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Abstract

A kinetic model has been derived for the reduction of oxide spent nuclear fuel in a 

radial flow reactor.  In this reaction, lithium dissolved in molten LiCl reacts with UO2

and fission product oxides to form a porous, metallic product.  As the reaction proceeds, 

the depth of the porous layer around the exterior of each fuel particle increases.  The 

observed rate of reaction has been found to be only dependent upon the rate of diffusion 

of lithium across this layer, consistent with a classic shrinking core kinetic model.  This 

shrinking core model has been extended to predict the behavior of a hypothetical, pilot-

scale reactor for oxide reduction.  The design of the pilot-scale reactor includes forced 

flow through baskets that contain the fuel particles.  The results of the modeling indicate 

that this is an essential feature in order to minimize the time needed to achieve full 

conversion of the fuel. 
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I. Introduction 

Pyroprocessing is a promising technology for treating and recycling metallic spent 

nuclear fuel [1-3].  Its benefits relative to aqueous reprocessing technology include 

inherent proliferation resistance, compactness of the process equipment, and superior 

waste management.  Its application to the treatment of spent Experimental Breeder 

Reactor-II (EBR-II) fuel was successfully demonstrated in 1999.  And the treatment of 

this fuel continues today using this technology at Idaho National Laboratory.  In addition 

to treating metallic fuels, consideration has been given to pyroprocessing the much more 

ubiquitous spent oxide fuels.  This requires a head-end reduction step generally referred 

to as oxide reduction.  Various approaches to oxide reduction have been reported.  One 

such method is referred to as Li-reduction and involves submerging the oxide feed into a 

bath of molten LiCl at 650oC.  The LiCl is saturated with Li metal, and the reduction 

reaction proceeds as follows. 

UO2 + 4Li  U + 2Li2O  (1) 

Development of the Li-reduction process at Argonne National Laboratory 

involved experimental work at both the lab-scale (50-150 g batch) and the engineering 

scale (3.7-5.2 kg batch) [4-5].  The objective of this experimental program was to provide 

a technical basis for designing a pilot-scale system (PSS).    The PSS needed to 

accommodate 100 kg of spent oxide fuel in each batch.  The specific design that was 

developed consisted of four baskets loaded with fuel.  Each basket had a concentric 

design with fuel being packed in between two cylinders with mesh linings.  The Li-LiCl 



fluid would be forced through the center of each of these baskets simultaneously using an 

impeller and draft tubes.   Flow would occur from the center of each basket to its outer 

edge via radial plug flow.  In order to keep the lithium concentration at its saturation 

level, a molten lithium source would need to be kept in contact with the LiCl solvent.  As 

lithium would be consumed by the reaction with UO2, Li2O would be formed and more 

lithium would be dissolved into the solvent.  An image of the proposed PSS is given in 

Figure 1 [4]. 

In the development of the PSS design, there was debate over the need for forced 

fluid flow.  It was initially speculated that forced flow would minimize the residence time 

necessary for the spent fuel in the system and, thus, increase the effective processing rate.  

To verify this assumption, it was necessary to develop a reactor model that accounted for 

intrinsic reaction rates, material balances, and mass transfer resistances.  Such a model 

would enable prediction of the effect of fuel particle size, liquid flow rate, lithium 

concentration, and basket geometry on the time required to achieve full conversion of the 

fuel.  Such a model is presented in this paper and compared to experimental results.   

II. Kinetic Model Development based on Laboratory-Scale Experiments

Karell et. al. published results of laboratory-scale Li-reduction experiments under 

varying conditions using both uranium oxide particulate and pellets.  Details of their 

experimental set-up and procedure can be found elsewhere [5].  Visual inspection of 

partially reacted pellet cross-sections suggested that the reaction proceeds via a classical 

shrinking core mechanism [6].  In such a mechanism, an unreacted core shrinks as the 



reaction proceeds.  An “ash layer” of reacted material surrounds the core, since the 

particle itself does not shrink.  Diffusion of the reactant across the ash layer becomes the 

rate limiting process.  In the case of reaction of lithium metal with uranium oxide, a 

porous metallic uranium layer is formed and thickens as the unreacted oxide core shrinks.  

The effective reaction rate is then controlled by the diffusion of lithium through this layer 

of uranium metal to the oxide core surface.  

To verify that this shrinking core kinetics model applied, kinetic data from Karell 

were reviewed and compared to model predictions.   For both experiments with pellets 

and crushed material, there was always a good fit of the model to the data.  One example 

fit is shown in Figure 2.  For this experiment, cylindrical pellets of UO2 with cladding 

still intact were reduced.  The presence of the cladding meant that the Li could only 

diffuse axially.  Based on the shrinking core model and this geometrical restriction, the 

following equation was derived for relating time to fraction of the UO2 that had been 

reduced.

t = - L2

DCLi
sat

w

1 f 1
2

(1 f )2 1
2

L2

DCLi
sat

w

g( f )   (2) 

The variables in the above equation include intraparticle diffusivity (D), Li concentration 

in the liquid phase (CLi
sat ), density of UO2 ( ), pellet length (L), molecular weight of UO2

( w), and fractional conversion of the oxide reduction reaction (f).  For simplification, an 

original function (g(f)) has been introduced and is defined in Equation 2.  The plot in 

Figure 2 shows the fit of this equation to data published by Karell.   The quality of the fit 



is supportive of the claim that a shrinking core mechanism dominates the kinetics.  

Granted, it would be desirable to have data available at various temperatures to further 

test the possibility that the reduction is chemical reaction controlled.  Since estimates for 

all other parameters are available (Csat = 1.7x10-4 moles/cm3, L=1.0 cm, w = 270 g/mole, 

 = 10 g/cm3), the slope of the line was used to estimate the diffusivity of lithium in the 

uranium metal layer (D = 9.7x10-4 cm2/sec).   For other kinetic fits, the diffusivity was 

estimated to be 2.7x10-4 cm2/sec.   Both of these estimates for the diffusivity appear to be 

high, since liquid phase diffusion coefficients are typically on the order of 10-5 cm2/sec.

However, the high temperatures involved and small size of the lithium atom may explain 

the very high apparent diffusivity.  Another consideration is that the estimate for the 

saturated concentration of lithium may be inaccurate, since it was based on a value cited 

from the literature rather than an actual measurement [7].  The cited value from the 

literature, it should be noted, was for Li in LiCl.  The addition of a small amount of 

lithium oxide to the molten salt may appreciably change the Li solubility.  If the actual 

lithium concentration was higher than the value assumed, the calculated lithium 

diffusivity would be lower as expected. 

III. Pilot-Scale Reactor Model 

With the shrinking core model verified for the oxide reduction reaction, the next 

step was to apply this model to a mathematical representation of the proposed PSS.  This 

PSS consists of a packed bed of fuel particles filled in between two cylinders.  Molten 

LiCl saturated with Li flows up through the center of the reactor and then radially 

outward through the fuel bed.  A diagram of this geometry is given in Figure 3. 



Using the shrinking core kinetic model, it can be shown that at any given position 

in the packed bed, the intrinsic rate of lithium consumption in a spherical UO2 pellet is as 

follows. 

3D(1 )CLi

Rp
2 (1

Rp
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)
   (3) 

In addition to the variables used in Equation (2), the above equation includes void 

fraction in the packed bed ( ), concentration of lithium in the fluid phase (CLi ), particle 

radius (Rp), and unreacted particle core radius (rc).  The equation must be combined with 

material balances over the packed bed and over the unreacted core in any given fuel 

pellet in order to facilitate prediction of lithium concentrations across the reactor and 

unreacted core size as a function of position and time.  The material balance over the 

packed bed is accounted for in the following equation.  The height of the packed bed is 

given by h, and the radial position within the basket is given by r.  It is assumed that the 

salt flows evenly with parallel streamlines from the inner to the outer radius of the basket.

It is also assumed that lithium saturation is being maintained in the bulk of the salt, via 

perpetual contact of the salt with a source of molten lithium. 
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In Equation (4), the new variable is volumetric salt flow rate (F).  The material balance 

over any given fuel pellet is given below, assuming spherical pellets.   
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For ease of numerical simulation, the above equations were cast into 

dimensionless form.  The resulting dimensionless equations are given below.  The 

definition of the dimensionless variables is given in the Nomenclature section of this 

report.  The equations were solved using finite differences. 
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As needed, this model can be used to predict the time required to completely reduce the 

oxide fuel as a function of particle size, flow rate, reactor geometry, and lithium 

concentration in the LiCl.  This allows for the operating parameters to be optimized prior 

to running actual tests.  A convenient representation of the results generated from this 

model is to use an effectiveness factor, —a ratio of the ideal time to completion of 

reaction to actual time to completion of reaction.  



ideal

actual

  (8) 

 The ideal time ( ideal ) is based on a single particle suspended in perfectly stirred LiCl 

that is saturated with Li metal.  It is the time required for completion of the reaction in the 

absence of external diffusion resistance (outside of the particle).  For spherical particles, 

it can be calculated using the following equation. 

ideal

2 Rp
2

3 wDCLi
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In Figure 4, calculations for  are given at various particle sizes and flow rates.  

As expected, the effectiveness factors increase with increasing particle size and 

increasing flow rate.  As the particle size is increased, the time scale for diffusion in the 

particle increases, and the reaction becomes more and more limited relative to mass 

transfer in the liquid phase.  As the flow rate increases, the mass transfer in the liquid 

phase becomes faster and less of a limiting factor.  It is important to note that in the case 

of a distribution of particle sizes that the largest particle will solely determine the 

endpoint of the reaction.  However, the transient behavior is dependent on the whole 

distribution.

IV. Engineering-Scale Experiments 

Engineering scale (ES) experiments were run with fuel batch sizes up to 20 kg in 

which there was no forced flow [5], with the results further supporting the need for forced 



flow in the PSS.  Analogous to the lab-scale experiments, the ES runs featured vigorous 

external fluid mixing around a basket packed with fuel particles.   At one time it was 

anticipated that external mixing would be sufficient to deliver an adequate flux of lithium 

to the fuel particle surfaces.  However, the graph in Figure 5 refutes this.  The 

effectiveness factors for three different ES tests are compared to the computed 

effectiveness factor as a function of flow rate.  In all cases, the particle diameter is 

assumed to be 4000 m.  Here it can be seen that even for flows as low as 500 cm3/sec, 

the PSS greatly outperforms the ES system.    Note that the horizontal lines for ES-5, ES-

6, and ES-9 are not meant to imply any relationship between effectiveness factor and 

flow rate.  As mentioned above, each experiment involved only external fluid agitation.  

Their vertical levels in Figure 5 were meant to be compared to the modeled PSS curve to 

show that performance could have been dramatically improved with the assistance of 

forced fluid flow through the baskets. 

V. Summary 

Analysis of lab-scale experiments indicates that a shrinking core model accurately 

represents the kinetics of uranium oxide reduction by lithium dissolved in molten LiCl.  

The diffusion coefficient for lithium in the fuel pellets has been estimated to be in the 

range of 2.7x10-4 to 9.7x10-4 cm2/sec, extremely high for liquid state diffusion.  

Meanwhile, the kinetic model and value for the diffusion coefficient have been 

incorporated into an overall reactor model, encompassing the entire pilot scale oxide 

reduction reactor.  That model has been solved numerically and can be used to predict the 

time at which complete conversion occurs for a number of different conditions.   And 



effectiveness factors have been used to demonstrate the advantage of implementing 

forced salt flow into the system.  Compared to the results of 20 kg-batch oxide reduction 

experiments, a pilot scale system with forced flow is expected to yield superior results 

over a large range of flow rates.  It is, thus, recommended that any large-scale 

implementation of the Li-reduction process include the ability to force salt flow through 

the fuel baskets. 

VI. Nomenclature 

C   dimensionless concentration of reactant in liquid 
C

CLi
sat

CLi   concentration of Li in the molten salt at a particular basket position and  

time (moles/cm3)

CLi
sat saturated concentration of Li in LiCl at 650oC  (moles/cm3)

D  effective intraparticle diffusion coefficient (cm2/sec)

f  fractional conversion of uranium oxide to uranium metal 

g(f)  original function of fractional conversion 

h  height of packed bed in fuel basket (cm) 

L  length of a fuel cladding-covered fuel pellet (cm) 

Rp  average particle radius (cm) 

rc  radius of unreacted core (cm) 

rc   dimensionless radius of unreacted core 
rc

Rp

r  radial position in fuel basket (cm) 



r   dimensionless radial position in fuel basket 
r
R2

rate of reaction (moles/cm3-sec)

t  time (sec) 

t   dimensionless time 
t

Vbasket  internal volume of fuel basket (cm3)

w  atomic weight (grams/mole) 

void fraction in fuel/zeolite basket 

  dimensionless parameter used in reactor model 

dimensionless parameter used in reactor model 

density (grams/cm3)

ideal   time required for complete conversion for a given particle size with no  

external diffusion resistance 

actual   actual time required for complete conversion for a given particle size 
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