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ABSTRACT Background: Accurate and reliable prediction of changes in the severity of Cerebellar Ataxia

(CA) will be helpful in trials of disease-modifying therapies. This study demonstrated that objective acoustic

measures were more sensitive than perceptive analysis through the Scale for the Assessment and Rating of

Ataxia (SARA) in assessing CA progression, within a time window of two years (mean). Method: Thirty-

seven people with CA were tested at baseline (time point 1, TP1) and two years later (time point 2, TP2). A

machine-learning framework with a robust three-step feature selection criterion and a Bayesian data-driven

clustering technique based on the multivariate mixture extension of the generalized linear mixed model

(GLMM) was used. The outcomes included two (time and cepstral-based) objective speech parameters

recorded at TP1 and TP2. For testing subjects, the dynamic prediction was conducted using samples from

the posterior distributions of parameter estimates and random effects. This study further employed the

penalized expected deviance (PED) criterion for model comparison and the selection of the number of

groups in the clustering procedure. Results: First, the selected objective speech metrics in the individual

patients showed a significant worsening of the speech impairment (p<0.001, Kolmogorov–Smirnov test)

from TP1 through TP2. Second, the cluster analysis divided the CA patients into two distinct subgroups

showing a strong association between objective speech measures and disease duration, with ∼96% of

observed values falling within the 95% credible intervals. Third, for the training data, our multivariate

model (PEDFea1+Fea2=5175; number of groups=2) performed more reliably than the univariate models

(PEDFea1=4225, PEDFea2=3850; number of groups=2) in discriminating the CA patients. Fourth, the

individual-level predictions of the change in profiles of the objective measures over time were performed

for the testing data. Conclusion: Such a framework using objective speech metrics indeed holds promise to

predict the rate of clinical progression of Ataxic Speech in individuals with CA.

INDEX TERMS Cerebellar ataxia, cerebellar dysarthria, clustering, mixed-effect modeling, mixture

analysis, progression analysis, speech processing.

I. INTRODUCTION

T
He cerebellum integrates information from a range of

sensory afferent inputs to produce coordinated move-

ment. Cerebellar Ataxia (CA) refers to the uncoordinated

movement resulting from dysfunction of the cerebellum

caused by many processes, including neurodegeneration,

multiple sclerosis, stroke and trauma. Here “CA” will refer

specifically to neurodegenerative cerebellar conditions. The
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cerebellum regulates many aspects of movements, includ-

ing movements of the limbs, trunk, balance, gait, eyes and

speech, the latter being the specific focus of this study.

Cerebellar ataxia of speech is sometimes referred to as Ataxic

Dysarthria or Cerebellar Dysarthria but here is described as

‘Ataxic Speech’, where the tempo and articulation of speech

is affected and the voice is unstable and impaired in quality

[1], [2].

Progression of ataxia is reflected in increasing scores on

clinical rating scales such as the Scale for the Assessment

and Rating of Ataxia (SARA) [3]. SARA is an eight-item

clinical scale devised by Schmitz-Hubsch et al. [3] for mea-

suring ataxia severity in different domains, including upright

posture, gait, speech, upper and lower limbs. It ranges from a

total score of 0 (no ataxia) to 40 (severe ataxia).

Neurodegenerative cerebellar disease generally progresses

relatively slowly and consequently measurement instruments

must be reasonably sensitive to detect these changes [4]. In

multiple system atrophy (MSA) and spinocerebellar ataxia

(SCA), the minimum detectable changes is 1-2 points per

year [5]–[7] with an average mean deterioration of 1.38/40
[standardized response mean (SRM) = 0.5] in the total SARA

scores [8]. Thus, it is unlikely that the SARA speech scores,

which contribute no more than 6 of the total 40 will change

significantly in two years. This is not surprising because the

SARA was designed to be a composite score for ataxia rather

than an independent score of each domain. Furthermore the

SARA and other clinical scales are ordinal and the interval

between each score most likely does not represent a similar

increase in severity: that is they do not linearly correspond

to severity. The assumptions underpinning the present study

were that the severity of speech ataxia will worsen over time

and that the measures to detect this deterioration of speech

performance with greater sensitivity and lower variance are

the most sensitive measures. This study aimed to design an

automated system with objective measures to detect the wors-

ening of speech ataxia with greater sensitivity than clinical

scales such as the SARA.

Most recent studies (Table 1) were designed to find objec-

tive acoustic features to diagnose Ataxic Speech and measure

its severity [12], [13]. The term ‘diagnosis’ will be used here

to mean identification of Ataxic Speech from the speech of

non-ataxic subjects. Additionally, most recent studies were

cross-sectional [12], [13] with only one longitudinal study

[9]. The latter examined the changes over time in perceptual

and acoustic features of the speech of individuals with SCA.

Previous studies were specifically focused on exploiting

time [9], [11]–[15], spectral and cepstral [10] based speech

characteristics for the diagnosis of Ataxic Speech. All the

previous researchers [9]–[11] used either sustained phona-

tions or connected speech in their studies. However, speech

tasks involving syllable repetition have proved to be more

useful than sentence utterances [16]–[18] for identifying dif-

ferences between the speech of ataxic and non-ataxic individ-

uals during perceptual analysis. Variations on the “repeated

Consonant-Vowel (C-V) syllable paradigm tasks” have been

most commonly used for syllable repetition.

While mixed-effect models have been commonly used to

assess longitudinal progression [19]–[21], they are usually

only univariate analyses. As the present study assessed differ-

ent outcomes—that is, continuous objective speech param-

eters from multiple speech tasks [22], [23], a multivariate

model (rather than a univariate model) was warranted. Mul-

tivariate generalized linear mixed effect models (GLMMs)

can be adapted simultaneously for inference, integrating not

only the association of repeated measurements for each out-

come within a subject, but also the use of random effects to

correlate multiple outcomes. Komarek and Komarkova [24]

demonstrated a Bayesian data-driven clustering technique to

draw inferences based on a multivariate mixture extension

of the classical GLMM [25], [26]. This approach proved

to be a computationally efficient and reliable alternative to

an existing method [27], and has relevance for predicting

deterioration in Ataxic Speech over time. To our knowledge,

this is the first study to use optimally-integrated multivariate

objective acoustic measures to predict the progression of

Ataxic Speech over time.

The main contributions of this study can be summarized as

follows:

1) Define a robust three-step objective speech feature

selection criterion to select distinctive acoustic fea-

tures as outcomes from different repeated C-V syllable

paradigm speech tasks.

2) Build a multivariate mixture extension of a GLMM

for prediction based on the repeated measurements of

selected multivariate continuous outcomes.

3) Perform a cluster analysis based on this multivariate

model to identify groups of patients with similar char-

acteristics and draw meaningful inferences.

4) Evaluate the model’s performance and further compare

its performance with univariate analyses.

5) Predict, at a specific timepoint, the probability of a

subject belonging to a particular patient group.

The rest of this paper is organized as follows: section II in-

troduces the proposed speech progression assessment frame-

work, data collection strategy and feature selection scheme,

and describes the multivariate mixture generalized linear

mixed model which will serve as the basis for our clustering

procedure; section III describes the results of the research.

Section IV discusses the significance of the proposed ap-

proach; and section V concludes the paper and explains the

future scope.

II. MATERIALS AND METHODS

A. SPEECH PROGRESSION ASSESSMENT

FRAMEWORK (SPACA)

The framework of our proposed assessment of Ataxic Speech

progression (hereafter, referred to as SPACA) involved the

following steps:

1) Speech Inputs generated by instrumental versions of

the standard clinical test for assessing ataxic speech.
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TABLE 1. Comparative overview of recent literature in objective assessment of Ataxic Speech

Recent Studies in

Ataxic Speech
Feature Type Brief description

Speech Task

Considered

Type (Number)

Sample Size

CA Diagnostic\

CA Severity

(Performance)

AS Progression\

Prediction Models

Schalling et al. [9]

Perceptual measures,
Objective measures
(syllable rate,
syllable duration)
standard deviation

Time, frequency,
amplitude
measures

Sustained Phonation /a/

and sentences (2)
3 CA, 6 SCA No

Yes, but no

prediction modeling

Jannetts et al. [10]

APQ (%), PPQ(%),
(%)RAP,
CPP mean, CPP
standard deviation

Amplitude, frequency,
pitch and voice quality
perturbation

Sustained Phonation /a/

and connected speech (2)
10 CA, 43 PD

Yes
(Pearson
Correlation)

No

Luna Webb [11] Jitter(%), Shimmer (dB)

Amplitude and
frequency
perturbation

Sustained Phonation
/a/, /i/, /o/ (1)

20 FA, 20 Controls

Yes
(TPR for FA\Controls)
(1\0.95)

No

Kashyap et al. [12]

RT_Ca, RT_PPa,
RT_DR75,
RT_RF50 (Hz),
RT_Gr (s),
RT_Dt50

Time-domain measures
(captured using
Topographic
Prominence
based automatic
algorithm)

Repeated Consonant-
Vowel syllable,
Repeated Ta

/ta/-/ta/-/ta/ (1)

63 CA, 28 Controls

Yes
(Acc\TNR\TPR\AUC)
0.84\0.89\0.78\0.91

No

Kashyap et al. [13] MFCC+MGDCC

Cepstral measures
capturing amplitude,
phase and spectral
fluctuations

Phrase with repeated
Consonant-Vowel
syllable,
British Constitution (1)

23 CA, 42 Controls

Yes
(Acc\TNR\TPR\AUC)
0.84\0.9\0.75\0.97

No

Current study Time domain [12], cepstral domain [13]
Repeated Ta and
British Constitution (2)

37 CA

No, covered in our
previous studies
[12]–[14]

Yes, with inferences
and prediction modeling

Captions: AS : Ataxic Speech, PD : Parkinson Disease, CA : Cerebellar Ataxia, FA : Friedreich ataxia, SCA : Spinocerebellar ataxia, TNR : True negative
rate, TPR : True positive rate, Acc : Accuracy, AUC : Area under the ROC Curve, RT : Reapted Ta, MFCC : Mel-frequency cepstral coefficients, MGDCC
: Modified group delay cepstral coefficients, APQ : Amplitude Perturbation Quotient, PPQ : Pitch Period Perturbation Quotien, RAP : Relative Amplitude

Perturbation, CPP : Cepstral peak prominence.

2) Speech recordings were captured by a condenser mi-

crophone clipped at an average distance of 10 cm

from the subject’s lips, in a quiet room with low

ambient noise. Recording was conducted using the

BioKinMobiTM [28] application on an Android phone,

under the supervision of a trained investigator.

3) Recordings were wirelessly transmitted to a blockchain

based distributed cloud network [29] where the pro-

posed SPACA algorithm was deployed.

4) Data analysis results were transformed into a clinically

relevant format.

A pictorial representation of the assessment platform is

demonstrated in Figure 1.

B. DATA COLLECTION

Thirty-seven native speakers of Australian English with a

bilateral neurodegenerative cerebellar disorder were followed

for two years (median: 2, mean: 1.99, standard deviation:

0.02). The demographics and clinical characteristics of par-

ticipants are summarized in Table 2. Subjects were assessed

upon entry to the study and again after two years (median:

2, mean: 1.99, standard deviation: 0.02). None of the partic-

ipants had received speech therapy prior to the investigation.

The speech intelligibility was perceptually scored by an

experienced clinician in accordance with SARA, which was

on a scale of 0 to 6 as follows: ‘0’, normal speech; ‘1’,

disturbed speech; ‘2’, distorted but simple to comprehend

speech; ‘3’, words sometimes difficult to understand; ‘4’,

several words difficult to understand; ‘5’, only single words

are comprehensible; and ‘6’, unintelligible speech.

TABLE 2. Clinical characteristics of the enrolled participants

Characteristics TP1 TP2

Age (years) 64.72±9.35

Disease Duration (years) 10.59±7.04

TP2-TP1 (years) 1.99±0.02

SARA speech

(Item 4)
1.54±1.22 1.89±1.33

Male : Female 20 : 17, n = 37 20 : 17, n = 37

Disease Duration at TP1

>8 years 7
≤8 years 10
Unknown 20

*CA Phenotypes

Pure (central) CA 16
CABV 9
CABV+SS 7
Unknown 5

Captions: TP : timepoint, n = number of patients, CA : Cerebellar
Ataxia, CABV : Cerebellar Ataxia with Bilateral Vestibulopathy, SS :

Somatosensory impairment. Data presented as Mean ± Standard
Deviation (range). *Deep phenotyping has not been undertaken in these

subjects.

The assessment consisted of participants performing the

following two speech tasks:

1) Speech Task 1: Repeat the syllable /ta/ for five sec-

onds, producing the /ta/-/ta/-/ta/ syllabic train (Re-

peated Ta: hereafter ‘RT’)).

2) Speech Task 2: Utter the phrase British Constitution

(BC: a classical phrase for eliciting the features of

ataxic speech) thrice. Individual’s acoustic measures

were taken as the average of the three recordings.

These speech tasks resulted in 74 speech recordings (37

from each task) at each timepoint.

This study was approved by the Human Research and
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FIGURE 1. Flowchart demonstrating the data flow in the automated SPACA framework.

Ethics Committee at the Royal Victorian Eye and Ear Hos-

pital, Australia (HREC Reference Number: 11/994H/16) and

administered through the Florey Institute of Neuroscience

and Mental Health, Melbourne, Australia. It complied with

the NHMRC’s guidelines for research using human partici-

pants. Written consent was sought from all participants prior

to their enrolment. The subject in the Figure 1 provided

informed consent to publish their image.

C. MACHINE-LEARNING FRAMEWORK

In this study, the data analysis constituted of developing the

SPACA algorithm (Figure 1) to predict the progression in

the severity of Ataxic Speech was developed. Its three stages

were:

1) Extract and select distinctive acoustic features with a

3-step criterion.

2) Build a multivariate mixture generalized linear mixed

model (GLMM) for prediction based on the joint ex-

ploitation of the selected features’ change over two

timepoints.

3) Classify the subjects into two groups based on the

mixture extensions of the multivariate model.

D. DATA REPRESENTATION AND OUTCOME

DEFINITION

Datatr and Datats were used to denote a training dataset

and a testing dataset with a sample size of N1 and N2

respectively. Datatr was used to build the prediction model

and Datats is used to assess the prediction for new sub-

jects. Yirj denoted the objective measure for subject i at

time tij , extracted from a specific speech task. The index

i = 1, 2, ..., N represented the subject while the index

j = 1, 2, ..., n represented speech measurements from a

subject at different timepoints (TP) for a specific speech

task. In our designed Ataxic Speech progression study, we

used two different speech tasks, and the measurement times

followed a protocol with a common set of follow-up times,

tij = tj where subjects were measured at baseline (that is,

TP1 or t1 = 0) and after 2 years (that is, TP2 or t2 = 2).

Exploration of the observed changes in the profiles of objec-

tive speech features (Figure 3) suggested that changes in the

features for each subject, where the respective values of the

features may differ across subjects, could be linearly modeled

over time. Being motivated by this inference, we considered

Yiqj to be continuous.

E. EXTRACTION AND SELECTION OF SPEECH

PARAMETERS

In this study, the time-based features were extracted from

speech task 1 and the spectral and cepstral features were

extracted from speech task 2. Initially, six topographic promi-

nence–based time features and 23 cepstral features (12 Mel-

frequency cepstral coefficients (MFCC) [30] and 11 modified

group delay cepstral coefficients (MGDCC) were extracted,

applying the same methods that were established in our

previous studies for Ataxic Speech diagnosis and severity

4 VOLUME 4, 2016
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TABLE 3. Descriptions of objective measures (features)

Speech Task

(Parameter Count)

Feature (unit)

[Abbreviation]
Brief Description Domain

Speech Task 1: RT

(6)

RT Duration Regularity(s)
[RT_Dr50]

Variability in the rhythm of speech production
which is an integral measure of timing deficit.

Time-based

Average RT Peak Prominence
[RT_PPr]

Average relative elevation/ peak for a specific
/ta/ pulse calculated

RT Damping Ratio
[RT_DR75]

Average of the /ta/ syllables’ damping ratio
calculated on the wave data extracted at
75% prominence

RT Resonant Frequency (Hz)
RT_RF50]

Average of the /ta/ syllables’ resonant
frequency calculated on the wave data
extracted at 50% prominence

RT Gap Regularity(s)
[RT_Gr]

Variability in the time difference between
two consecutive /ta/ syllable peaks

Average RT Compensation
[RT_Ca]

Average of the differences calculated
between the peak and its corresponding
prominence for a specific /ta/ syllable
pulse

Speech Task 2: BC

(11+12)

Modified Group Delay
Cepstral Coefficients
[BC_MGDCC1,
BC_MGDCC2,...,BC_MGDCC11]

Phased and spectral fluctuations Cepstral

Mel Frequency Cepstral Coefficients
[BC_MFCC1,
BC_MFCC2,...,BC_MFCC12]

Amplitude and spectral fluctuations Cepstral

prediction [12], [13]. Feature descriptions are presented in

Table 3 and the results of the three-step feature selection

criterion is described via a pictorial representation in Figure

2.

A feature x was from a specific speech task was se-

lected through the three-step feature selection criterion. In

the first step, features (in the training data) that do not

change significantly from TP1 to TP2 were eliminated using

a mass-univariate approach. The threshold that determined

whether changes in the feature observations from TP1 to

TP2 were significant was the p-value of 0.001 from a KS

test (TH1). All the significant features with p-value < 0.001

were selected during this step. In the second step, the selected

features were pruned using another exclusion mechanism.

As the existence of multicollinearity is indicated by an

absolute correlation coefficient of > 0.7 between two or

more predictors, only features with a spearman correlation <
0.5 (TH2) were selected. The correlation between features

was compared and one of two features with a correlation

> 0.5 was removed. In the third step, the selected features

were further sorted based on the ANOVA ω2 effect size (>
0.14) [31], [32], observed power (> 0.85) and F-statistic test

(p = 0.001). The selected features from the final step were

carried forward to design the model. The one-way repeated

measures ANOVA [33] statistics of all the selected features

from step 2 are tabulated in Table 4.

F. CONSTRUCTING MIXTURE MODEL-BASED

CLUSTERING

The clustering procedure used in this study was based on

a multivariate mixture GLMM (MMGLMM). The change

in the profile of the rth selected feature (r = 1, 2, ..., R)
belonging to the ith subject (i = 1, ..., N) was denoted by

the random vector, Yir = (Yir1, ..., Yirni,r
)T . Furthermore,

Yi = (Y T
i1 , ..., Y

T
iR)

T represented the random vector of the

change in measurements of all selected features at the differ-

ent timepoints for the ith subject and Y = (Y T
1 , ..., Y

T
N )T

was a random vector representing the available outcomes of

all subjects.

This mixed mixture model was designed based on the

changes in measurements of the selected speech parameters

from TP1 to TP2. Two continuous features were selected

through the three-step feature selection criterion, Yi1j and

Yi2j with Gaussian distribution. Following the data interpre-

tation in Section II-D, when the subjects i = 1, 2, ..., N were

each measured at timepoints j = 1, 2, ..., n, the outcome

at each timepoint j could be represented with the mean

structure of the change in profiles of the two parameters as

follows:

E(Yi1j|bi1) = bi11 + bi12ti1j , and

E(Yi2j|bi2) = bi21 + bi22ti2j .
(1)

Here, tirj is the time in years and Yirj is the corresponding

outcome for r = 1, 2, that is the timepoints from the start

(TP1) to the follow-up (TP2).

Next, to identify groups of patients with similar charac-

teristics using the change in profiles of the measurements

over time, they were classified into two groups (K = 2) in

the distribution of the four-dimensional random effect vector,

Bi = (bi11, bi12, bi21, bi22, )
T

, where bi11, bi21 are random

intercepts from each selected feature and bi12, bi22 are their

respective random slopes.

The estimates of the cluster specific (marginal) mean

change in profiles over time is denoted as

E(Y·,r,·|u = K) = EB {E(Y·,r,·|B, u = K)} . (2)

VOLUME 4, 2016 5
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TABLE 4. One-way Repeated Measures ANOVA (Within-subjects design) statistics comparison of the acoustic measures (after Step 2) and SARA speech scores.

Speech Task Feature
Observed Power,

p = 0.001

Omega squared

(ω2)
F-statistic

Significance

(p)

RT RT_Dr50 0.999 0.400 50.35 0.000

BC BC_MFCC3 0.154 0.065 6.166 0.019

BC BC_MFCC7 0.157 0.066 6.24 0.018

BC BC_MGDCC2 0.52 0.133 12,39 0.001

BC BC_MGCDCC5 0.991 0.338 38.85 0.000

BC BC_MGDCC6 0.738 0.140 13 0.002

SARA speech scores 0.005 0.838 0.100 0.23

Captions: Omega squared (ω2) is a measure of effect size and is calculated as, ω2
=

((k−1)(F−1))
((k−1)(F−1)+nk)

where k is the number of levels of the

within-subjects factor, F is the value of the F-statistic, and n is the number of participants. ANOVA Omega squared (ω2) effect values are 0.01 (small),
0.06 (medium) and 0.14 (large).

Here, r = 1, 2 over time and K = 1, 2, representing the two

groups.

Following the clustering procedure, the optimal classifi-

cation of the ith subject to a specific cluster or group was

computed based on the subject-level marginalization over the

posterior distribution [34] as

πi,K =

∫
pi,K(ψ, θ)p(ψ, θ|y)d(ψ, θ) = E {pi,K(ψ, θ)|y}

≈
1

M

M∑
m=1

pi,K(ψ(m), θ(m)) = π̂i,K

(3)

A priori, the independence between the mixture related pa-

rameters and the GLMM related parameters were assumed

as θ and ψ respectively.

According to Bayesian inference,

pi,K(ψ, θ) = P (ui = K|ψ, θ, yi) =
wKLi,K(ψ, θ)∑2
l=1 wKLi,K(ψ, θ)

,

(4)

where i = 1, 2, ..., N and K=1, 2. The ith subject was

assigned to group K with the highest value of π̂i,K [35], [36].

G. EXTERNAL PREDICTION OF CA SUBJECTS USING

THE TESTING DATASET

To classify a test subject into either Group 1 or Group 2 with

95% highest posterior density credible intervals (HPD CI),

the patient-specific component probability was computed as:

pi,K = pi,K(ψ, θ). (5)

Here, i is a patient and K is the number of groups. Only if the

lower limit of the corresponding credible interval approaches

a certain threshold, such as 0.5 (considering the classification

into K = 2 groups), the patient is categorized into one of the

considered groups.

H. MODEL PERFORMANCE STATISTIC

In this study, the penalized expected deviance (PED) was

selected as a criterion for choosing the number of clusters/

groups in the multivariate model [37]. Furthermore the PED

was also exploited to compare the performance of the mul-

tivariate model with univariate models of similar group size.

PED has been successfully employed in various applications

[38], [39] and is defined as

PED = E {D(ψ, θ)|y}+ po, (6)

Here, D(ψ, θ) = 2logL(ψ, θ) is the observed data de-

viance of the model. The expected deviance, represented as

E {D(ψ, θ)|y} (posterior mean), can be calculated from the

Markov chain Monte Carlo (MCMC) sample. The penalty

term, optimism, is denoted in Equation 6 by po, which can be

further computed from importance sampling and two parallel

MCMC chains [37].

III. EXPERIMENTAL RESULTS

A. CROSS-VALIDATION AND SELECTED MODEL

PARAMETERS

Participants were sorted into a training set (N=32) and a test

set (N=5). The time (years) since the baseline visit, and the

two objective speech parameters resulting from the three-

step parameter selection criterion were the only features

included in this study to build the multivariate prediction

model. Interestingly, the three-step feature selection criterion

resulted in two heterogeneous features, each belonging to

a different speech task. This suggested that each provided

complementary information to aid in identifying the presence

and severity of Ataxic Speech. The two outcomes were:

1) RT parameter (RT_Dr50) (hereafter, referred to as

Fea1)

2) BC parameter (BC_MGDCC5) (hereafter, referred

to as Fea2),

as indicated in the Figure 2. The feature descriptions are

listed in Table 2. The model was trained by running the

prediction algorithm with a burn-in of 1000 iterations [40]

and 100 subsequent iterations with 1:10 thinning to provide

samples from the joint posterior distribution (two parallel

Markov chain Monte Carlo (MCMC) sampled chains with

different sets of initial values).

B. COMPARISON OF SPEECH PARAMETERS AT TP1

AND TP2 (APPROXIMATELY 2 YEARS LATER)

The SARA speech scores at TP2 were not significantly dif-

ferent from those at TP1 (p = 0.1, KS test). However, there

were statistically significant differences (p ≤ 0.001, KS test)

between the two speech features (Fea1 and Fea1, see Section
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FIGURE 2. Illustration of the 3-step feature selection criterion used in this study. (a) Box plot representation of the initially extracted 29 acoustic measures. Blue

boxes indicate the features that are statistically significantly different at p=0.001 and are forwarded to Step 2. (b) Heat map correlation plot of the seven selected

features in Step 1. (c) Heat map correlation plot of the six selected features in Step 2 with Spearman’s, ρ < 0.5. (d) Cluster bar plots indicate the effect size and the

observed power of the selected features from Step 2. Red gradient areas highlight the selected features’ cluster bar plots having a large effect size (ω2 > 0.14) and

observed power > 0.85.

III-A) extracted from each speech task after the three-step

feature selection criterion. Descriptive statistics are recorded

in Table 5 and the change in profiles are depicted in Figure 3.

C. GROUP-SPECIFIC MEAN CHANGE FROM TP1 TO TP2

The multivariate mixture GLMM (MMGLMM) for the clus-

tering of ataxic subjects measurements at TP1 was compared

with measurements at TP2 for both Fea1 (Yi1j) and Fea2

(Yi2j). Both features were logarithmically transformed be-
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TABLE 5. Descriptive statistics for SARA Speech and Objective Measures

(Fea1 and Fea2)

Descriptive

Statistics

Objective Measures SARA

SpeechFea1 Fea2

Mean
TP1 0.003 14.176 1.67
TP2 0.007 3.9 2.10

S.D.
TP1 0.002 9.35 1.3
TP2 0.004 1.63 1.59

TP1 versus TP2 p<0.001 p<0.001 n.s.

Captions: S.D. : standard deviation, n.s.: not significant, TP1 versus
TP2 : comparison between timepoint 1 and timepoint 2/ KS test at p =

0.001.

FIGURE 3. Log-transformed change in objective speech parameters (in blue),

resulting from the three-step parameter selection criterion A. Fea1 and B.

Fea2 from the two speech tasks and C. SARA speech scores, from TP1 to

TP2. Red lines indicates the profiles of three selected subjects (ID 5, 10 and

28).

cause they were assumed to have Gaussian distributions. The

changes in clusters from TP1 to TP2 for each subject are

plotted in Figure 4 and the means are plotted in blue for

Group 1 and red for Group 2. Group 1 was thus characterized

by a lower Fea1 level at TP1 (baseline). Also, Fea1 increased

at a slower rate in Group 1 than in Group 2 (Figure 4(A)).

In contrast, Fea2 for Group 1 was remarkably lower at TP1

than for Group 2 and seemed to drop quicker in Group 1 as

compared to Group 2(Figure 4(B)).

D. PREDICTION OUTCOMES FOR OUR MODEL, SPACA

Figure 5 shows the estimates of the posterior distributions

of the subject-level component probabilities of the follow-up

(TP2) outcomes for two patients in the testing cohort. Patient

49 had a high density of 0.990 (red bar) with a narrow 95%

HPD CI (0.970, 1.000) and therefore could be confidently

classified into Group 1; conversely, as the posterior probabil-

ity of Patient 3 belonging to Group 1 was 0 (black vertical

line) , with a very narrow 95% HPD CI (1.000, 1.000),they

could be classified into Group 2. Majority (∼96%) of the

95% credible intervals included the true observed values in

FIGURE 4. Log-transformed change in considered outcomes, A. Fea1 and B.

Fea2 (in grey) along with the estimated cluster specific mean from TP1 to TP2

(Group 1 in blue, Group 2 in red) when classified into K = 2 groups.

the training cohort.

FIGURE 5. Subject-level component probabilities pi,1(θ) for two subjects,A.

Patient_ID 3 and B. Patient_ID are demonstrated with histograms of the

respective sampled values including posterior median 95% HPD CI values.

E. COMPARISON WITH UNIVARIATE MODELS AND

MODEL PERFORMANCE

In this study, the optimal model type (univariate\ multivari-

ate) and group size (K=1\ 2\ 3\ 4) were selected using PED

[37]. For both the univariate (Figure 6(A), (C)) and multi-

variate (Figure 6(B)) models, the plots reveal a significant

change in the model’s deviance when moving from the model

with group size K = 1 to the model with group size K = 2.

In the multivariate model (Figure 6(B)), the variability of

the posterior distribution of the deviance in a model with

group size K = 2 was practically the same as with K =

1. Nonetheless, as opposed to K = 1, the K = 2 deviance

posterior distribution was distinctly skewed to the left. When

comparing models of group sizes K = 3 and K = 2, as well as

K = 4 and K = 3, a similar observation was made.

Under the assumption that there were no associations

between the outcomes, Fea1 and Fea2, related methods were

used to compare the univariate models (Figure 6(A, B)).

The plots indicated that our multivariate model (Figure 6(C))

(PEDFea1+Fea2=5175; K=2) performed better than the uni-

variate models (PEDFea1=4225, PEDFea2=3850; K=2).
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FIGURE 6. Comparisons of the posterior cumulative distribution functions of the observed data deviances for univariate models with parameters A. Fea1 and B.

Fea2 and multivariate models with C. multivariate parameters (Fea1 + Fea2), when classified into K = 1; 2; 3; 4. groups.

However, further confirmation would require a larger trial or

cohort analysis.

IV. DISCUSSION

In this study, a machine-learning framework based on the

multivariate extension of a mixture generalized linear mixed

model (GLMM) was introduced for assessing whether an

automated analysis of Ataxic Speech parameters could pre-

dict deterioration in speech ataxia. Our proposed framework

yielded accurate and meaningful results. This led to the iden-

tification of a reliable feature profile, specific to speech ataxia

obtained from a dataset of 74 speech recordings collected at

baseline and approximately 2 years later.

The descriptions of ataxic speech in the literature mostly

highlight variability in syllable and pause durations [16],

[41], [42] and variations in loudness [43]. We initially se-

lected a feature-set of 29 time and cepstral domain features

from our previous objective assessments [24] to examine

their contributions to assessing the change in speech ataxia

from TP1 to TP2. A robust three-step feature selection cri-

terion was adopted to select the objective measures that best

detected the worsening of speech ataxia with greater sensitiv-

ity than clinical scales such as the SARA. Interestingly, the

three-step feature selection resulted into two heterogeneous

objective features, RT_Dr50 (Fea1) and BC_MGDCC5
(Fea2), one from each C-V speech task, indicating that

features from different speech tasks capture complementary

information on the ataxic symptoms co-existing in different

speech dimensions.

In a clinical CA assessment routine, only the most recently

available SARA score representing the current patient status

is normally used to determine the severity of a patient’s

speech ataxia. Clearly, such a protocol disregards the existing

data on symptoms’ evolution over time, which could be more

relevant for an accurate classification than simply the last

recorded state. To address this shortcoming, the present study

proposed a clustering method to jointly consider the entire

history of the changes in the profiles of the measurements

of all considered parameters. In the framework design, the

computational complexity arising from the multivariate ex-

tension of the mixture GLMM was handled using a Markov

chain Monte Carlo (MCMC) simulation based Bayesian

data-driven clustering approach [24]. Interestingly, at a pre-

specified time point from the start to follow-up, the changes

in profiles of the selected speech parameters over time could

be used to classify patients into groups with similar charac-

teristics.

Cluster analysis using the objective measures at the two

time points permitted the classification of patients into two

groups based on the amplitude of change between the two

time points. Group 1 was differentiated from Group 2 by

lower values of Fea1 and Fea2 at TP1 and smaller changes

in Fea1 and Fea2 between TP1 and TP2 (Figure 4). Most

(95%) Group 1 patients had a disease duration of <8 years

at TP1 whereas in Group 2, the disease duration was >8

years. The rate of change (increase\ decrease) in the speech

parameters (Fea1\ Fea2) indicated that the speech impair-

ments progressed at a different rate in CA patients who were

in their early years of the disease (Group 1) as compared to

those in their later years of the disease (Group 2). In contrast,

the respective SARA speech scores showed no association

with the disease duration, with 11/ 37 CA patients indicating

the same SARA speech scores at the two timepoints. This

suggested that the proposed method is more sensitive than

clinical rating in assessing change in Ataxic Speech over 2

years.

The proposed framework demonstrated promising results

with most (∼ 96%) observed values falling within the 95%

credible intervals in the training cohort. Multivariate out-

comes showed improved performance in prediction com-

pared to univariate models. Notably, to date, the estimation

of multivariate outcomes, their changes in trajectory and their

joint modeling have not been rigorously studied. Such studies

will contribute to a deeper understanding of the heterogeneity

of CA and its progression in each manifested domain (for

example, speech, as in the present study). Additionally, this
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work could cross-examine questions that are clinically and

translationally relevant; in particular, designing a patient-

specific scheme to predict disease progression using multi-

domain (for example, kinematic data extracted from upper-

limbs, lower-limbs, gait and balance) longitudinal objective

metrics.

V. CONCLUSION

In conclusion, a multivariate mixed-effect model-based

framework was applied to predict the progression of Ataxic

Speech by jointly incorporating the correlations among mul-

tiple outcomes and the correlations among repeated mea-

surements. This is the first study to evaluate the changes in

multiple clinically relevant quantitative acoustic parameters

over time to predict the progression of Ataxic Speech. The

predictive performance of joint multivariate modeling was

analysed and compared to univariate modeling using the

training cohort. The non-inferiority of the joint multivariate

modeling in terms of bias and PED showed the potential of

the proposed model for estimating the rate of progression of

Ataxic Speech in a clinical environment.
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