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Empirical evidence suggest that most urban systems experience a transition from a monocentric
to a polycentric organisation as they grow and expand. We propose here a stochastic, out-of-
equilibrium model of the city which explains the appearance of subcenters as an effect of traffic
congestion. We show that congestion triggers the instability of the monocentric regime, and that
the number of subcenters and the total commuting distance within a city scale sublinearly with
its population, predictions which are in agreement with data gathered for around 9000 US cities
between 1994 and 2010.

PACS numbers: 89.75.Fb, 89.75.-k, 05.10.Gg and 89.65.Lm

As cities grow, they evolve from monocentric organi-
sations where all the activities are concentrated in the
same geographical area –usually the central business
district– to more distributed, polycentric organisations
[1–8]. Traditional approaches in spatial economics have
attempted to describe the phenomenon within the frame-
work of equilibrium models of the city [9, 10]. These
models are traditionally based on the concept of agglom-
eration economies –to explain why economical activities
tend to group– and the spatial distribution of wages and
rents across the urban space. However, these approaches
fail at giving a satisfactory quantitative account [11, 12]
of the polycentric transition of cities. First, they describe
a city as being in an equilibrium characterised by static
spatial distributions of households and business firms.
However, the equilibrium assumption is unsupported as
cities are out-of-equilibrium systems and their dynam-
ics is of particular interest for practical applications [12].
Second, these models integrate so many interactions and
variables that it is difficult to understand the hierarchy of
processes governing the evolution of cities, which ones are
fundamental and which ones are irrelevant. Yet, traffic
congestion is not explicitly taken into account in the ex-
isting models, despite being mentioned in the economics
literature as a possible reason for the polycentric transi-
tion [6]. Lastly, the models do not make any quantitative
prediction and are therefore unsupported by data.
We present in this Letter a stochastic, out-of-equilibrium
model of the city which relies on the assumption that the
polycentric structure of large cities might find its origin in
congestion, irrespective of the particular local economic
details. We are able to reproduce many stylized facts
and, most importantly, to derive a general relation be-
tween the number of activity centers of a city and its
population. Finally, we verify this relation against the
employment data from around 9000 cities in the U.S. be-
tween 1994 and 2010.

Following recent interdisciplinary efforts to construct a
quantitative description of cities and their evolution [12–
18], we deliberately omit certain details and focus instead
on basic processes. We thereby aim at building a mini-
mal model which captures the complexity of the system

and is able to account for qualitative as well as quanti-
tive stylized facts. The model we propose is by essence
dynamical and describes the evolution of cities’ organ-
isation as their populations increase. We focus on car
congestion –mainly due to journey-to-work commutes –
and its effect on the job location choice for individuals.
According to Fujita and Ogawa’s classical model [9]

in spatial economics, an individual living at location i
will choose to work at the location j that maximises the
net income after the deduction of rent and commuting
costs [9]

Z0 = W (j)− CR(i)− CT (i, j) (1)

whereW (j) is the average wage paid by business firms lo-
cated at j (and thus varies from one location to another),
CR(i) is the land rent at i, and CT (i, j) is the commut-
ing cost between i and j. The wage and the land rent
result from the interplay between the households’ and
companies’ locations, agglomeration effects being taken
into account. The commuting cost, on the other hand,
does not usually take congestion into account and is taken
proportionally to the Euclidean distance CT (i, j) = t dij
(where t is the transportation cost per unit of distance)
in most studies.
The time scales involved in the evolution of cities are

usually such that the employment turnover rate is larger
than the relocation rate of households. On a short time
scale, we can thus focus on the process of job seeking
alone, leaving aside the problem of the choice of resi-
dence. In other words, we assume the coupling between
both processes to be negligible: we assume that each in-
habitant newly added to the city has a random residence
location and we concentrate on understanding how such
an inhabitant chooses its job among a pool of Nc poten-
tial activity centers (which we suppose are also randomly
distributed among the city). The active subcenters are
then defined as the subset of potential centers which have
a nonzero incoming number of individuals. As a result
of these assumptions, a worker living at i will choose to
work at the center j such that the quantity

Zij = W (j)− CT (i, j) (2)
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is maximum.
We now discuss the form of the two terms W (j) and CT .
The problem of determining the (spatial) variations of
the average wageW (j) at location j is very reminiscent of
some problems encountered in fundamental physics. In-
deed, the wage depends on many different factors, rang-
ing from the type of company, the education level of the
inhabitant, the level of agglomeration, etc., and in this
respect is not too different from quantities that can be
measured in a large atom made of a large number of
interacting particles. In this situation, physicists found
out that although it is possible to write down the cor-
responding equations, not only is it impossible to solve
them, but it is also not really useful. In fact, they found
out [19] that a statistical description of these systems, re-
lying on random matrices could lead to predictions that
agree with experimental results. We wish to import in
spatial economics this idea of replacing a complex quan-
tity such as wages, which depends on so many factors
and interactions, by a random one. We therefore decide
to account for the interaction between activity centers
and people by taking the wage as proportional to a ran-
dom variable ηj ∈ [0, 1] such that W (j) = s ηj where
s defines the maximum attainable average wage in the
considered city.
As for the transportation cost CT (i, j), we choose it to

be proportional to the commuting time between i and j.
In a typical situation where passenger transportation is
dominated by personal vehicles, this commuting time not
only depends on the distance between the two places but
also on the traffic between i and j, the vehicle capacity
of the underlying network, and its resilience to conges-
tion. The Bureau of Public Road formula [20] proposes
a simple form taking all these factors into account. In
our framework, it leads to the following expression for
the commuting costs

CT (i, j) = t dij

[

1 +

(

Tij

c

)µ]

(3)

where Tij is the traffic per unit of time between i and j
and c is the typical capacity of a road (taken constant
here). The quantity µ is a parameter quantifying the
resilience of the transportation network to congestion.
We further simplify the problem by assuming that the
traffic Tij is only a function of the subcenter j and there-
fore write Tij = T (j) the total traffic incoming in the
subcenter j (see Supplementary Material [21] for a short
discussion).
In summary, our model is defined as follows. At each

time step, we add a new individual i located at random
in the city, who will choose to work in the activity area
j (among Nc possibilities located at random) such that
the following quantity

Zij = ηj −
dij
ℓ

[

1 +

(

T (j)

c

)µ]

(4)

FIG. 1: The monocentric (top), distance-driven polycen-
tric (middle), and attractivity-driven polycentric (bottom)
regimes as produced by our model. Each link represents a
commute to an activity center.

is maximum (we omitted irrelevant multiplicative fac-
tors). The quantity ℓ = s/t is interpreted as the maxi-
mum effective commuting distance that people can finan-
cially withstand.
Depending on the relative importance of wages, dis-

tance and congestion, the model predicts the existence
of three different regimes: the monocentric regime (top
Fig. 1), the distance-driven polycentric (middle Fig. 1)
regime and the attractivity-driven polycentric (bottom
Fig. 1) regime.
From now on, we will assume that ℓ is large enough

so that a monocentric state exists for small values of the
population. In this regime, the value of η prevails and the
monocentric state evolves to an attractivity-driven poly-
centric structure as the population increases (if ℓ is too
small, the monocentric regime does not exist –see the
Supplementary material [21] for more details on these
points). Starting from a small city with a monocentric
organisation, the traffic is negligible and Zij ≈ ηj which
implies that all individuals are going to choose the most
attractive center (with the largest value of ηj , say η1).
When the number P of households increases, the traffic
will also increase and some initially less attractive centers
(with smaller values of η) might become more attractive,
leading to the appearance of new subcenters character-
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ized by a nonzero number of commuters. More precisely,
a new subcenter j will appear when for an individual i,
we have Zij > Zi1. The traffic so far is T (1) = P and
T (j) = 0 which leads to the equation

ηj −
dij
ℓ

> η1 −
di1
ℓ

[

1 +

(

P

c

)µ]

(5)

We assume that there are no spatial correlations in the
subcenter distribution, so that we can make the approx-
imation dij ∼ di1 ∼ L. The new subcenter will thus
be such that η1 − ηj is minimum implying that it will
have the second largest value denoted by ηj = η2. For
a uniform distribution (details of the calculation can be
found in the Supplementary Material [21], section 2), on
average η1 − η2 ≃ 1/Nc leading to a critical value for the
population

P ∗ = c

(

ℓ

LNc

)1/µ

(6)

Whatever the system considered, there will therefore al-

ways be a critical value of the population above which
the city becomes polycentric (which can be smaller than
one, in which case there is no monocentric regime at all,
see the Supplementary Material [21]). The monocentric
regime is therefore fundamentally unstable with regards
to population increase, which is in agreement with the
fact that no major city in the world exhibits a monocen-
tric structure. We note that the smaller the value of µ
(or the larger the value of the capacity c), the larger the
critical population value P ∗ which means that cities with
good road systems are capable of absorbing large traffic
show a monocentric structure for a longer period of time.
Having established that cities will eventually adopt a

polycentric structure, we can wonder how the number of
subcenters varies with the population. We compute the
value of the population at which the kth center appears.
We still assume that we are in the attractivity-driven
regime and that, so far, k− 1 centers have emerged with
η1 ≥ η2 ≥ ... ≥ ηk−1 [21], with a number of commuters
T (1), T (2), ..., T (k − 1), respectively. The next worker i
will choose the center k if

Zik > max
j∈[1,k−1]

Zij (7)

which reads

ηk − dik
ℓ

> max
j∈[1,k−1]

{

ηj −
dij
ℓ

[

1 +

(

T (j)

c

)µ]}

(8)

The distribution of traffic T (j) is narrow [21], which
means that all the centers have roughly the same number
of commuters T (j) ∼ P/(k − 1). As above we also as-
sume that the distance between the workers’ households
and the activity centers is typically dij ∼ dik ∼ L. The
previous expression now reads

L

ℓ

(

P

(k − 1) c

)µ

> max
j∈[1,k−1]

(ηj)− ηk (9)

Following our definitions, maxj∈[1,k−1] (ηj) = η1. Ac-
cording to order statistics, if the ηj are uniformly dis-
tributed, we have on average η1 − ηk = (k− 1)/(Nc +1).
It follows from these assumptions that (1) the kth center
to appear is the kth most attractive one (2) the aver-
age value of the population P k at which the kth center
appears is given by:

P k = P ∗ (k − 1)
µ+1

µ (10)

Conversely, the number k of subcenters scales sublinearly
with population as

k ∼
(

P

P ∗

)

µ
µ+1

(11)

It is interesting to note that this result is robust: the
dependence is sublinear, whatever the distribution of the
random variable η (see the Supplementary Material [21]
for a discussion on this point). We can therefore conclude
that, probably very generally and under mild assump-
tions, the number of activity subcenters in urban areas
scales sublinearly with their population where the pref-
actor and the exponent depend on the properties of the
transportation network of the city under consideration.
A previous study [23] showed that the total miles

driven daily in a city — the ‘total commuting distance’—
scales with the population as Ltot ∼ P γ where γ ∈
]0.5, 1[, which the authors interpreted as cities having
neither totally centralized nor totally decentralized struc-
tures. We can discuss this result within the framework of
our model in the following way. If the system was in the
pure attractivity-driven regime, we would have Ltot ∼ P .
But, if we assume that we are in an intermediate regime
where Eq. 10 holds, and where the system exhibits spa-
tial coherence [21], we can write the total length of the
commutes as

Ltot ∼ P
L√
k

(12)

Inverting the result from Eq. 10 we therefore get

Ltot ∼ P 1− β
2 (13)

where β = µ
µ+1 ∈ [0, 1]. Our model is thus consistent

with the fact that the total traveled miles scales with
population with a non-trivial exponent comprised in
[0.5, 1].

We now test the prediction given by Eq. (10). For that
purpose, we collected data for the number of employees
per zip code in the United States that were collected over
a span of 16 years, between 1994 and 2010 [24], as well
as the population of all cities in the US between 1994
and 2010 [25]. We estimate the number of subcenters
by constructing the rank plot of the employment den-
sity ρ (number of employees per km2) for each Zip Code
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FIG. 2: Rank-plot for the employment density (in employees per km2) in Los Angeles, CA (left) and San Antonio, TX (right)
between 1994 and 2010. See the Supplementary Material [21] for more details.

of a given urban area [5, 22]. These plots display a de-
cay as fast as an exponential (Fig. 2) which implies that
there exists a natural scale for the rank, that we inter-
pret here as the typical number of activity centers. It
also implies that any reasonable method should give an
estimate of the number of subcenters of the same order
of magnitude (which would not be the case for slowly
decaying functions such as power laws for example). We
first note that for some cities –typically large ones with
stable populations (Fig. 2, left)– the employment spatial
statistics remained stable over the period of study. For
other cities, we observe large variation of the number of
subcenters (Fig. 2, right). We then plot (Fig. 3) the pop-
ulation P of cities (with population P > 100) versus the
estimated number of subcenters k (the dispersion in the
scatter plot probably results from the fact that different
cities have different resilience levels to congestion). On
average, we observe a power law dependence with expo-
nent δ = 1.56± 0.15 (the result is robust with regards to
the estimate of k, see the Supplementary Material [21] for
more details). Inverting this relation gives us the number
of subcenters as a function of the population

k ∼ P β (14)

with β ∼ 0.64. This result is strikingly in agreement
with the prediction given by our model: the number of
subcenters in a city scales sublinearly with its population.

Using the measured value of β and Eq. (13) we can
estimate the exponent of the scaling of Ltot with the pop-
ulation and find Ltot ∼ P 0.68 which agrees very well with
the value 0.66 measured in [23] directly on the data of the
daily total miles driven in more than 400 cities in the US.

While agglomeration economies seem to be the basic
process explaining the existence of cities and their spec-
tacular resilience, this study brings evidence that con-
gestion is the driving force that tears them apart. The
nontrivial spatial patterns observed in large cities can
thus be understood as a result of the interplay between
these competing processes. We believe that the present
model represents an important step towards a quantita-

100 101

k

100

101

102

103

104

105

106

107

108

P

FIG. 3: Scatter plot of the estimated number of subcenters
versus the population for about 9000 cities with population
over 100 people in the US. The red dots represent the aver-
age population for a given number of subcenters. We fit this
average with a power-law dependence (represented by a red
dashed line) giving an exponent δ = 1.56 ± 0.15 (r2 = 0.87).
See the Supplementary Material [21] for more details on the
computation of k and the robustness of the results.

tive, predictive science of cities. More generally, this mi-
croscopic approach is an interesting example of an out-of-
equilibrium model: it is governed by local optimization
with saturation effects, leads to different regimes, and
is characterized by nontrivial dynamical exponents. In
this respect, we believe that this discrete approach might
be of use in the study of pattern formation in biology –
which has been so far explored from a global optimisation
perspective [26]– or used as a coarse-grained approach
to reaction-diffusion equations with a density-dependent
diffusion coefficient [27] to compute quantities that are
out of reach within the current methods.
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SUPPLEMENTARY MATERIALS

Details on the simulations

The simulation results presented in these supple-
mentary materials are obtained in the following way.
We first distribute randomly a number Nc of potential
activity centers uniformly in the unit circle. Then, at
each time step, we add a worker i at a random position
in the circle, and compute the cost functions Zij for
all potential activity centers j. We then connect the
worker with the center maximizing the cost function,
and add one to the value of the traffic corresponding to
this center. We repeat this procedure until all workers
are connected to a center.

Strictly speaking, traffic congestion do not arise only
at the exact location of the activity center, but in an
area of typical size R around that center. People who
are not commuting to this specific center, but who have
to travel close to it when commuting to their working
place, might add to the traffic in the surroundings of this
center. Therefore, we should consider the traffic TR(j) in
the area around the center j, that is to say the number
of people whose commute path crosses the area of size R
around this center. For the sake of simplicity and clarity,
we choose to ignore this in our model and leave it for
further investigation.

Attractivity-driven and distance-driven polycentric

regimes

Definition and consequences

Fig. 1 in the main text suggests the existence of two
different types of polycentric regimes that we called
attractivity-driven and distance-driven polycentric
regimes. In the attractivity-driven regime, individuals
decide to work at the most attractive center, provided
that the traffic is not too large. Therefore, as the
traffic increases, new centers are going to appear in the
decreasing order of attractivity. In the distance-driven
regime, however, individuals tend to connect to the
closest center, and thus the centers should appear in a
random order.

More specifically, the attractivity-driven regime ap-

pears when the term
dij

ℓ

[

1 +
(

T (j)
c

)µ]

is negligible com-

pared to the attractivity ηj at small values of traffic.
Then, maximising the value of Zij amounts to maximis-
ing the attractivity of the center j. This will typically be

the case when:

ℓ ≫ ℓ∗ = L (15)

On the other hand, when ℓ ≪ ℓ∗, the attractivity
of the centers becomes irrelevant and maximising Zij

amounts to connecting the closest center j to i. An
important consequence is that the assumptions used to
derive Eq. 6 and Eq. 10 in the main text are not valid
in the distance-driven regime. In fact, there cannot
be any stable monocentric state in the distance-driven
regime and we start from the beginning (after a few
iterations) with a polycentric state. Therefore, the dif-
ference between attractivity-driven and distance-driven
polycentric regime draws the distinction between a
system which grows from a single center, and a system
where several centers appear from the beginning. This
may be interpreted as the emergence of a single city
when people can afford to travel a longer distance than
the extension of the system (attractivity-driven), and
of a system of cities when they cannot (distance-driven
regime).

In between these two regime lies an intermediate
regime, which is neither completely driven by space, not
completely driven by the attractivity. This interplay
between space and attractivity makes this intermediate
regime difficult to explore analytically, we thus limit our-
selves in this Letter to the two extreme regimes.

The transition is towards the attractivity-driven regime

We now show that if the parameters are such that there
exists a monocentric state, then the system necessary
evolves to an attractivity-driven polycentric structure.
Let us assume that the system is in a monocentric state:
P individuals commute to the center j = 1 characterised
by the attractivity η1. Let us assume that the monocen-
tric state is unstable and that the P + 1th individual i
has two different possibilities. First, she could choose to
go to the next most attractive subcenter characterised by
the attractivity η2, the largest attractivity among all the
remaining potential centers. This translates into

Zi2 = η2 −
di2
ℓ

> Zi1 = η1 −
di1
ℓ

[

1 +

(

P

c

)µ]

(16)

In general, the most attractive center is at a random
fraction of the system size L, that is to say di1 ∼ di2 ∼ L.
We are then led to Eq. 6 of the main text (see further in
the Supplementary Material for a derivation)

P ∗ = c

(

ℓ

LNc

)1/µ

(17)
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The second possibility is for the individual to choose the
closest center, characterized by ηj . We then have

Zij = ηj −
dij
ℓ

> Zi1 = η1 −
di1
ℓ

[

1 +

(

P

c

)µ]

(18)

Since j is the closest subcenter to i we can write dij ∼
L/

√
Nc and after a simple calculation we obtain a new

value for P ∗ (in the limit of large Nc)

P ′∗ = c

(

ℓ

2L

)1/µ

(19)

We immediately observe here that for all values of the
parameters, we always have P ∗ < P ′∗. This result indi-
cates that if a monocentric state exists, the transition is
always towards an attractivity-driven polycentric struc-
ture. Or conversely, that there cannot be any stable
monocentric state in the distance-driven regime.

Numerical verifications

Ordering in the apparition of centers In order to ver-
ify the ordering in the apparition of secondary centers
–and therefore the existence of two distinct regimes–, we
increase the population in a certain configuration until
all the the centers are populated. Each time a new cen-
ter is populated, we note its attractivity. At the end, we
compare the list obtained with the list of all the attrac-
tivities of the centers in decreasing order and compute
Kendall’s tau function defined by:

τ =
Nc −Nd

n(n−1)
2

(20)

where n is the number of centers, Nc the number of
concordant pairs and Nd the number of discordant pairs.
A pair i, j is said to be concordant if xi > xj and yi > yj
or if xi < xj and yi < yj . It is said to be discordant
otherwise. One can see that if the orderings are identical
we have τ = 1, if they are completely opposite we have
τ = −1 and τ = 0 if there is no correlation between the
two lists.

Fig. 4 shows the evolution of τ with the value of ℓ. We
see that we have τ = 0 for small values of ℓ, indicating
that the centers appear in a random order, and that
we are in a distance-driven regime. On the other hand,
for large values of ℓ we have τ = 1, indicating that the
centers appear in increasing order of their attractivity,
thus that we are in an attractivity-driven regime. The
study of the nature of the transition between the two
regimes goes beyond the scope of this paper, and we
leave it for further investigation.

FIG. 4: Evolution of Kendall’s τ with ℓ/L for Nc = 10, µ = 4,
and c = 1. The curve shows the average for 1000 configura-
tions, and the standard deviation is shown by the shaded area.
The dotted black lines highlight the extreme values τ = 0 and
τ = 1.

Existence of a monocentric state We confirm nu-
merically the absence of a stable monocentric state in
the distance-driven regime, and its existence in the
attractivity-driven regime. We plot on Fig. 5 the value of
P ∗, the population at which a second center appears for
different values of ℓ/L. We see that when ℓ < L, P ∗ ≈ 1,
which means that there is no stable monocentric state.
On the other hand, when ℓ > L, P ∗ is different from 1,
there exists a stable monocentric regime. We show later
in these Supplementary Materials that we can compute
an analytical expression for P ∗ when ℓ ≫ L.

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

ℓ/L

0

10

20

30

40

50

60

P
∗

L=0.1

L=1

L=10

FIG. 5: Evolution of P ∗, the value of population at which a
second center appears, with ℓ/L for several values of L (µ =
4,Nc = 10,c = 1, average of 10000 configurations). All the
plots collapse on the same curve, and indicate that there is
no stable monocentric state for ℓ/L < 1.
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Spatial coherence

In the derivation of Eq. 13 in the main text, we
assume that cities are systems such that ℓ > L (and Eq.
11 holds) while still exhibiting some spatial coherence.
By spatial coherence, we mean that even if we are in a
regime both controlled by the attractivity and space. In
particular, it implies that the overlap between the basins
of attraction of each subcenter is relatively small. In
order to justify this assumption, we study numerically
the behaviour of the average commute distance d.

If we are in a regime where the individuals connect
to the closest center, we have d ∼ L/

√
k where k is the

number of active centers. On the other hand, if we are in
a regime where individuals tend to connect to the most
attractive centers, then the average commute distance
scales as d ∼ L. We thus plot

√
k d as a function of

ℓ/L on Fig. 6. We can see that
√
k d increases as ℓ/L

increases: people travel smaller distances in the distance-
driven regime that in the attractivity-driven regime. Yet,
for values of ℓ/L which are not too large (typically 10) the
value of the average commute distance lies between the
two extremes, closer to the value corresponding to the
distance-driven regime, which supports the assumption
that has been made in the main text to derive Eq. 13:
up to large values of ℓ/L for which we know from figure
1 that we are in the attractivity driven regime, we can
still use the assumption of the existence of well-defined
basins of attraction for each subcenter with small overlap
with each other.

Computation of P ∗ in the attractivity-driven regime

Analytical derivation

In this section, we explicit the details of the calculation
of the population P ∗ for which a first secondary center
appears in a city within our model. We are here inter-
ested in the regime ℓ ≫ L in which the monocentric state
is stable for small values of the population (cf Fig.2). We
assume that the system is in a situation where all the
existing workers are connected to a single center 1, the
most attractive of all the possible centers. We would like
to know what happens when we add the next workers,
that is to say whether a secondary center is going to ap-
pear, and if so, for what value of the population.
A secondary center k will appear when the (P + 1)th

worker i is added to the system if:

Zik ≥ Zi1 (21)

Following our assumptions, the traffic to 1 is given by
T (1) = P and the traffic to k by T (k) = 0. Therefore,

10-4 10-3 10-2 10-1 100 101 102 103 104

ℓ/L

1.1

1.2

1.3

1.4

1.5

1.6

1.7

d
√ k

FIG. 6: Evolution of d
√
k with the ratio ℓ/L computed over

10000 generated systems (µ = 4, c = 100, Nc = 10). We
generate the systems such that all the centers are occupied,
k = Nc. For small values of ℓ/L we are in the distance-driven
regime, people commute to the closest center and the ratio is
close to one. On the other hand, when ℓ/L is large, people
commute to the most attractive center disregarding of the
distance and the ratio is close to

√
NcL/2. In the intermediate

regime, the transition is relatively slow, meaning the system
keeps a spatial coherence for a reasonable range of ℓ/L.

the previous equation, in combination with the definition
of Zij reads:

ηk − dik
ℓ

≥ η1 −
di1
ℓ

[

1 +

(

P

c

)µ]

(22)

Which can be written as:

(

P

c

)µ

≥ ℓ

di1

[

η1 − ηk +
dik
ℓ

]

− 1 (23)

Which is so far an exact result. In order to derive the
average value of P ∗, we make some further assumption.
First, because households and activity centers are dis-
tributed at random, the distance to the different centers
is taken to be approximately di1 ∼ dik ∼ L, the typi-
cal size of the system. Also, we know from order statis-
tics [28] that in the case of a random variable η uniformly
distributed in [0, 1], such that η1 ≥ η2 ≥ · · · ≥ ηk we have

η1 − ηk =
k − 1

Nc + 1

on average. Therefore, the first secondary center to ap-
pear is necessarily the center k which maximises η1 − ηk,
that is to say the second most attractive center with at-
tractivity η2. When Nc ≫ 1 we find that a secondary
center appears when the population P of the city is such
that:



8

101 102 103 104 105 106

c
(

ℓ
LNc

)
1/µ

100

101

102

103

104

105

106

107

P
∗

c=1.0; µ=1.0; Nc=10

c=10.0; µ=1.0; Nc=10

c=1.0; µ=2.0; Nc=10

c=1.0; µ=1.0; Nc=100

FIG. 7: Verification of the expression for P ∗. Shows the av-
erage of the measured P ∗ on many simulated configurations

of the system as a function of c
(

ℓ
LNc

)

1/µ

, for different values

of the parameters. The points all collapse on the same curve,
confirming our expression for P ∗.

P ≥ P ∗ = c

(

ℓ

LNc

)1/µ

(24)

Thus, if the parameters are such that a monocentric
configuration can exist in the first place, there will
always be a value of the population over which a
secondary center is going to appear.

Numerical verification

In order to check the validity of our assumptions and
thus of the previous formula, we numerically generate a
lot of systems for different values of ℓ , L, Nc and µ and
determine the population P ∗ at which a secondary center
appears. We then plot the average of P ∗ as a function of

c
(

ℓ
LNc

)1/µ

(Fig. 7) and see that all the plots collapse on

the same curve, confirming the above expression of P ∗.

Existence of the monocentric regime

We saw previously that there always exists a value of
the population size over which a secondary center ap-
pears. The same expression for P ∗ also implies that even
in the regime ℓ ≫ L there is a range of parameters for
which the monocentric regime simply does not exist, that
is when P ∗ < 1. Assuming Nc and µ are fixed, for every
value of the capacity c there exists a value ℓ̃ of ℓ given
by :

ℓ̃ = L Nc

(

1

c

)µ

(25)

under which there is no monocentric regime and the
system exhibits a polycentric structure from the begin-
ning of its evolution. Therefore, we witness a transition
from a monocentric to a polycentric regime only if the
parameters are such that ℓ > ℓ∗ and ℓ > ℓ̃

Some details about Pk

Distribution of T (j)

In the derivation of Pk in the main text, we assume that
the traffic T (j) of the (k−1) existing centers is rougly the
same: T (j) ∼ P/(k − 1). A simple argument supports
this assertion: in order for the kth center to appear, Eq.
7 in the main text must be satisfied, i.e. Zik must be
larger than all the Zij j ∈ [1, k − 1]. Seen differently, it
means that as long as a center j is such that Zij is larger
than Zik, people will connect to that center. Therefore,
all the centers j are going to ‘fill up’ until Zij is too large.
We can thus expect that, on average, all the centers will
have the same traffic. Of course, the influence of space
complicates this reasoning, and to convince the reader,
we plot the distribution of T (j) in the regime ℓ ≫ L on
Fig. 8.

We measure 〈T (j)〉 ≈ 100 = P/Nc and the relative dis-
persion of the values is equal to 8%. Thus, our approxi-
mation of an equal repartition of people in the different
centers in justified.

60 70 80 90 100 110 120 130 140

T(j)

0.00

0.01

0.02

0.03

0.04

0.05

P
[T

(j
)]

FIG. 8: Distribution of T (j) obtained from the simulation
of 10000 systems with the parameter µ = 4, c = 1, L = 1,
ℓ = 104, Nc = 10 and P = 103
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Sublinear relation between Pk and k

General argument The expression given in the main
text for Pk obviously relies on the fact that the ηj are uni-
formly distributed, and it is legitimate to wonder how the
scaling would be modified it their distribution was differ-
ent. It is usefull to note that the previously derived expo-
nent is the result of two contributions. First, (k − 1) from
the assumption that the commuters are approximately
equally distributed among the existing centers. We do
not expect this to change with ηj ’s distribution and thus

we still have T (j) ∼ N/(k − 1). Second, (k − 1)
1/µ

from
the maximum of the difference η1 − ηk, which obviously
depends on the distribution of η. Nevertheless, we can
reasonably expect η1 − ηk = f(k,Nc) where f is an in-
creasing function of k and decreasing function of Nc. If
we only consider the evolution of f with k, the function
can be approximated around the current value of k as:

f ∼ (k)θ

with θ > 0. It follows that we locally have:

k ∼ P
µ

µ+θ (26)

Which is still sublinear. The value of θ might change
with k depending on the distribution, but it will always
be positive. Thus, the dependence of k with P might not
be a power-law, but it will definitely be sublinear.
Illustration in the case of a Pareto distribution. In

order to illustrate this point, we compute the average of
max

j∈[1,k−1]
(ηj)− ηk = η1 − ηk, that is to say E [η1 − ηk] for

the Pareto distribution.
We assume that the random variables possess a proba-

bility density function f(x) = x−1−µ defined on [1,+∞[,
and a cumulative distribution function F (x) = 1 − x−µ

defined on the same interval. The probability density
function of the rth largest sampled value ηr is given by:

fηr
(x) =

Nc!

(r − 1)!(Nc − r)!
[1− F (x)]

r−1
F (x)N−rx

(27)
And E (ηr) is given by:

E [ηr] =

∫ +∞

1

x fηr
(x) dx (28)

Which after calculations we find to be:

E [ηr] =
Γ (N + 1) Γ

(

r − 1
µ

)

µΓ
(

N + 1− 1
µ

)

Γ (r)
(29)

Where we denote by Γ the usual Gamma function. Us-
ing the Stirling approximation for the terms which have
a dependance in r, we show that in the leading order:

100 101 102 103

(k−1)µ+1
µ

100

101

102

103

P
k

P
∗

µ=2.0

µ=3.0

µ=4.0

µ=5.0

FIG. 9: Verification of the expression for Pk. Shows the av-
erage of the measured Pk on many simulated configurations

of the system as a function of (k − 1)
µ

1+µ , for different val-
ues of the parameters. The points all collapse on the same
curve, confirming our expression for Pk. The plots have been
obtained for Nc = 103, L = 1, c = 1 and ℓ = 105, in the
attractivity-driven polycentric regime.

E [ηr] =
Γ (N + 1)

µΓ
(

N + 1− 1
µ

) r−1/µ (30)

E [ηr] is thus a decreasing function of r. Therefore,
E [η1 − ηr] is an increasing function of r. Thus, assuming
that the values of η are drawn from a Pareto distribution,
we still have a sublinear dependance of the number of
subcenters in the population.

Numerical verification of the expression of Pk

We show in the main text that the value of the pop-
ulation Pk at which the kth subcenter appears is given
by:

Pk = P ∗ (k − 1)
µ+1

µ (31)

In order to verify this formula, we numerically generate
many configurations of the system and we measure the
mean Pk for several values of k and several values of µ.
We then plot the measured average Pk/P

∗ as a function

of (k − 1)
µ+1

µ (Fig. 9) and see that all the plots collapse on
the same curve, confirming the accuracy of our expression
for Pk.

Data analysis

Definition of the number of subcenter

Extracting the number of activity centers from the Zip
Code Business Patterns (ZBP) data is a priori a non-
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FIG. 10: Illustration of the definition of the number of sub-
centers. Shows the rank-plot of the employment density (in
employees per square km) for Orlando(FL) between 1994 and
2010. We represent the largest employment density ρ0 and
the threshold value of employment ρ0/α for 1994 with two
dashed lines. The number of subcenters is taken to be the
number of values of the employment density between those
two values.

trivial task. ZBP data provide, among other things, the
total number of employees per Zip Code Area in the
United States every year between 1994 and 2010. Be-
cause Zip Code areas can have different areas, we first
decide to normalise the number of employees to the area
and obtain the employment density per Zip Code area.
If we further sort the employment densities in decreasing
order and plot the employment densities of the different
Zip Code areas as a function of their rank in the order-
ing (Supplementary Figure 3), we obtain a curves which
decreases faster than exponentially for the first ranks,
and then exponentially. We interpret this result as there
existing a natural scale in the number of subcenters. In-
deed, if the decrease is exponential, one can write for the
employment density:

ρe ∝ e−r/r0 (32)

where r0 is the typical value of the rank in this situa-
tion, and that we would interpret here as the number of
subcenters. However, the rank-plot is not strictly expo-
nential and we therefore define the number of subcenters
using a threshold value α. If we denote by ρ0 the highest
employee density in the city, we define ρm as:

ρm =
ρ0
α

(33)

And the number of subcenters k is taken to be equal
to the number of values of ρe such that ρe ∈ [ρm, ρ0] .
(Fig. 10)

In the case where the rank-plot is exactly exponential,
we thus have:

α =
ρ0
ρm

= em/r0 (34)

where m is the number of activity centers. It follows:

m = r0 ln (α) (35)

The order of magnitude of the number of centers is
given by r0 and relatively small variations of α therefore
do not affect greatly the number of subcenters.

Some details

In order to plot the population as a function of the
number of subcenters, we first extract the number of sub-
centers for every city in the dataset and for every year
between 1994 and 2010, as indicated in the previous sec-
tion.
We then apply the following treatment to the data:

• If a given city corresponds to a single Zip Code, we
only keep one point for that city: its population
and k = 1 center;

• We perform a Kolmogorov-Smirnov [29] test be-
tween the rank-plots of the employment density in
1994 and 2010 for the remaining cities. If the prob-
ability that the two curves are different is greater
than a certain threshold pKS , we keep all the points
for the city. Otherwise, we just keep a single point.

At the end of this process, we obtain points that can
be understood as coming from different realisations of a
city. The following section gives the robustness of the
results with regards to the value of the threshold pKS we
choose.

Robustness of the empirical results

Choice of α The empirical results presented in the
main text will a priori depend on the value of the α we
choose. We summarize the results obtained when fit-
ting k = f(P ) assuming a power-law dependance and a
multiplicative noise in Table 11. We see that for a rea-
sonable range of values for α we always have a sublinear
behaviour, and that given the estimated variance of the
measured exponents, they are all compatible with each
other.
Choice of pKS It is also legitimate to wonder whether

the empirical value we found for the exponent is affected
by the value of the threshold pKS . We summarize the
results obtained with α = 10 in Table 12. Again, we
obtain a sublinear behaviour whatever the choice for the
threshold pKS and the different values are compatible
with each other.
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α 5 10 15 20 30

β 1.53 1.56 1.35 1.37 1.37

σβ 0.27 0.15 0.14 0.12 0.11

R2 0.74 0.87 0.81 0.84 0.85

FIG. 11: Robustness of the empirical results. Shows the result
for the fit for different values of α and pKS = 0.50.

pKS 0.5 0.6 0.7 0.8 0.9 1

β 1.56 1.50 1.52 1.56 1.64 1.66

σβ 0.19 0.18 0.18 0.17 0.17 0.15

R2 0.87 0.81 0.83 0.85 0.86 0.89

FIG. 12: Robustness of the empirical results. Shows the re-
sults for the fit for different values of pKS and α = 10.

Comments The exponent derived from the plot on
Fig. 3 in the main text is very sensitive to the first
(k=1) and last point (k=26). Indeed, a fit excluding
these points gives δ ∼ 1.03 ± 0.13 (R2 = 0.83). This
exponent still agrees with the prediction of our model of
β < 1, and would correspond to a very large value for
µ ∼ 32 implying that the traffic dependence in Eq. 3 is
a sharp threshold function. This indicates, if anything,
that our empirical results should be confirmed through
other studies based on different measures and datasets.
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