiltonian, vg ðKÞ
depends on t1 � 2t3; the asymmetry in vg ðKÞ sets the

strength of t2, so we increase t1 and t3 together to give a

sequence of couplings that show reasonable decay in

strength. In contrast, for TBG the coupling strengths given

by DFT simulations decay by roughly a factor of 10 between

t1 and t2
46, indicating that these electronic states are much

more tightly bound than their photonic counterparts.

At the magic angle (θ ¼ 1:89�) we find good agreement

when selecting ωt
0 ¼ 1:43 and ωt

1 ¼ 1:85THz for the top-

side tunneling (above Dirac frequency) and ωt
0 ¼ ωb

1 ¼
1:85THz for the bottom-side tunneling (below Dirac fre-

quency). We obtain a good fit to the bands using a linear

dependence of the tunneling strengths on the twist angle

ωt
i θð Þ ¼ 1� 0:15 θ � θmð Þ½ �ωt

i θmð Þωb
i θð Þ

¼ 1þ 0:15 θ � θmð Þ½ �ωb
i ðθmÞ

ð3Þ

for θ evaluated in degrees. At θ ¼ 4�, the tunneling

coefficients are roughly 30% weaker for the top side and

30% stronger for the bottom side. The enhancement of the
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bottom-side tunneling is counterbalanced by a suppression

of the top-side tunneling, implying that the “net” tunneling

is unchanged, while its distribution between the relevant

orbitals is modified, in agreement with the study of Li-

intercalated TBG. This unusual interlayer tunneling beha-

vior results in the severe top band and bottom band

asymmetry we observe in the TBPhC’s band structure.

Our model gives a very reliable reproduction of the

bands close to the Dirac cone frequency, with only small

disagreements occurring in the top and bottom parts of

the flat bands at the magic angle (see Fig. 2d–f). This is

due to terms not captured by our simple model. Specifi-

cally, we omit the momentum dependence of the inter-

layer tunneling terms47,48 that provide a more accurate

description of their Fourier transform.

The photonic moiré flat bands exhibit slow-light effects

both at the magic angle θ= 189° and at θ= 2°. Figure 4b

shows the group velocity (νg= dω/dk) is drastically reduced

in the Γ to K direction. While νg= 0.2c–0.68c in a mono-

layer PhC, in the TBPhCs at θ= 2°νg is reduced to 0.005c

near the K point and never exceeds 0.04c over the entire

Brioullin zone. At the magic angle θ= 189°, νg is reduced to

zero at the K point and never exceeds 0.08c. Note that

although the magic angle is at θ= 189°, because of the

higher νg around Γ point at 1.89°, the narrowest moiré

bandwidth, Δfband ¼ 0:217THz, is obtained at θ= 2° (see

Fig. 3a). The small νg over the entire Brillouin zone is

essential for all-directional photonic devices and any device-

based enhancement of nonlinear effects.

We also studied the dependence of the TBPhC band

structure on the geometry parameters. We fix θ ¼ 2:13�

and individually vary the tunneling layer thickness (h),

the refractive index of the tunneling layer (ntunneling), and

the refractive index of the PhC bilayer (nPhC). Varying h,

we find that fDC remains unchanged and obtain a

minimum in vg ðKÞ at h ¼ 250nm and the narrowest

bandwidth Δfband ¼ 0:185THz at h ¼ 240nm (see Fig.

5a). Increasing ntunneling decreases fDC, and vg ðKÞ is

reduced to zero when ntunneling ¼ 1:59, while the nar-

rowest bandwidth Δfband ¼ 0:18THz is obtained at

ntunneling ¼ 1:55 (see Fig. 5b). Decreasing nPhC increases

fDC, and vg ðKÞ is reduced to zero when nSi ¼ 3:05, while

the narrowest bandwidth Δfband ¼ 0:2THz is obtained at

nPhC ¼ 3:3 (see Fig. 5c). In all three cases, the Dirac cone

frequency fDC is modified due to the change in the

effective refractive index of the TBPhC. To study how

the interlayer tunneling depends on the three geometry

parameters, we again fitted the continuum model to the

band structures obtained from finite-element modeling

(wee Fig. S5). Starting from the original values of h ¼
250nm; ntunneling ¼ 1:48, and nPhC ¼ 3:48, and we

obtain the following dependence of the tunneling

parameters ωt
0; ωt

1; ωb
0; ωb

1 on the three geometry

parameters:

ωb
1 ¼ ωb

1ðθmÞ
ω
j
i ¼ βω

j
iðθmÞ

ð4Þ
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with

β hð Þ ¼ 1� h�250nm
135nm

β nPhCð Þ ¼ 1� 0:85ðnPhC � 3:48Þ
β ntunneling
� �

¼ 1þ ðntunneling � 1:5Þ
ð5Þ

Changing the geometry parameters affects all tunneling

parameters except the AA orbital tunneling represented

by ωb
1. As h or ntunneling increases or nPhC decreases, the

strength of the tunneling becomes smaller. It is possible

that the change in these parameters modifies not only the

ω terms but also the in-plane couplings ti, but near the

magic angle, the band structure is predominantly defined

by a ratio between these two types of model parameters1;

therefore, we consider the ti fixed for simplicity. The

parameter independence of ωb
1 is motivated by observa-

tions of the near parameter independence of the bottom

bands, which is likely because the geometry parameters

predominantly modify the higher frequency photonic

modes (see Fig. S6). Understanding the dependence of the

band structure on the geometry parameters provides

additional degrees of freedom in further engineering the

optical moiré flat band and indicates the possibility of

having a magic angle at higher θ, where localized modes

are closer to each other in distance30.

Discussion

Our numerical calculations show that the dispersion of

electromagnetic waves can be manipulated dramatically,

from highly dispersive to flat, by simply changing the

angle between two photonic crystal slabs. We identified

the magic angle where moiré flat bands appear, leading to

a large reduction in group velocity compared to mono-

layer PhC. At this angle, TBPhCs exhibit slow-light

behavior within an extremely narrow bandwidth and the

eigenmodes are highly localized in the regions exhibiting

AA stacking. We studied the photonic band structure

behavior using a plane-wave continuum model and found

that TBPhCs differ from TBG both in intralayer coupling

and interlayer tunneling characteristics. We find that

interlayer tunneling can be controlled by tuning the

geometry parameters ðh; ntunneling; nPhCÞ, facilitating the

design of an optical flat band.

The “twisted photonic crystal toolkit” we present here

provides access to slow-light effects and light localization

that cannot be accomplished by conventional photonic

crystals. Therefore, TBPhCs will drastically enhance

access to optical nonlinearities and quantum interactions

in photonic devices. Because TBPhCs are designed for

standard silicon-on-substrate wafers and can be fabricated

by a wafer bonding and transferring technique, the fab-

rication of such devices is immediately feasible.

Materials and methods

Simulation

The finite-element band structure, eigenmode, and Q-

factor simulations were computed using three-

dimensional finite-element methods (COMSOL Multi-

physics 5.4). We first calculated all the modes in a PhC

unit cell/super unit cell with Floquet periodic boundary

conditions in the two lattice–vector directions and per-

fectly matched layers at the boundaries in the out-of-

plane direction. TM/TE-polarized modes were selected by

evaluating the energy ratio of the electric and magnetic

fields in all directions. The simulations were carried out

on a Dell M630 computer (2 × Intel Xeon CPU E5-2697

v4 2.30 GHz 18 core, 247 Gb RAM, 1 GbE, FDR Infini-

band). The time to calculate the photonic band structure

at the magic angle is roughly 24 h. The plane-wave con-

tinuum model is implemented using MATLAB. The

estimated calculation time is a few seconds per band

structure.
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