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Abstract

Long-term human motion is composed of an ensemble

of different activities with varying complexity. This makes

it challenging to develop models to accurately estimate hu-

man motion. In this paper, we exploit the dependencies that

exist between posture and motion for long-term human mo-

tion estimation. We propose to model the nonlinear motion

manifold as a collection of local linear models, noting that

given a particular posture, the variation in motion for that

posture can be well-approximated by a linear model. A col-

lection of local linear models is easy to fit and also has the

expressiveness to encode several activities in any arbitrary

order. Furthermore, to account for the varying complexity

of different activities, each local linear model can have a

different dimensionality. A collection of local linear models,

thus, avoids the limitation of global models that require a

uniform dimensionality for the latent motion manifold. This

model allows us to linearly regularize motion estimation al-

gorithms over the nonlinear human motion manifold. Our

results demonstrate that a collection of local linear models

provides an effective representation for the motion manifold

when compared to other global models such as the bilinear

model [18] and the Principal Component Analysis [14].

1. Introduction

Human motion is influenced by the internal intentions

of the actor and the external constraints of the actor’s en-

vironment. Consider a driver inside a vehicle. The series

of activities performed by the driver depends on what the

driver wants to do (e.g. turn on the air conditioner, turn up

the volume, or adjust the seat height), and what driving re-

quires (e.g. shift gears, adjust the rear view mirror, and turn

the steering wheel). The challenge in estimating motion in

such settings is that both the intentions of the driver and the

nature of environmental constraints usually remain hidden.

As a result, human motion manifests itself as a series of

activities with varying complexity whose order is arbitrary.

In previous literature, activities have been modeled globally

Figure 1. First column: top row – 700 posture exemplars out of

a data set of 18,000 posture exemplars and bottom row – 3D iso-

contour for 18,000 posture exemplars. Second and third column:

tow row – Posture variability around two key postures and bottom

row – their associated 3D iso-contours. Developing global models

for the nonlinear iso-contour (first column) generated by the entire

data set is a difficult task. However, by exploiting the local depen-

dencies between posture and motion, we can compactly model the

nonlinear manifold as a collection of Local Linear Models (LLMs)

(second and third column).

by low-dimensional manifolds. However, to handle arbi-

trary orderings of activities, extending global models would

require a combinatorial increase in the training data.

In this paper, we propose an approach that exploits local

dependencies between posture and motion for human mo-

tion estimation. Given a particular posture, the variation

in motion for that posture is compactly approximated us-

ing a local linear model. Taken together, a collection of

local linear models can encode long-term human motion

that may consist of human activities in any arbitrary order.

Figure 1 illustrates the dependency between posture and

motion by comparing a global model, fit to motion across

a sequence of 18,000 frames, to local models, fit to mo-

tion given particular postures. It is evident from the figure

that motion is highly constrained given knowledge of pos-

ture. A key benefit of our approach is that each local linear

model can have a different dimensionality, thereby, well-

approximating the irregular motion manifold. The irregu-

larity of the motion manifold arises from the fact that dif-



ferent activities have different complexity. Allowing vary-

ing dimensionality across the manifold avoids the limitation

of global models that require commitment to a uniform di-

mensionality.

2. Related Work

Humans are capable of performing a wide-variety of

complex motion due to the highly articulated nature of the

human body. Human motion data, therefore, resides in a

high-dimensional configuration space. Previous approaches

have attempted to model the high-dimensional motion man-

ifold using either the linear models or the nonlinear models

[6, 7, 16, 22, 20, 1, 10].

Linear motion models employ Principal Component

Analysis (PCA) [14] to develop models for human motion

in computer vision and graphics [13, 17, 1]. While it is

straightforward to fit the linear models, the complexity of

human motion does not lend itself particularly amenable to

modeling using the linear models [20].

Nonlinear motion models such as the Mixture of Prob-

abilistic PCA [20], Locally Linear Embeddings [11] or the

Gaussian Process Dynamical Models (GPDM) [22], enable

one to capture the nonlinearities in human motion at the

expense of local-minima prone fitting. Nonlinear motion

models can be divided into two categories, those that com-

mit to a single manifold dimensionality to model the mo-

tion manifold [11, 10, 22] or those that model the motion

manifold using a mixture of several local linear or nonlinear

models such as Mixture of Probabilistic PCA or Geometric

Topograhphic Mapping (GTM) [20, 19, 3]. Long-term hu-

man motion is an irregular manifold with a diverse range of

activities with varying complexity (see Figure 6). Commit-

ting to a single dimensionality for the latent manifold, there-

fore, neither captures the manifold structure effectively nor

extracts the computational savings [11, 22].

Nonlinear approaches that model the motion manifold

as a mixture of local linear or nonlinear models suffer

from high subspace angles between the learnt local mod-

els [20, 19, 3, 2, 8]. This problem was highlighted by the

work of Roweis et al. [15, 21]. These high subspace angles

between the local models arise because the traditional ap-

proaches employ a disjoint partition and fit approach which

essentially makes the linear models independent causing

high subspace angles between subspaces. Roweis et al.

and Brant [15, 21, 4] outlined model selection algorithms

that imposed a nonlinear regularization penalty to encour-

age neighboring subspace models to align.

In this paper, we propose an alternative approach to en-

courage neighboring subspace models to align. We propose

to learn a collection of local models by increasing the data

overlap between the neighboring models. Increased data

overlap between the models automatically forces them to

align with each other without the need for costly minima-
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Figure 2. Product Manifold of posture and motion. Postures on

the configuration manifold have associated Local Linear Models

(LLMs) that encode the motion variation in the neighborhood of

that particular posture.

prone regularization penalty. Our approach, however, does

require comparatively more number of local models. The

computational cost of doing so, though, is minimal as the

local linear models are learnt using PCA over small neigh-

borhoods on the motion manifold.

3. The Product Manifold of Posture & Motion

The posture x ∈ R
P of a human is defined as the instan-

taneous configuration of a human body, in 2D image space

or 3D world space. All human configurations x lie on a

manifold X. The instantaneous change in human posture is

represented by ẋ = f(x), f(·) = dx
dt
, ẋi ∈ R

P . The pur-

pose of this paper is to estimate human motion. This is chal-

lenging since humans are highly articulate objects and move

in complex, and unpredictable ways. If we could character-

ize the motion manifold Ẋ then we could regularize the esti-

mates of motion to lie on the manifold Ẋ. A P-dimensional

chart on Ẋ is a pair (V, ψ) consisting of a subset V of Ẋ

and a bijection ψ from V onto an open set in R
P . V is the

domain of the chart. A point ẋ ∈ V can thus be assigned

coordinates (a1, . . . , aP ) by means of the projection map-

pings v
i : R

P → R; ai = u
i◦ψ, i = 1, . . . , P . Henceforth,

we will denote a chart only by its bijection ψ when there is

no ambiguity.

The human motion manifold is highly nonlinear and lies

in a high-dimensional configuration space. It is therefore, a

difficult task to find a single chart covering the entire man-

ifold Ẋ. Linear or Non-Linear Dimensionality Reduction

techniques (NLDR) attempt to model the high-dimensional

manifold by computing a globally valid low-dimensional

mapping into a latent coordinate system, usually the real-

plane R
P ′

, where P ′ ≪ P . However, the operating as-
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Figure 3. Comparing the representational power of PCA and a col-

lection of Local Linear Models (LLMs). This graph shows the

reconstruction error for held-out motion vectors from a motion

capture data set of 70,000 frames. It is evident that 2, 3, and 10-

dimensional PCA embedings of the motion manifold do far-worse

than even a 2-dimensional embedding using a collection of LLMs.

sumption of such approaches is that a high-dimensional

nonlinear manifold is globally homoemorphic to the real-

plane R
P ′

is generally not true for manifolds like Ẋ. Figure

3 shows a comparison of representational power between

the Principal Component Analysis (PCA) and the proposed

collection of Local Linear Models (LLMs). We collected

70,000 frames of motion capture data of several people per-

forming a variety of activities such as artistic walking, run-

ning, hopping etc. and learnt a model for the entire mo-

tion manifold Ẋ ∈ R
39 using PCA and LLMs. It is evi-

dent that a 10-dimensional embedding using PCA does far-

worse than a 2-dimensional embedding from a collection

of LLMs, thereby, illustrating that LLMs are a much more

faithful model for the motion manifold compared to PCA.

Since a single chart cannot effectively cover the entire

manifold Ẋ, a collection of charts whose domain, taken

together, cover Ẋ are introduced. An atlas A is a collec-

tion {(Vi, ψi)}i∈I of charts on Ẋ, I being an index set and

ψi(Vi) an open set in R
P , such that

1. Ẋ =
⋃

i∈I Vi,

2. For each pair i, j ∈ I for which Vi

⋂

Vj 6= ⊘,

the mapping ψj ◦ ψ−1

i is a Ck diffeomorphism of

ψi(Vi

⋂

Vj).

In this paper, we model the motion manifold Ẋ as a col-

lection of locally linear charts. Each locally linear chart ψi

can be estimated using a linear basis computed from motion

exemplars that lie in the domain Vi of a particular motion

exemplar ẋi. Traditionally, approaches that use a collection
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Figure 4. Subspace angles between neighboring charts. (a) Low

subspace angles are obtained using the proposed approach that

uses shared data to learn the charts. (b) High subspace angles are

obtained using the Expectation-Maximization fitting of a Mixture

of Probabilistic Principal Components Analysis [20].

of charts to cover a manifold X employ neighboring disjoint

charts [20, 19, 3, 2, 8]. Two charts, ψi and ψj are disjoint

iff ψi

⋂

ψj = ⊘. This implies that there is no apriori con-

dition to ensure that the mapping ψj ◦ ψ
−1

i is a diffeomor-

phism leading to high-subspace angles between the neigh-

boring charts. A variety of nonlinear regularization tech-

niques have been proposed to minimize the high-subspace

angles [15, 21, 4]. However, by simply ensuring that there

is data-overlap between the charts, ψi

⋂

ψj 6= ⊘, we can

compute neighboring charts that have low-subspace angles

between them (see Figure 4).

While a collection of local linear charts can model the

motion manifold Ẋ, it cannot be used directly to regular-

ize the estimates of motion. To estimate human motion at

runtime, we need to chose a chart Vj that is an “appropri-

ate” model for motion estimation. However, since there is

no method to localize on the motion manifold to chose the

appropriate model, an exhaustive search among all charts is

the only option, which is computationally infeasible.

In this paper, we propose to instead exploit the depen-

dency that exist between posture and motion to solve the

model selection problem on the motion manifold. Given a

set of postures configurations X and their associated motion

configurations Ẋ, where x ∈ X and ẋ ∈ Ẋ form an ordered

posture-motion pair (x, ẋ) ∈ X×Ẋ in R
2P , we learn a col-

lection of anchored charts for the motion manifold. The key

insight here is that given a particular posture, the variation

in motion around that posture can be well-approximated by

a local linear model. A local linear model is a set of basis

encoding the chart ψ(ẋ) on the motion manifold, where ẋ is

the associated motion configuration for x. Taken together,

the posture and the motion manifold are known as a product

manifold [12].

Definition Let X and Ẋ be covered by atlas {(Ui, φi)}
and {(Vj , ψj)} respectively. Then the sets Ui × Vj cover

the product manifold X × Ẋ, and the mapping φ × ψ :
Ui × Vj → R

P × R
P , defined by

(φi × ψj)(x, ẋ) = (φi(x), ψj(ẋ)),
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Figure 6. (a) Curvature of the irregular motion manifold projected into three dimensions. High curvature represents highly structured human

activities while low curvature represents large amounts of motion variation around posture configurations. (b) Dimensionality of different

local linear models. The arrows represent cluster center used for learning the local linear models. One can note that different postures

have different local dimensionality required to capture the same amount of variance. Each Local Linear Model (LLM) can have a different

dimensionality and a collection of LLMs, thus, does not require commitment to a unique latent dimensionality across the manifold.
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Figure 5. Red arrows show the training procedure to associate the

posture charts φk with the motion charts ψk. Black arrows show

the run-time procedure to estimate motion for posture x using the

motion chart ψk. Figure best viewed in color.

is an injection of Ui × Vj onto an open subset of R
2P .

By encoding the posture and the motion manifold as a

product manifold we can, thus, define a collection of Local

Linear Models (LLMs) that encode a set of basis for each

motion chart ψi(ẋ) corresponding to a posture chart φi(x)
anchored at the posture configuration x. Figure 2 shows

a collection of LLMs ψi anchored at posture configuration

xi’s that explains the motion variation in the charts φ(xi).

Figure 5 (red arrows) shows the procedure to compute

a collection of ψi for the posture and the motion manifold.

Given a set of posture configurations X = [x1, . . . ,xn],
we first chose a collection of charts φk anchored at posture

configurations x
′

k (chosen randomly or using k-means) to

cover the posture manifold. Given a chart φk, the member-

ship function m(φk) return a set of n nearest posture neigh-

bors using the Euclidean distance metric. Associated with

every posture x
k
j ∈ m(φk) is a motion configuration ẋj .

The set Ẋ
NN
i = [ẋk

1
, . . . , ẋk

n] is then a representative sam-

ple of motion variation around the posture configuration x
′

i.

A local linear model ψk is computed using Principal Com-

ponent Analysis (PCA) and the requisite number of basis

vectors B({ẋk
1
, . . . , ẋk

n}) that sum up to a pre-defined en-

ergy level are retained.

Figure 6 (a) shows the curvature at different parts of the

motion manifold. It is evident that there is a lot of variance

in the local curvature at different parts of the motion man-

ifold. Each local linear model can have a different dimen-

sionality, and taken together as a collection of local linear

models, serve as an efficient representation of the irregu-

lar motion manifold. This avoids the limitation of global

models that require commitment to a uniform dimensional-

ity across the motion manifold [11, 22]. Figure 6 (b) shows

the dimensionality for the local linear models anchored at

different posture configurations. It is evident that the requi-

site number of basis to capture a pre-defined energy level is

different for different posture configurations, motion around

some postures is highly structured and thus requiring less

number of eigenvectors and vice-versa. A collection of lo-

cal linear models, thereby, allows an efficient and compact

representation of the irregular motion manifold.

4. Motion Estimation over the Product Mani-

fold

We have used the collection of local linear models to

design a subspace-driven motion estimation algorithm. At

runtime, Figure 5 (black arrows) shows how ψi can be used

to estimate motion. Given a posture configuration x, we

find the closest posture chart φk as defined by the distance

to its posture anchor x
′

k. Associated with the chosen posture



chart φk is the motion chart ψk that is the appropriate local

linear model for motion estimation for x, thereby, solving

the model selection problem for the motion manifold. A

favorable characteristic of our formulation is that the sub-

space constraints are enforced during the motion estimation

process and not “after the fact”.

Articulated motion estimation can be posed as a con-

strained linear-least squares problem combining the image

brightness constancy constraints with the articulation con-

straints [5],

min
A

‖B − ΓA‖2

2
subject to ΘA = 0, (1)

where A are the affine parameters, Γ is an M × N matrix

of the brightness constancy constraints, B is a M -vector, Θ

is a C ×N matrix of the articulation constraints.

The relationship between the unconstrained affine pa-

rameters A in Equation 1 and the subspace-constrained

affine parameters A∗ can be expressed as,

A = SPA
∗ + Ā, (2)

where SP is the local linear model anchored at the posture

configuration P and Ā is the mean motion vector. We can

now derive the subspace-constrained formulation for mo-

tion estimation from Equation 1,

min
A∗

‖B−Γ(SPA
∗+Ā)‖2

2
subject to Θ(SPA

∗+Ā) = 0,

(3)

Equation 3 formulates motion estimation as a nonlinear

minimization problem between the image brightness con-

stancy and the articulation constraints within a particular

local linear model. Upon some algebraic substitution we

can express Equation 3 as,

min
A∗

‖B̃ − Γ̃A∗‖2

2
subject to Θ̃A∗ = −Θ̂. (4)

Equation 4 is an exact-equality constrained linear least-

square system that be solved using the Lagrange Multipli-

ers,

f(A∗|λ) = ‖B̃ − Γ̃A∗‖2

2
+ 2λ(Θ̃A∗ + Θ̂). (5)

The gradient of f(A∗|λ) equals zero when,

Γ̃
T
Γ̃A∗ + Θ̃

Tλ = Γ̃
T B̃, (6)

and

Θ̃A∗ = −Θ̂. (7)

This can be written and solved as a Karush-Kuhn-Tucker

system [9],
[

Γ̃
T
Γ̃ Θ̃

T

Θ̃ 0

] [

A∗

λ

]

=

[

Γ̃
T B̃

−Θ̂

]

. (8)

To update the posture configuration for the next time-step,

we can re-project the subspace-constrained affine motion

parameters A∗ into the original 30 dimensional motion con-

figuration space using Equation 2.

5. Results

We have conducted several experiments to showcase the

benefits of the proposed approach. In particular, we com-

pute motion estimates using the proposed approach and

compare it against the tracking method proposed by Datta

et al. in [5]. In addition, we compare the proposed approach

against global models of the motion manifold obtained us-

ing the bilinear model [18] and PCA. A Matlab implemen-

tation of the motion estimation algorithm over the motion

manifold ran at up to 50 frames per second (fps).

A labeled data set of two humans performing several ac-

tivities during the process of driving a car was collected.

Each actor was captured for approximately 3 minutes at 60

fps at an image resolution of 160 × 120. The data set con-

sists of approximately 18,000 frames. This labeled data set

was then used to learn a collection of local linear models

for long-term human motion estimation. We used 500 clus-

ters with 400 nearest neighbors to learn a collection of local

linear models (LLMs) using weighted PCA.

We manually initialize six points in the first frame of the

image sequence. Our human upper body model has 6 points

encoding the posture configuration with 4 articulation con-

straints for the two elbows and shoulders. Figure 8 presents

the motion estimation result using our implementation of

[5], PCA, and the proposed collection of local linear models

respectively. It can be observed that both [5] and PCA built

up an appreciable amount of drift and lost track of the right

shoulder as opposed to the collection of local linear mod-

els. Figure 9 shows an image sequence of an actor reaching

out for the rear-view mirror of a car. It can be observed

that both the method of [5] and PCA fail to track the ac-

tor. The collection of local linear models correctly tracks

the actor, thereby highlighting the benefit of the proposed

approach. Figure 10 shows motion estimation for an image

sequence that involves an actor performing a series of walk,

jump, walk action. Figure 10 (top row) shows the motion

estimates obtained by [5]. It is evident that that [5] has lost

track of the left elbow. We collected a data set of 500 la-

beled frames to learn a collection of local linear models for

this set of human actions. Figure 10 (bottom row) shows the

motion estimates from the collection of local linear models

and it can be observed that the recovered tracks are correct.

In another experiment, we collected a labeled data set of

2,000 frames of a person performing various activities in a

desktop environment such as using the mouse, typing on the

keyboard, touching face, among others. Figure 11 (top row)

shows the computed motion using the algorithm from [5].

It can be observed that [5] builds an appreciable amount

of drift and loses tracks of the shoulders. The collection

of local linear models, on the other hand, maintain correct

tracks over the course of the image sequence (bottom row

of Figure 11).



5.1. Comparison to Bilinear Models

Tenenbaum and Freeman in [18] introduced the bilinear

model as a global model for a manifold. Bilinear models are

more expressive than the linear models because the two fac-

tors can modulate the model multiplicatively. For more de-

tails, we refer the interested reader to [18]. Figure 12 com-

pares motion estimation using a collection of LLMs against

the Bilinear model. It can be observed that the LLMs pro-

duce accurate tracks. This and earlier results (see Figure 8

and 9) demonstrate that global models (bilinear or linear)

are ineffectual for modeling the irregular motion manifold.

Finally, Figure 7 shows a quantitative comparison be-

tween the proposed collection of LLMs, PCA motion

model, Bilinear motion model and the approach of Datta et

al. [5]. Figure 7 (a) shows the average Root-Mean-Square

(RMS) error for results shown in Figure 8 and Figure 9.

The large increase in error in the previous approaches is

due to the failure to track the right arm in Figure 9. Figure

7 (b) shows the average RMS error for Figures 10 and 11.

The previous approaches fail to track the left elbow in the

walk-jump-walk sequence (Figure 10) and accumulate drift

during desktop tracking sequence (Figure 11). Figure 7 (c)

shows that the previous approaches drift during tracking of

white shirt with very little texture (Figure 12).

5.2. Anomalous Action Detection

Since we learn a model of long-term human motion, we

can use it detect instances when the computed motion starts

to differ from the learnt model. Figure 13 shows one such

application for novel action detection. In this case, the ac-

tion of a human exiting the car was not included in the

database of labeled human posture configurations. We can

observe that the method of [5] has no appreciable increase

in the associated uncertainty, illustrated using the covari-

ance ellipses, when the person starts to exit the vehicle.

Our method, on the other hand, demonstrates appreciable

increase in posture uncertainty. Such an application could

have use in safety applications or human machine interface.

6. Conclusions

In this paper, we have proposed an approach that exploits

the dependencies between posture and motion for human

motion estimation. Given a particular posture configuration,

the motion around that posture is highly structured and can

be well-approximated by a local linear model. Long-term

human motion consists of human activities in an arbitrary

order and a collection of local linear models can compactly

represent the unordered dynamics of human motion. Each

local linear model can have a different dimensionality and

taken together as a collection, local linear models avoid the

limitations of the traditional approaches that require a uni-

form latent dimensionality across the motion manifold.

We have used the collection of local linear models to de-

sign a subspace-constrained articulated motion estimation

algorithm that produces accurate and longer tracks com-

pared to the literature [5]. Moreover, we compared our

motion estimation against PCA and the bilinear model [18]

and found that a global model for the irregular motion man-

ifold is ineffectual. In future work, we hope to extend a

collection of local linear models from currently encoding

frame-to-frame motion to encoding motion between groups

of frames for higher level modeling of human motion.
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Figure 7. Motion estimation comparison between the proposed collection of Local Linear Models (LLMs) and PCA motion model, Bilinear

motion model, and Datta et al. [5]. Average RMS motion estimation error is shown in (a) for Figure 8 and Figure 9, in (b) for Figure 10

and Figure 11 and in (c) for Figure 12.

Figure 8. Top row: motion estimation using the method describe in [5]. Middle row: motion estimation using a global Principal Component

Analysis (PCA) model of the motion manifold. Bottom row: motion estimation using the proposed collection of local linear models. It can

be observed that the proposed method outperforms both [5] and the PCA model of the motion manifold.

Figure 9. Top row: motion estimation using [5]. Middle row: motion estimation using global PCA model. Bottom row: motion estimation

using a collection of local linear models. It is evident that the proposed method correctly tracks the actor, while [5] and PCA do not.



Figure 10. Motion estimation comparison for a walk-jump-walk image sequence. Top row: motion estimation using the method describe

in [5]. Bottom row: motion estimation using the proposed collection of local linear models. Note the incorrect elbow location in the

right-most column for tracks obtained from [5].

Figure 11. Collection of local linear models are applicable in different environments. In this example, we show tracking in a Desktop

environment. Top row: motion estimation using [5]. Bottom row: motion estimation using the proposed collection of local linear models.

Note the incorrect posture configuration in the right-most column for tracks obtained from [5].

Figure 12. Comparison with the bilinear model [18]. Top row: Motion estimation result using the bilinear model. Bottom row: Motion

estimation using the proposed collection of local linear models. It is evident that the proposed method outperforms the bilinear model.

Figure 13. Anomalous action detection. Top row: posture configuration covariance ellipses from [5]. Bottom row: posture configuration

covariance ellipses using the proposed collection of local linear models. The covariance ellipses grow rapidly if the actor performs a novel

action helping to detect anomalous actions.


