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Abstract

Water and wastewater network, electric power network, transportation network, communication 

network, and information technology network are among the critical infrastructure in our 

communities; their disruption during and after hazard events greatly affects communities’ well-

being, economic security, social welfare, and public health. In addition, a disruption in one 

network may cause disruption to other networks and lead to their reduced functionality. This paper 

presents a unified theoretical methodology for the modeling of dependent/interdependent 

infrastructure networks and incorporates it in a six-step probabilistic procedure to assess their 

resilience. Both the methodology and the procedure are general, can be applied to any 

infrastructure network and hazard, and can model different types of dependencies between 

networks. As an illustration, the paper models the direct effects of seismic events on the 

functionality of a potable water distribution network and the cascading effects of the damage of 

the electric power network (EPN) on the potable water distribution network (WN). The results 

quantify the loss of functionality and delay in the recovery process due to dependency of the WN 

on the EPN. The results show the importance of capturing the dependency between networks in 

modeling the resilience of critical infrastructure.

Keywords

Resilience of infrastructure systems; network dependencies; network reliability analysis; network 

functionality metrics; system recovery time

1. Introduction

Infrastructure such as water and wastewater, electric power, transportation, 

telecommunication, and gas and liquid fuel are interconnected systems of distinct and 

interdependent networks, or systems, (system of systems) that function collaboratively and 

synergistically to produce and distribute a continuous flow of essential goods and services 

(PCCIP, 1997). In this way, infrastructure support the safety, well-being, and economic 

vitality of our society. When hazard events threaten the functionality of one or more 

infrastructure, the resilience of a community is called into play, which has been defined as 

the ‘ability to prepare for and adapt to changing conditions and withstand and recover 

rapidly from disruptions’ (PPD-21, 2013).

Recent events, such as the blackout in northeast America (2003), Hurricane Katrina (2005), 

Hurricane Sandy (2012), the flood in South Carolina (2015) and the earthquakes in Chile 

(2010), New Zealand (2010–2011), and the earthquake and tsunami in Japan (2011), 

underscore the continued vulnerability of society to multiple hazards, and the pressing need 

to promote resilient infrastructure (Gardoni & LaFave, 2016). The concept of resilience is 

often measured using dimensions of vulnerability, severity of consequences, and time to 

recover from failures (Bruneau et al., 2003; Sharma et al., 2016). Extensive work has been 

conducted on the modeling of individual networks (e.g. Guidotti et al., 2016; Guikema & 

Gardoni, 2009; Kang et al., 2008; Kurtz et al., 2015; Lee et al., 2011). However, the 

aforementioned past events have not only revealed the vulnerabilities of individual 

infrastructure systems, but also showed the importance of dependencies and 
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interdependencies among infrastructure sectors (Chang, 2014; Vespignani, 2010). During 

normal operations, these interdependencies generally have a positive effect allowing urban 

systems to operate closer to their design capacity, for example optimizing their efficiency in 

the exchange of information and resources among different networks (Applied Technology 

Council, 2016; Nan & Sansavini, 2015; Ouyang et al., 2015). When infrastructure systems 

are damaged, however, they often propagate failures to other systems and result in 

widespread disruption. For this reason, interdependent networks may experience system 

failure for a lower number of directly damaged components and more abruptly than isolated 

systems (Buldyrev et al., 2010). Modeling the dependencies between networks is important 

when identifying vulnerabilities of network components, assessing the resilience of critical 

infrastructure, informing investment prioritization, and, ultimately, improving the robustness 

and resilience of infrastructure networks.

This paper addresses the limitations of current approaches in network analysis, and provides 

the following contributions: the paper proposes a unified methodology to model the network 

dependencies and interdependencies, and incorporates the methodology in a six-step 

probabilistic procedure to assess the resilience of critical infrastructure. To estimate the 

system recovery as a function of time at a community system scale, the proposed 

probabilistic procedure captures the direct physical damage, cascading effects due to 

interdependencies, and loss of network functionality. The developed methodology and 

procedure are general and applicable to any network and any natural or anthropogenic 

hazard. In this paper, it is illustrated the potable water network (WN) depending on the 

electric power network (EPN) of a virtual community subject to seismic hazard.

2. Modeling of network dependencies

Interdependencies play a crucial role in the resilience of network infrastructure. They not 

only contribute – through cascading effects – to widespread failure propagation, but also to 

the smoothness or difficulty of the entire recovery process. The recovery rate of system 

components depends upon several factors that are often difficult to understand, model, and 

predict, as for example the recovery strategy and the amount, rate and prioritization of 

resource mobilization (Bruneau et al., 2003; Franchin & Cavalieri, 2015; Jia et al., 2016; 

Sharma et al., 2016). It may be impractical and unnecessary to model every infrastructure 

system within a community fully capturing every physical and societal factors during the 

recovery. The methodology proposed in this paper is formulated to allow the exchange of 

information on the state of a system between dependent/interdependent infrastructure. Such 

information can be used to inform and optimize the recovery strategies at user-defined 

recovery intervals. With this flexible, systems-level approach to model interdependent 

infrastructure resilience, we can insert selected modeling components that are of interest, 

and at the desired level of granularity, for a particular case study area or subset of 

infrastructure systems.

The need to describe the relationships among infrastructure systems, and the corresponding 

propagation of system disruptions led to the definition of several classifications of the nature 

of infrastructure interdependencies (e.g. Dudenhoeffer et al., 2006; Lee et al., 2007; Rinaldi 

et al., 2001; Wallace et al., 2003; Zhang and Peeta, 2011; Zimmerman, 2001). According to 
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Ouyang (2014), the classification proposed by Rinaldi et al., (2001) appears to be self-

contained and able to capture the manifold nature of the interdependencies. Rinaldi et al. 

(2001) define four types of interdependency: (i) Physical – when the state of one 

infrastructure system is dependent on the material output(s) of another infrastructure system 

(e.g. outages in the EPN causing the failure of water pumping stations); (ii) Cyber – when 

the transmission of information across systems affects the state of different infrastructure 

systems (e.g. lack of communication or observability affects the control of power systems, 

resulting in their malfunctioning); (iii) Geographic – when two or more infrastructure 

systems are affected by the same local event because of their proximity (e.g. viaducts 

failures causing breaks in co-located water pipelines); (iv) Logical – when others 

mechanisms that are not physical, cyber, or geographic describe the dependency of a system 

on the other (e.g. outages in power systems result in price changes of fuel). To understand 

the nature of these interdependencies and to incorporate those in a unified methodology are 

among the major challenges in simulating network damage and recovery at the community 

scale.

The proposed methodology addresses these challenges. The dependency of networks is 

modeled through a proposed augmented adjacency table A. As presented in Watts and 

Strogatz (1998), a general undirected network k can be defined by n(k) nodes or vertexes and 

m(k) links or edges connecting the nodes (where undirected means that all the links are 

bidirectional, not pointing in a specified direction). In the case of K interdependent 

networks, each one can be represented by a symmetric n(k) × n(k) adjacency table 

, k = 1, …, K, (i, j ∈ k; i, j = 1, …, n(k)) where  is either 1, if there is a 

link between nodes i and j of network k, or 0 otherwise, and . The K adjacency tables 

are arranged along the main diagonal of A, while the out-of-diagonal, generally rectangular, 

tables are used to represent pairwise connections between nodes of different networks. For 

example, considering two generic networks s and t, the connections between nodes of the 

two networks can be represented by the rectangular n(s) × n(t) table , where 

 is either 1, if node i of network s is connected to node j of network t, or 0 otherwise. 

Being the connections mutual, the relation  holds true and the augmented 

adjacency table maintains the symmetry. The matrix representation of the augmented 

adjacency table A is the following:

(1)

It is common, especially for physical networks, to weight the adjacency table with a weight 

table, where the weights are used to capture a characteristic of interest of the link between 
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nodes. In our methodology, we propose to use a weight table to capture the likelihood of 

failure of a node given the failure of a different node. Therefore, the weight table takes the 

form of a likelihood table, L = [lij]. For example, considering two networks s and t, we use a 

rectangular n(s) × n(t) likelihood table  to capture the strength of 

the dependency between nodes of the two networks.

To capture the failure propagation, we introduce a dependency table P obtained by 

multiplying A and L. With reference to the two networks s and t, the table , 

with element , provides the conditional probability of failure of node i of 

network s given the failure of node j of network t. It is important to underline that the 

dependency between two nodes of different networks may not be mutual (generally 

 and L(s,t) ≠ L(t,s)′). As a result, table P is generally not symmetric. Setting the 

values in the likelihood tables to zero, table P captures cases of perfect network 

independency. Setting  results in , describing perfect 

network dependency (according to the connectivity in table A(s,t), a failure of node j of 

network t implies a certain failure of node i of network s, if this is the only connection 

between the two nodes; if node i of network s is connected with more nodes of network t, it 

will then fail for a simultaneous failure of all of them).

Values different from zero in both tables L(s,t) and L(t,s) capture the mutual dependency (or 

interdependency) between network s and t; values in table L(s,t) different than zero with 

values in table L(t,s) equal to zero capture the case of a one-way dependency of network s on 

network t. Moreover, values in the likelihood tables may vary as a function of the 

dependency/interdependency type, with different values for physical, geographical, cyber of 

logical dependency, providing the users with a unified tool to incorporate and model the 

different natures of networks interdependencies. The values could also vary with time, 

capturing the fact that the dependency/ interdependency could vary over time (e.g. due to 

deteriorations or other changes over time of the network connections).

3. Assessing the resilience of dependent critical infrastructure

To evaluate the physical performance and system functionality after a disruptive event and 

during the recovery process, a reliability simulation must include the hazard modeling as 

well as physical and functional models of the damaged network. Much of the existing 

research focuses mainly on component performance, investigating the contribution of single 

components to the functionality of the corresponding single network. However, to 

understand the overall functionality of a damaged system, one must consider the possibility 

of multiple component failures and its cascading effects due to the dependencies between 

infrastructure systems.

The probabilistic procedure presented in this paper integrates the methodology previously 

described with models of damage, functionality, and recovery. A damage model, in this 

paper, refers to the simulation of physical damage to system components; a functionality 

model refers to a flow analysis used to assess the damage impact on system services; a 
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recovery model refers to the restoration process of the damaged system. The approach is 

general and applicable to any dependent/interdependent networks subject to any natural or 

anthropogenic hazard. The procedure has the following six steps:

Step 1: Generating a network model for the system. The first step in the assessment of the 

resilience of dependent infrastructure consists in representing the infrastructure systems, 

with their dependencies within the network (intra-dependencies) or between the two 

networks (interdependencies). We adopt linear and nodal elements to represent the network 

components used for source, supply, and transmission of the quantities of interest, like water 

and electric power in the cases of water and EPNs. While the terms component and element 

are sometimes used interchangeably in the literature, in this work the term component refers 

to a physical entity that is part of the infrastructure system, while the term element refers to 

the representation used in the modeling. Different levels of resolution may be adopted in the 

network generation, taking into account the scale of interest and the computational burdens.

Step 2: Generating the hazard for the network area. The second step calls for generating the 

hazard with spatial variations in intensity for the various linear and nodal elements as 

appropriate. Critical infrastructure networks typically extend over large areas, and are 

subject to multiple hazards. In general, the vulnerability of infrastructure systems and their 

components varies with the type of hazard. For instance, extreme wind events mainly affect 

the transmission and distribution towers and lines in EPNs, while an earthquake may cause 

more damage to buried power lines, substations, and generation plants. In this step of the 

procedure, hazard-specific models need to be adopted to generate spatial maps of the 

intensity measures of interest. These include, but are not limited to, maps of peak ground 

values of acceleration, velocity and displacement (peak ground acceleration (PGA), peak 

ground velocity (PGV), and peak ground displacement (PGD), respectively) in the case of 

seismic hazard; maps of water depth and velocity or inundation duration for flood hazard; 

maps of wind speed for tornado and hurricane hazards.

Step 3: Assessing direct physical damage to network components. The third step assesses 

the direct physical damage to the network components in the immediate aftermath of an 

event. This is estimated probabilistically through fragility curves for nodal elements and 

through repair rate curves for linear elements. Fragility curves provide the conditional 

probability of exceeding a prescribed performance level for a given hazard intensity measure 

(e.g. Ditlevsen & Madsen, 1996; Gardoni et al., 2002, 2003). Repair rate curves provide the 

expected number of ruptures -and hence repairs- per unit length, for a given hazard intensity 

measure (e.g. ALA, 2001; O’Rourke & Ayala, 1993; O’Rourke & Deyoe, 2004). Examples 

of these curves are available in the literature, for different networks’ components and 

different hazards.

Step 4: Propagating the cascading effects due to dependencies to fully define the network 

damage state. This step fully defines the status of the networks’ components adding to the 

direct damage from Step 3, the cascading effects due to the dependencies. Step 4 can be 

carried out following the methodology described in Section 2.
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Step 5: Assessing functionality loss. This step consists in assessing the functionality of the 

damaged networks. Network-specific models of the physical flow are considered to evaluate 

the impact of the hazardous event on the specific damaged network, in terms of the ability to 

provide essential goods and services. Going from simple connectivity analysis to physical 

flow modeling is among the most important aspects of the proposed procedure. Connectivity 

modeling alone provides only a partial and possibly misleading assessment of system 

performance, since the systems, when damaged, may not satisfy pre-event demands. 

Assessing the ability to provide essential goods requires in general both a quantification of 

the capacity of the network and of the demand on the network. Specifically, one of the most 

challenging modeling aspects is the prediction of the post-event demand because of the 

uncertainty in the human behaviors, such as evacuation or the decision to relocate. A 

promising approach to track the post-event evolution of EPN supply and demand has been 

proposed by Didier et al. (2015), (2017) and Sun et al. (2015). Though underlying models of 

demand changes during recovery from a hazard have not yet been implemented, the 

proposed procedure can model variation of the baseline demand through a constant demand 

multiplier to adjust the base demand of every node. This step of the procedure generalizes 

the work of Cavalieri et al. (2012), (2014), Franchin (2014) and Franchin and Cavalieri 

(2015) who studied the seismic vulnerability of buildings considering both the direct damage 

to buildings and the inhabitability (loss of functionality) due to loss of utility services.

Step 6: Predicting recovery time for network functionality. The final step is to determine the 

state of damage (which is again both physical and functional) of a network component at 

time step t after the occurrence of a disrupting event. The recovery time of a dependent 

system element is a function of its recovery time and that of the supporting element. For 

each time step t, the proposed procedure updates the state of the elements in the network 

based on the initial damage state and corresponding restoration functions. Examples of 

restoration functions can be found in the literature either postulated (e.g. Ayyub, 2014; 

Bocchini et al., 2012; Cimellaro et al., 2010; Titi et al., 2015) or derived based on more 

fundamental recovery activities (Sharma et al., 2016). The state of system damage, 

functionality, and operational values is updated and used for the next time step, taking into 

account interand intra-system dependencies.

Steps 4–6 are iterated until a desired level of functionality is met within a specified tolerance 

range. We demonstrate the overall procedure considering a case study infrastructure system 

composed by a potable WN dependent on an EPN subject to seismic hazard. Figure 1 

illustrates the evolution of the procedure, with reference to a generic WN dependent on an 

EPN. The left hand side illustrates the physical damage state in the two networks at the 

considered time step t. A cross above an element represents a damaged element. The right 

hand side shows the functionality analysis (e.g. pressure at given WN nodal elements and 

flow in linear elements) for the corresponding damage state.
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4. Damage, functionality, and dependency models for water and EPNs 

subject to seismic hazard

To illustrate the proposed methodology and probabilistic procedure described in Sections 2 

and 3, we consider a case study subject to seismic hazard with a dependency of the WN on 

the EPN. WNs (e.g. potable water, wastewater, and storm water) support residential, 

commercial, and industrial functions through subsystems that include supply, transmission, 

treatment, pumping, and storage. These subsystems can be modeled with nodal elements 

(e.g. for the demand nodes, junctions, pumping stations, tanks, and treatment plants) and 

linear elements (e.g. for the distribution and transmission pipelines). Similarly, the EPN can 

be modeled with nodal and linear elements to represent generation, transmission, and 

distribution subsystems. WN and EPN are vulnerable to multiple hazard events. We select 

WN and EPN for this illustration because their reliable operation is essential to communities 

and possible interruptions may result in significant losses, with debilitating impacts on the 

economic and social welfare of the entire region (PCCIP, 1997; Wen et al., 2011).

This section describes the seismic hazard models used in the illustration (which are needed 

in Step 2 of the proposed procedure), the damage models for both WN and EPN (needed in 

Step 3), the dependency models between WN and EPN (needed in Step 4), and finally the 

functionality models for WN and EPN (needed in Step 5). In the illustration, the focus is on 

the WN damage, functionality, and recovery, therefore a greater level of detail is provided 

for WN models.

4.1. Seismic hazard models

Ground motion prediction equations (GMPE) specify the conditional probability of 

exceeding a ground motion intensity measure at a particular geographic site for a particular 

source represented in an earthquake rupture forecast (Cornell, 1968). A large set of GMPE 

(see, for example a review by Douglas 2011) is available to estimate spatially varying 

intensity measures as a function of the earthquake characteristics (e.g. magnitude, source to 

site distance, site condition, and fault type).

4.2. Damage models in water and EPNs

Water system components are heterogeneous, typically distributed over large geographic 

areas, and are constituted of nodal components (e.g. tanks and reservoirs, treatment plants, 

pumping stations, and wells) and linear components (e.g. pipelines, tunnels, canals, and 

flumes). As described in Step 3 of the proposed six-step procedure, fragility curves and 

repair rate curves are used to represent damage to these components. In this illustration, we 

use seismic fragility and repair rate curves for water systems based on the American 

Lifelines Alliance (ALA) guidelines (ALA, 2001), which are also used in the HAZUS-MH 

software (FEMA, 2003). Seismic fragility curves are typically based on PGA for above 

ground WN facilities (e.g. pumping stations, tanks and treatment plants), while pipelines use 

repair rate curves based on PGD and PGV. Seismic fragility and repair rate curves from 

HAZUS-MH have been adopted in recent WN modeling software, such as GIRAFFE – 

Graphical Iterative Response Analysis for Flow Following Earthquake (Shi & O’Rourke, 

2008; Wang, 2006) and MUNICIPAL – Multi-Network Interdependent Critical 
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Infrastructure Program for the Analysis of Lifelines (Loggins et al., 2013). Pumps with a 

damage level corresponding to extensive damage or collapse are removed from the model 

and replaced with a linear element that allows water to flow through the node, with no 

additional static pressure head. This modeling representation is meant to reflect the 

assumption that pump bypass lines allow flow due to pressure already in the pipes. 

Similarly, extensively damaged or collapsed tanks are removed from the hydraulic model 

and thus are no longer a water source for the system. Pipe damage in the WN is categorized 

as either leaks or breaks, with different repair rate curves, depending on both PGD and PGV. 

Number and location of breaks and leaks along the pipe follow a Poisson process, with the 

mean value set to the repair rate. A pipe leak is modeled as a fictitious pipe of cross-

sectional area equal to the orifice (leak) area, with one end connected to the leaking pipe and 

the other end open to the atmosphere to simulate an empty reservoir. For leaks, water loss is 

calculated based on idealized orifice flow that does not include a discharge coefficient:

(2)

where Q is the volumetric flow, A is the orifice area, g is gravitational acceleration, Δp is the 

differential pressure between the pipe and the atmosphere, and γw is the specific weight of 

water. A check valve prevents backflow from an artificial reservoir. A broken pipe is 

replaced with two pipes connected to artificial reservoirs with check valves. The artificial 

reservoirs with backflow prevention allow the simulation of water loss due to pipe damage.

For each component, HAZUS-MH also has restoration curves that provide the conditional 

probability of restoration for a given initial damage at a given time after failure. We adopt 

HAZUS-MH’s restoration curves also in this illustration. These curves, as fragility and 

repair rate curves, are primarily based on available empirical data and expert judgment.

Physical damage to individual components of the EPN (e.g. generation plants, substations, 

and distribution circuits) is also represented by fragility curves (e.g. Pires et al., 1996; Vanzi, 

1996). In this illustration, we use fragility curves included in HAZUS-MH (FEMA, 2003), 

while restoration curves are provided by G&E Engineering Systems (1994).

4.3. Dependency models for water and electric power systems

Several works in recent years focused on the physical dependency between potable WN and 

EPN, because of its importance in the recovery of a community and because it is among the 

most intuitive to understand and model (e.g. Adachi & Ellingwood, 2008; Franchin & 

Cavalieri, 2015; Grigg, 2002, 2003; Kim et al., 2007). As presented in Kim et al. (2007), the 

probability of the loss of functionality of a node in the WN due to a power outage is 

conditional to the simultaneous failure of each one of the supporting nodes of the EPN. In 

this illustration, failure of an element in the WN occurs either as the direct failure of an 

element due to the earthquake or as the cascading loss of functionality due to the failure of 

supporting elements. In that sense, this conditional probability represents the strength of the 

dependency between the two networks. In this paper, following the methodology described 
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in Section 2, table P(WN,EPN) = A(WN,EPN)·L(WN,EPN) provides the dependency of the WN 

on the EPN. According to the proposed methodology then, a conditional probability of 

failure equal to 0 means that the elements of the WN are decoupled from the EPN. WN 

elements with backup power units, that can supply the needed electric power in case of 

failure of the EPN, are an example of such decoupled situation. Conversely, a conditional 

probability of failure of 1 means that a WN element fails if the supporting EPN element(s) 

fails, (e.g. when backup units are not available).

4.4. Functionality models for water and electric power systems

To evaluate the functionality of a damaged WN, network connectivity analyses can provide 

information about the possibility of water delivery from source to demand nodes. In 

addition, hydraulic analysis is needed to model whether a system can supply sufficient 

quantity, pressure levels, and water quality for satisfying social functions (e.g. Bonneau & 

O’Rourke, 2009; Javanbarg & Takada, 2010; Tabucchi et al., 2010). Models of the 

functionality of WN can be broadly classified as demand-driven or pressure-driven. Among 

the most widely used hydraulic simulation tools for water distribution networks is the 

demand-driven software package EPANET (Rossman, 2000). However, in EPANET, if the 

pressure at a node is insufficient to satisfy the demand, negative pressure errors are raised. 

The hydraulic analysis of water systems under pressure-deficient conditions is an open 

research area (e.g. Piller & Van Zyl, 2009; Todini, 2003; Trifunovic, 2012). The EPANET-

EMITTER package developed by Pathirana (2010) uses emitters in an iterative pressure-

driven adaptation of the EPANET solver. Emitters are openings (e.g. pipe leaks or breaks) 

that exit to the atmosphere at demand nodes to represent a pressure-dependent component of 

demand. The analysis in this paper uses the EPANET-EMITTER software because of its 

modest input data requirements at the level of detail appropriate for community-level 

analysis (like the one considered in the following case study), and because of its 

applicability to a large-scale extended-period simulation.

The possibility of cross-contamination resulting from pipe breaks, leaks, and low pressures 

in the network is a water-quality concern that can be a significant problem in post-event 

system recovery. Total coliform (e.g. E. Coli) tests can signal the possible presence of 

harmful bacteria, but there may be a considerable lag time before their detection. Since 

residual chlorine can slow the growth of bacteria, chlorine levels from different areas of the 

network are often used to indicate local risk of contamination. Most state regulations require 

water quality testing anywhere pressure falls below a minimum value that (depending on the 

state) varies between 130 and 138 kPa (15 and 20 psi) and issue boil water notices to require 

repeated testing until potentially harmful compounds are no longer detectable (NJDEP, 

2016; USEPA, 2002). The simplifying assumption of non-decaying, non-interacting 

chemicals for water quality modeling is adopted in this paper, consistently with some of the 

most common water distribution models with contaminant transport (Alfonso et al., 2010; 

Guidorzi et al., 2009; Kumar et al., 2010).

EPN functionality models can be used to describe the operational state of the components 

and the network as a whole. The performance of the EPN after a hazard event depends on 

the extent of physical damage to the individual network components, however only a power 
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flow analysis allows us to determine whether the power demand at a given node is satisfied 

(e.g. Cavalieri et al., 2014; Eusgeld et al., 2009; Modaressi et al., 2014; Pires et al., 1996). 

However, in the illustration, the focus is on the WN functionality, therefore the level of detail 

required to perform a power flow analysis is not assumed for the Centerville testbed, thereby 

reducing the input data requirements and simplifying the analysis.

5. The Centerville case study

The six-step procedure described in Section 3 is applied to the virtual community of 

Centerville to simulate the damage and recovery of a WN and its dependency on the EPN 

when subject to a seismic event. The Centerville virtual community is developed as a testbed 

for the NIST-funded Center of Excellence for Community Resilience (http://

resilience.colostate.edu) with the purpose of testing procedures and methodologies 

(Ellingwood, 2016). Centerville is representative of a typical mid-size city, with 

approximately 50,000 inhabitants. The adopted simplified, aggregated models of the WN 

and EPN have a resolution sufficient for assessing their performance at a community scale 

under hazard events.

5.1. Application of the six-step procedure to the Centerville WN and EPN

Step 1: Generate infrastructure network models. Figure 2 shows the WN and EPN for 

Centerville. The WN has 14 demand nodes, 2 tanks, and 5 junctions connected by 24 large-

diameter pipelines. A reservoir with a treatment plant and pumping station provides water to 

the network, with a backup source of water from the northeastern well. Small diameter 

distribution lines that receive water from large diameter trunk lines are included in the 

demand nodes. The EPN of Centerville consists of 1 power plant, 1 transmission substation, 

1 main grid substation, 2 distribution substations, 3 sub-distribution substations and 24 

towers or poles, connected by transmission, distribution and sub-distribution lines. The 

topologies of the WN and EPN provide us the adjacency tables along the main diagonal of 

the augmented adjacency table, AWN and AEPN, respectively.

Step 2: Generate hazard for network area. We consider an earthquake of magnitude 6.5 

located approximately 25 km southwest of Centerville. Figure 3 shows the maps of the PGD, 

PGV, and PGA. These have been obtained from the Fernandez and Rix (2006) GMPE for the 

mid-western United States.

Step 3: Assess physical damage of network components. The intensity measures are applied 

to each WN and EPN element and their damage state is evaluated with the respective 

fragility and repair curves from HAZUS-MH software (FEMA, 2003), as described in 

Section 4.2. In the representation of the WN of Centerville, only the large diameter trunk 

lines are represented. To calculate the repair rate for those pipelines, the pipe length is 

divided into segments, the intensity measures are determined at the ends of each segment, 

and the repair rate for each pipe segment is set to the average value. Following a procedure 

similar to that in GIRAFFE (Shi & O’Rourke, 2008; Wang, 2006), the demand at nodes (that 

include small diameter distribution lines) is temporarily increased to simulate pipe damage 

and leakage.
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Step 4: Update network damage state for dependencies. The WN and EPN are coupled to 

model the dependency of the WN system on the EPN system and to capture the impact of 

failures in one network EPN on the functionality of the other network WN. The dependency 

of the WN on the EPN functionality is evaluated following the methodology described in 

Section 2. Insets A, B, and C in Figure 2 show the WN and EPN node dependencies. The 

auxiliary pumping station PS3 depends on EPN node P15; pumping station PS2 at the 

central water treatment plant depends on EPN node P14; and pumping station PS1 at 

wellfield depends on EPN node P28. The dependencies between WN and EPN are modelled 

with the out-of-diagonal adjacency table, AWN,EPN, which has values equal to 1 for the node 

pairs just described and zeroes for all of the other terms. The augmented adjacency table 

(Equation (1)) in this case is written as

(3)

Since EPN is assumed not to depend on WN, the matrix AEPN,WN will be multiplied by 

LEPN,WN = 0. Two limit cases are used to describe the dependency of the WN on the EPN: a 

likelihood table L(WN,EPN) having  and, alternatively, , ∀i ∈ WN, 

j ∈ EPN. In the first case (referred as WN + EPN), since each WN node is connected with 

only one node of the EPN, a power outage at any of the three EPN supporting nodes (P14, 

P15, and P28) fails the corresponding WN pumping station nodes (PS2, PS3 and PS1). In 

this case, pumping station nodes are removed from the network model when either their 

direct damage level exceeds a given threshold or the supporting EPN nodes fail. In the 

second case (referred as WN), the WN is decoupled from the EPN and pumping station 

nodes are removed from the model only when their direct damage level exceed a given 

threshold (but in this case they do not rely on the EPN to function).

Step 5: Assess network functionality loss. The network damage state is input to the 

functionality assessment model. The functionality model first performs a baseline hydraulic 

simulation of the WN without damage. A daily average demand of water is associated to 

each one of the demand nodes of Centerville. Figure 4 shows three patterns for water 

demand relative to the baseline demands: residential (R), commercial (C) and industrial (I). 

The figure shows for each hour of a day the value of the multiplier of the daily average 

demand of water. The percentage of nodes that meet pressure, demand, and water quality 

requirements relative to the baseline solution is used to evaluate the post-event functionality 

of the WN system. However, the nodal water baseline demand may change following a 

disruptive event, for example due to leaks, changes in day-to-day behavior, and evacuations 

or relocations, affecting the percentage of nodes that meet the demand and pressure 

thresholds.

Step 6: Assess recovery time for network functionality. At each time step, the network 

damage and functionality are updated from the previous time step using the restoration 

curves from the HAZUS-MH software (FEMA, 2003). In the illustration, for the case WN + 
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EPN, the recovery of non-functional pumping stations depends both on their own recovery 

time and on the recovery time of the supporting EPN nodes.

The iterations (involving Steps 4, 5, and 6) are repeated until the WN has achieved 100% 

baseline performance for 24 consecutive hours, which is the recovery time for that iteration. 

We consider the mean value of recovery time for the analyses when comparing the WN 

without EPN dependency (WN), and with EPN dependency (WN + EPN). We use a Monte 

Carlo Simulation (MCS) to capture the uncertainties in the problem. The described six-step 

procedure constitutes a single run of the MCS. The uncertainties accounted for in this 

illustration are in the assessment of the physical damage of the network components (Step 

3), in the dependencies (Step 4), and the recovery time for network functionality (Step 6). 

Uncertainties not modeled include those in the initial network characteristics (Step 1), in the 

hazard scenario (Step 2), since only one case is considered and each run of the MCS has the 

same values of seismic intensity measures, and in the models for the flow analysis (Step 5).

5.2. Results

To assess the resilience of the Centerville’s WN and the role of its dependency on the EPN, 

Figure 5 shows two functionality metrics for recovery. The first metric indicates the 

percentage of demand nodes for which the demand met is greater than or equal to the 

demand required at the corresponding time of day relative to the baseline demand of 100%. 

Immediately after the hazard event (at time 0), WN flow also includes leakage. For each 

node n, with a baseline demand greater than zero, the threshold to measure flow delivered 

 is

(4)

where  is the flow delivered to node n during time step i, and  is the baseline demand 

for node n during time step i . The second metric in Figure 5 indicates the percentage of 

nodes meeting a pressure threshold of at least 138 kPa (20 psi). This threshold is sometimes 

used as a measure of fire protection capacity (e.g. Davis et al., 2012). After a hazard event, 

the additional water flow required for fire-fighting would likely reduce available flows and 

surrounding pressures below 138 kPa (20 psi).

The curves in Figure 5 represent the value of the sample mean X̄ and the sample standard 

deviation S of the considered functionality metrics as a function of recovery time. (Note that 

we do not assume any probability density function for the functionality metrics). Figures 5 

and 6 show the recovery progress of the WN in meeting flow and pressure requirements in 

two different ways. Hourly demand satisfied in a damaged system may fluctuate 

substantially, as shown in Figure 5. Though cyclic demand patterns over 24 h do affect the 

percentage of baseline demand satisfied, the fluctuations can be misleading, conveying a 

more optimistic picture of system functionality during off-peak times, when pressure is 

easier to maintain. To better visualize the progress of system recovery, Figure 6 provides 
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smoother curves for each metric, obtained by shading the area between the minimum and 

maximum values observed during the previous 12 h.

Figures 5 and 6 include plots of demand and pressure recovery of the cases WN and WN + 

EPN. Because of the nature of the dependencies, the WN + EPN system performance 

generally serves as a lower bound for the performance of the WN. This relationship is 

manifest in several features of the plots in Figures 5 and 6. Most notably, EPN dependencies 

result in longer recovery times. Average functionality, plotted in Figures 5 and 6, is taken 

here to be the mean of each functionality metric over all trials at each time step. Table 1 

provides sample mean and standard deviation, and a 95% confidence interval for the mean 

of the recovery time of each functionality metric. Recovery time is taken here to be the 

amount of time after the event at which each metric first returns to 100% of its baseline 

value for 24 consecutive hours. The recovery time to meet the nodal baseline demand and 

pressure metrics increased from nominally 2–3 days for the WN with a functional EPN, to a 

recovery time of 6 days for the WN + EPN.

Three additional plot characteristics may be taken into account for explaining longer 

recovery times and generally lower functionality during recovery efforts in the WN + EPN 

than in the WN. First, the minimum values of demand and pressure functionality metrics are 

lower for the WN + EPN than for the WN. In both systems, the lowest point appears to 

occur around for about12–18 h. The lower minimum performance of the WN + EPN could 

be attributable to the steeper decline in service during the first 12–18 h, which would support 

the theoretical findings of Buldyrev et al. (2010), that interdependent systems fail more 

abruptly than isolated ones. Second, the shape of the recovery curves of the functionality 

metrics also imply more rapid recovery of the WN, compared to the WN + EPN (for demand 

and pressure, this is seen more easily in Figure 6). This is consistent with the fact that two 

systems need to recover from the event, instead of only one system. The shape of the 

recovery curves for the WN + EPN system experiences a more gradual return to full 

functionality (longer time constant). Third, due to the presence and the possible failure of a 

larger number of components, the coupled WN + EPN system has higher standard deviations 

than the WN system in each of the functionality metrics. It is outside the scope of this paper 

to set an acceptable threshold for the sample standard deviation, as this may depend on 

several factors, including economical and societal ones. However, we note that a greater 

standard deviation reflects a higher level of uncertainty in the functionality assessment and 

recovery times for the WN + EPN than for the WN system.

Figures 5 and 6 are generated assuming an unchanged baseline demand; however, the 

baseline demand may change in the aftermath of a damaging event as described in Step 5 of 

the proposed procedure. Figure 7 shows a sensitivity analysis for the baseline nodal demand 

and pressure met as a function of time. Values of 60 and 120% of the initial nodal baseline 

demand (100%) are considered. The WN performance depends on the actual post-event 

nodal demand of water of the community. The lower baseline demand of 60%, reflecting a 

reduced population, is more easily satisfied. The higher baseline demand of 120%, reflecting 

an increase in population, satisfies less of the peak demand periods. The sensitivity analysis 

in Figure 7 refers to a single run of the MCS; it is a preliminary approach to assess change of 

the baseline demand, which is assumed to change uniformly, with a global change of scale. 
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Further studies are needed to address the effects of possible patterns in the demand change 

as well as to include uncertainties in damage state and recovery of the network elements.

In addition to the functionality metrics of Figure 5, for the assessment of the WN resilience, 

it is of critical importance to monitor the water quality. The curves in Figure 8 represent the 

value of the sample mean X̄ and the sample standard deviation S of the functionality metric 

used to monitor water quality, as a function of recovery time for the WN and the WN + 

EPN. The ‘boil water’ metric imitates the process of issuing and lifting boil water notices at 

local demand nodes. Due to low pressures and pipe ruptures, potential sources of cross-

contamination may necessitate the local or global issuance of a boil water notice within the 

WN. If the potential sources of contamination can be isolated, the boil water notice is issued 

only for the local areas affected. When the potential for contamination is widespread, a boil 

water notice is issued for the entire system. In Figure 8, a system-wide boil notice issuance 

is set to occur if 50% or more nodes are affected by contamination. Different criteria may be 

used for other systems (such as WN with multiple pressure zones), as well as in a WN where 

more detailed operational changes, such as valve closures, are modeled. After flushing each 

contaminated node, there is a delay of 24 h to allow for updated results of bacteriological 

testing before the boil water notice is lifted. We use water quality transport modeling to 

determine the percentage of nodes free of potential cross-contamination, reported as ‘quality 

met’ in Table 1. Table 1 shows that the boil water issuance is a more stringent indicator of 

when water can be safely consumed by the community. The recovery time to meet the nodal 

baseline quality met and boils notice metrics increases from nominally 4–6 days for the WN, 

to a recovery time of 8–10 days for the WN + EPN. Similar conclusions can be drawn for 

the water quality metric in Figure 8 as for the nodal demand and pressure metrics in Figures 

5 and 6; dependency of the WN on the EPN results in fewer demand nodes being satisfied 

and a longer recovery time.

6. Conclusions

This paper presents a probabilistic approach to modeling network resilience that considers 

dependency on other networks and that incorporates both physical damage and network 

functionality to estimate system recovery as a function of time. The paper proposes a novel 

methodology to model network dependency/interdependency and integrates it to models of 

damage, functionality and recovery at a community system scale in a comprehensive six-

step procedure, applicable to any networks and hazards. The proposed procedure allows 

quantification of the effects of damage on network functionality, and the effect of 

dependency on other networks for selected functionality metrics.

As an illustration, the procedure has been applied to the case study of the potable WN of 

Centerville, depending on the EPN. The considered functionality metrics for the WN are 

nodal demand met, nodal pressure met, nodal quality met, and nodal boil water notice. The 

case study results demonstrate that the time to recover network functionality following a 

hazard event increases when one network is dependent on another network. The additional 

failures in the dependent water system due to EPN damage cause a faster decline in water 

system functionality, resulting in a greater overall loss of service. Although recovery begins 

around the same time in both systems, it concludes significantly later in all recovery metrics 
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for the dependent system than for the isolated system. The recovery time to meet the nodal 

metrics of ‘demand met’ and ‘pressure met’ increases from nominally 2–3 days for a WN 

without dependency on an EPN, to 6 days for a WN with dependency on the EPN. Similarly, 

the recovery time of network capacity to satisfy the ‘quality met’ and ‘boil notice’ metrics 

increases from nominally 4–6 days for a WN without dependency on an EPN to 8–10 days 

for a WN with dependency on an EPN.

The proposed procedure relies upon fragility, repair rate and restoration curves for network 

components to assess system-level performance following a hazard event and the subsequent 

time to recover network functionality. The case study examined an earthquake scenario 

adopting fragility, repair rate and restoration curves from the HAZUS-MH software. These 

curves are widely used; however, many of them are based primarily upon expert opinion and 

may be subject to a high level of uncertainty. The modularity of the proposed methodology 

allows the user to update the adopted curves and models. Different hazards may be 

considered and new models of fragility and repair rate curves may be implemented, 

including damage observations from recent events. Different levels of physical dependency 

strength may be integrated in the proposed methodology, changing the values in the 

likelihood tables, as well as other natures of dependencies and interdependencies (e.g. 

geographical, cyber and logical) and time dependent effects (e.g. deterioration). Finally, in 

resilience modeling, great attention needs to be devoted to the recovery process. The 

recovery rate of system components depends on recovery strategies and the amount, rate and 

prioritization of resource mobilization, factors that are difficult to predict and to model. 

Though these aspects are not fully modeled in the current study, they may be integrated into 

the proposed procedure throughout the iterative process of Steps (4)–(6) (e.g. by replacing 

the recovery strategy based on HAZUS-MH curves with more specific, discrete recovery 

actions).

Acknowledgments

Funding

The Center for Risk-Based Community Resilience Planning is a NIST-funded Center of Excellence; the Center is 

funded through a cooperative agreement between the US. National Institute of Science and Technology and 

Colorado State University (NIST Financial Assistance [grant number 70NANB15H044], with a subcontract issued 

to the University of Illinois at Urbana–Champaign. We thank our colleagues from The Center for Risk-Based 

Community Resilience Planning who provided insight and valuable expertise that greatly assisted the research. 

References to any specific commercial products do not imply authors’ endorsement.

References

Adachi T, Ellingwood BR. Serviceability of earthquake-damaged water systems: Effects of electrical 

power availability and power backup systems on system vulnerability. Reliability Engineering & 

System Safety. 2008; 93:78–88.

ALA. Seismic fragility formulations for water Systems: Part 1 – guideline, American lifelines alliance, 

April, ASCE. 2001. Retrieved from http://www.americanlifelinesalliance.org/

Alfonso L, Jonoski A, Solomatine D. Multiobjective optimization of operational responses for 

contaminant flushing in water distribution networks. Journal of Water Resources Planning and 

Management. 2010; 136:48–58. DOI: 10.1061/(ASCE)0733-9496(2010)136:1(48)

Applied Technology Council. Critical assessment of lifeline system performance: Understanding 

societal needs in disaster recovery. Gaithersburg, MD: 2016. Prepared for US Department of 

Guidotti et al. Page 16

Sustain Resilient Infrastruct. Author manuscript; available in PMC 2017 December 22.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

http://www.americanlifelinesalliance.org/


Commerce National Institute of Standards and Technology, Engineering Laboratory. NIST GCR 

16-917–39

Ayyub BM. Systems resilience for multihazard environments: Definition, metrics, and valuation for 

decision making. Risk Analysis. 2014; 34:340–355. [PubMed: 23875704] 

Bocchini, P., Deco, A., Frangopol, DM. Probabilistic functionality recovery model for resilience 

analysis. In: Biondini, F., Frangopol, DM., editors. Bridge Maintenance, Safety, Management, 

Resilience and Sustainability. UK: CRC Press, Taylor and Francis; 2012. p. 1920-1927.

Bonneau, AL., O’Rourke, TD. Water supply performance during earthquakes and extreme events; 

Mceer. 2009. p. 234Retrieved from http://books.google.com/books/about/

Water_supply_performance_during_earthqua.html?id=ifVDAQAAIAAJ&pgis=1

Bruneau M, Chang SE, Eguchi RT, Lee GC, O’Rourke TD, Reinhorn AM, … von Winterfeldt D. A 

framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake 

Spectra. 2003; 19:733–752.

Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S. Catastrophic cascade of failures in 

interdependent networks. Nature. 2010; 464:1025–1028. [PubMed: 20393559] 

Cavalieri F, Franchin P, Gehl P, Khazai B. Quantitative assessment of social losses based on physical 

damage and interaction with infrastructural systems. Earthquake Engineering & Structural 

Dynamics. 2012; 41:1569–1589.

Cavalieri F, Franchin P, Buritica Cortes JAM, Tesfamariam S. Models for seismic vulnerability 

analysis of power networks: Comparative assessment. Computer-Aided Civil and Infrastructure 

Engineering. 2014; 29:590–607.

Chang SE. Infrastructure resilience to disasters. The Bridge. 2014; 44:36–41.

Cimellaro GP, Reinhorn AM, Bruneau M. Seismic resilience of a hospital system. Structure and 

Infrastructure Engineering. 2010; 6:127–144.

Cornell C. Engineering seismic risk analysis. Bulletin of Seismological Society of America. 1968; 

58:1583–1606.

Davis, CA., O’Rourke, TD., Adams, ML., Rho, MA. Case study: Los angeles water services 

restoration following the 1994 northridge earthquake. Proceedings of 15th world conference 

earthquake engineering (15WCEE); Lisbon, Portugal. 2012. Paper No 364

Didier, M., Sun, L., Ghosh, S., Stojadinovic, B. Post-earthquake recovery of a community and its 

electrical power supply system. In: Papadrakakis, M.Papadopoulos, V., Plevris, V., editors. 

COMPDYN 2015, 5th ECCOMAS thematic conference on computational methods in structural 

dynamics and earthquake engineering; Crete Island. 2015. 

Didier, M., Grauvogl, B., Steentoft, A., Ghosh, S., Stojadinovic, B. Seismic resilience of the Nepalese 

power supply system during the 2015 Gorkha earthquake. Proceedings of 16th world conference 

on earthquake engineering (16WCEE); Santiago, Chile. 2017. Paper N° 927

Ditlevsen, O., Madsen, HO. Structural reliability methods. New York, NY: Wiley; 1996. 

Douglas, J. Ground motion prediction equations 1964–2010, Rpt PEER 2011/102. UC Berkeley: 

Pacific Earthquake Engineering Research Center; 2011 Apr. 

Dudenhoeffer, DD., Permann, MR., Manic, M. CIMS: A framework for infrastructure interdependency 

modeling and analysis. In: Perrone, LF.Wieland, FP.Liu, J.Lawson, BG.Nicol, DM., Fujimoto, 

RM., editors. Proceedings of the 2006 winter simulation conference. 2006. p. 478-485.

Ellingwood BR. The centerville virtual community: A fully integrated decision model of interacting 

physical and social infrastructure systems. Sustainable and Resilient Infrastructure. 2016 Under 

review. 

Eusgeld I, Kroger W, Sansavini G, Schlapfer M, Zio E. The role of network theory and object-oriented 

modeling within a framework for the vulnerability analysis of critical infrastructures. Reliability 

Engineering & System Safety. 2009; 94:954–963.

FEMA. Multi-hazard loss estimation methodology, earthquake model, HAZUS-MH 2.1 Technical 

Manual, 1–699. Washington, DC: Federal Emergency Management Agency; 2003. 

Fernandez, JA., Rix, GJ. Soil attenuation relationships and seismic hazard analyses in the Upper 

Mississippi Embayment. Proceedings of the 8th US National Conference on Earthquake 

Engineering; San Francisco, California. 18–22; 2006 Apr. Paper No. 521

Guidotti et al. Page 17

Sustain Resilient Infrastruct. Author manuscript; available in PMC 2017 December 22.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

http://books.google.com/books/about/Water_supply_performance_during_earthqua.html?id=ifVDAQAAIAAJ&pgis=1
http://books.google.com/books/about/Water_supply_performance_during_earthqua.html?id=ifVDAQAAIAAJ&pgis=1


Franchin, P. A computational framework for systemic seismic risk analysis of civil infrastructural 

systems. In: Pitilakis, K.Franchin, P.Khazai, B., Wenzel, H., editors. SYNER-G: Systemic seismic 

vulnerability and risk assessment of complex urban, utility, lifeline systems and critical facilities. 

Dordrecht: Springer; 2014. p. 23-56.

Franchin P, Cavalieri F. Probabilistic assessment of civil infrastructure resilience to earthquakes. 

Computer-Aided Civil and Infrastructure Engineering. 2015; 30:583–600.

Engineering Systems (G&E). NIBS earthquake loss estimation methods. Technical Manual (Electric 

Power Systems). 1994; R23:1–68.

Gardoni P, Der Kiureghian A, Mosalam KM. Probabilistic capacity models and fragility estimates for 

reinforced concrete columns based on experimental observations. Journal of Engineering 

Mechanics. 2002; 128:1024–1038. DOI: 10.1061/(ASCE)0733-9399(2002)128:10(1024)

Gardoni P, Mosalam KM, Der Kiureghian A. Probabilistic seismic demand models and fragility 

estimates for RC bridges. Journal of Earthquake Engineering. 2003; 7:79–106.

Gardoni, P., LaFave, JM. Multi-hazard approaches to civil infrastructure engineering: Mitigating risks 

and promoting resilience. In: Gardoni, P., LaFave, JM., editors. Multi-hazard Approaches to Civil 

Infrastructure Engineering. Switzerland: Springer International Publishing; 2016. p. 3-12.

Grigg NS. Surviving disasters: Learning from experience. American Water Works Association. 2002; 

95:64–75.

Grigg NS. Water utility security: Multiple hazards and multiple barriers. Journal of Infrastructure 

Systems. 2003; 9:81–88. DOI: 10.1061/(ASCE)1076-0342(2003)9:2(81)

Guidorzi M, Franchini M, Alvisi S. A multiobjective approach for detecting and responding to 

accidental and intentional contamination events in water distribution systems. Urban Water 

Journal. 2009; 6:115–135. DOI: 10.1080/15730620802566836

Guidotti R, Gardoni P, Chen Y. Network reliability analysis with link and nodal weights, and auxiliary 

nodes. Structural Safety. 2016; doi: 10.1016/j.strusafe.2016.12.001

Guikema S, Gardoni P. Reliability estimation for networks of reinforced concrete bridges. ASCE 

Journal of Infrastructure Systems. 2009; 15:61–69.

Javanbarg, MB., Takada, S. Seismic reliability assessment of water supply systems. In: Furuta, 

H.Frangopol, DM., Shinozuka, M., editors. Safety, reliability and risk of structures infrastructures 

and engineering systems. London: Taylor & Francis Group; 2010. p. 3455-3462.

Jia, G., Tabandeh, A., Gardoni, P. Life-cycle analysis of engineering systems: Modeling deterioration, 

instantaneous reliability, and resilience. In: Gardoni, P., editor. Risk and Reliability Analysis: 

Theory and Applications. Switzerland: Springer; 2016. 

Kang WH, Song J, Gardoni P. Matrix-based system reliability method and applications to bridge 

networks. Reliability Engineering and System Safety. 2008; 93:1584–1593.

Kim, YS., Spencer, BF., Jr, Song, J., Elnashai, AS., Stokes, T. Seismic performance assessment of 

interdependent lifeline systems. MAE Center CD Release 0716. 2007. Retrieved from http://

mae.cee.illinois.edu/publications/reports/Report07-16.pdf

Kumar, J., Brill, ED., Mahinthakumar, G., Ranjithan, R. Identification of reactive contaminant sources 

in a water distribution system under the conditions of data uncertainties. Proceedings of the world 

environmental & water resources congress, challenges of change; Tucson, AZ, USA. 2010. p. 

4347-4356.

Kurtz N, Song J, Gardoni P. Seismic reliability analysis of deteriorating representative US West Coast 

bridge transportation networks. ASCE Journal of Structural Engineering. 2015; 142:C4015010, 1–

11. DOI: 10.1061/(ASCE)ST.1943-541X.0001368

Lee EE, Mitchell JE, Wallace WA. Restoration of services in interdependent infrastructure systems: A 

network flows approach. IEEE Transactions on Systems, Man and Cybernetics Part C: 

Applications and Reviews. 2007; 37:1303–1317. DOI: 10.1109/TSMCC.2007.905859

Lee YJ, Song J, Gardoni P, Lim HW. Posthazard flow capacity of bridge transportation networks 

considering structural deterioration of bridges. Structure and Infrastructure Engineering. 2011; 

7:509–521.

Loggins, RA., Wallace, WA., Cavdaroglu, B. MUNICIPAL: A decision technology for the restoration 

of critical infrastructures. Industrial and systems engineering research conference; Norcross, GA, 

USA. 2013. p. 1767-1776.

Guidotti et al. Page 18

Sustain Resilient Infrastruct. Author manuscript; available in PMC 2017 December 22.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

http://mae.cee.illinois.edu/publications/reports/Report07-16.pdf
http://mae.cee.illinois.edu/publications/reports/Report07-16.pdf


Modaressi, H., Desramaut, N., Gehl, P. Specification of the vulnerability of physical systems. In: 

Pitilakis, K.Franchin, P.Khazai, B., Wenzel, H., editors. SYNER-G: Systemic seismic vulnerability 

and risk assessment of complex Urban, utility, lifeline systems and critical facilities. Netherlands: 

Springer; 2014. p. 131-184.

Nan C, Sansavini G. Multilayer hybrid modeling framework for the performance assessment of 

interdependent critical infrastructures. International Journal of Critical Infrastructure Protection. 

2015; 10:18–33.

NJDEP. Water main break guidance manual. Trenton: New Jersey Department of Environmental 

Protection, Division of Water Supply & Geoscience Mail Code 401-04Q P.O. Box 420 Trenton NJ; 

2016. Retrieved from http://www.nj.gov/dep/watersupply/pdf/wmb-guidance.pdf

O’Rourke MJ, Ayala G. Pipeline damage due to wave propagation. Journal of Geotechnical 

Engineering. 1993; 119:1490–1498.

O’Rourke MJ, Deyoe E. Seismic damage to segmented buried pipe. Earthquake Spectra. 2004; 

20:1167–1183. DOI: 10.1193/1.1808143

Ouyang M. Review on modeling and simulation of interdependent critical infrastructure systems. 

Reliability Engineering & System Safety. 2014; 121:43–60.

Ouyang M, Pan Z, Hong L, He Y. Vulnerability analysis of complementary transportation systems with 

applications to railway and airline systems in China. Reliability Engineering & System Safety. 

2015; 142:248–257.

Pathirana A. EPANET2 desktop application for pressure driven demand modeling. Water Distribution 

Systems Analysis. 2010; 2005:65–74. DOI: 10.1061/41203(425)8

PCCIP. Critical foundations: Protecting America’s infrastructures, the report of the president’s 

commission on critical infrastructure protection. 1997 Oct. Retrieved from https://

www.fas.org/sgp/library/pccip.pdf

PPD-21. Presidential policy directive/ PPD-21 – Critical infrastructure security and resilience. 

Washington, DC: The White House; 2013 Feb 12. 

Piller, O., Van Zyl, JE. Pressure-driven analysis of network sections supplied via high-lying nodes. In: 

Boxall, J., Maksimovic, C., editors. Proceedings of the computing and control in the water 

industry, integrating water systems. London: Taylor & Francis Group; 2009. p. 257-262.

Pires JA, Ang AHS, Villaverde R. Seismic reliability of electrical power transmission systems. Nuclear 

Engineering and Design. 1996; 160:427–439. DOI: 10.1016/0029-5493(95)01119-6

Rinaldi SM, Peerenboom JP, Kelly TK. Identifying, understanding, and analyzing critical 

infrastructure interdependencies. IEEE Control Systems Magazine. 2001; 21:11–25. DOI: 

10.1109/37.969131

Rossman LA. EPANET 2: Users manual. Cincinnati US Environmental Protection Agency National 

Risk Management Research Laboratory. 2000; 38:1–200. DOI: 10.1177/0306312708089715

Sharma N, Tabandeh A, Gardoni P. Resilience analysis: A mathematical formulation to model 

resilience of engineering systems. Sustainable and Resilient Infrastructure. 2016 (submitted). 

Shi P, O’Rourke TD. Seismic response modeling of water supply systems. Mceer-08-0016. 2008; 352 

Retrieved from https://mceer.buffalo.edu/publications/catalog/reports/Seismic-Response-

Modeling-of-Water-Supply-Systems-MCEER-08-0016.html. 

Sun, L., Didier, M., Dele, E., Stojadinovic, B. Probabilistic demand and supply resilience model for 

electric power supply system under seismic hazard. 12th international conference on applications 

of statistics and probability in civil engineering, ICASP12; Vancouver, Canada. 2015. p. 1-8.

Tabucchi T, Davidson R, Brink S. Simulation of post-earthquake water supply system restoration. Civil 

Engineering and Environmental Systems. 2010; 27:263–279. DOI: 10.1080/10286600902862615

Titi, A., Biondini, F., Frangopol, DM. Seismic resilience of deteriorating concrete structures. In: 

Ingraffea, N., Libby, N., editors. Structures Congress 2015. Reston, VA: ASCE; 2015. p. 

1649-1660.

Todini, E. A more realistic approach to the “extended period simulation” of water distribution 

networks. In: Maksimovic, C.Butler, D., Memon, FA., editors. Advances in Water Supply 

Management. Lisse, The Netherlands: Balkema; 2003. p. 173-184.

Trifunovic, N. CRC Press (PhD thesis). UNESCO-IHE Institute for Water Education, Delft University 

of Technology; 2012. Pattern recognition for reliability assessment of water distribution networks. 

Guidotti et al. Page 19

Sustain Resilient Infrastruct. Author manuscript; available in PMC 2017 December 22.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

http://www.nj.gov/dep/watersupply/pdf/wmb-guidance.pdf
https://www.fas.org/sgp/library/pccip.pdf
https://www.fas.org/sgp/library/pccip.pdf
https://mceer.buffalo.edu/publications/catalog/reports/Seismic-Response-Modeling-of-Water-Supply-Systems-MCEER-08-0016.html
https://mceer.buffalo.edu/publications/catalog/reports/Seismic-Response-Modeling-of-Water-Supply-Systems-MCEER-08-0016.html


USEPA. US environmental protection agency, office of ground water and drinking water, standards and 

risk management division. 1200 Pennsylvania Ave., NW Washington DC: 2002. New or repaired 

water mains. Retrieved from https://www.epa.gov/sites/production/files/2015-09/documents/

neworrepairedwatermains.pdf

Vanzi I. Seismic reliability of electric power networks: Methodology and application. Structural Safety. 

1996; 18:311–327. DOI: 10.1016/S0167-4730(96)00024-0

Vespignani A. Complex networks: The fragility of interdependency. Nature. 2010; 464:984–985. 

[PubMed: 20393545] 

Wen RZ, Sun BT, Zhou BF. Field survey of Mw 8.8 Feb. 27, 2010 Chile earthquake and Tsunami. 

Advanced Materials Research. 2011; 250–253:2102–2106.

Wallace, WA., Mendonca, DM., Lee, EE., Mitchell, JE., Chow Wallace, JH. Managing disruptions to 

critical interdependent infrastructures in the context of the 2001 world trade center attack. In: 

Monday, JL., editor. Beyond September 11th: An account of post-disaster research. Boulder, CO: 

Natural Hazards Research and Applications Information Center, University of Colorado; 2003. p. 

165-198.#39

Wang, Y. PhD dissertation. Cornell University; Ithaca: 2006. Seismic performance evaluation of water 

supply systems. 

Watts DJ, Strogatz SH. Collective dynamics of “small-world” networks. Nature. 1998; 393:440–442. 

[PubMed: 9623998] 

Zhang P, Peeta S. A generalized modeling framework to analyze interdependencies among 

infrastructure systems. Transportation Research Part B: Methodological. 2011; 45:553–579. DOI: 

10.1016/j.trb.2010.10.001

Zimmerman R. Social implications of infrastructure network interactions. Journal of Urban 

Technology. 2001; 8:97–119. DOI: 10.1080/106307301753430764

Guidotti et al. Page 20

Sustain Resilient Infrastruct. Author manuscript; available in PMC 2017 December 22.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

https://www.epa.gov/sites/production/files/2015-09/documents/neworrepairedwatermains.pdf
https://www.epa.gov/sites/production/files/2015-09/documents/neworrepairedwatermains.pdf


Figure 1. 
Illustration of the iterative recovery process between dependent systems.
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Figure 2. 
Centerville’s potable WN (top) and EPN (bottom) with the three identified areas of 

dependency of WN on EPN.

Notes: (A) Auxiliary pumping station; (B) Central WTP and pumping station; (C) Well Field 

WTP and pumping station.
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Figure 3. 
Intensity measures (PGD, PGV, and PGA, from left to right) obtained through ground 

motion prediction equations (Fernandez and Rix, 2006).
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Figure 4. 
Daily water demand patterns for residential, commercial, and industrial use.
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Figure 5. 
Percentage of nodes able to satisfy a given demand (top) or pressure (bottom) at each 

recovery time step.
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Figure 6. 
Percentage of nodes able to satisfy a given demand (top) or pressure (bottom) as a function 

of the recovery time (shaded bands show the range of each metric, bounded by solid lines 

representing the minimum and maximum value observed during the previous 12 h).
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Figure 7. 
Sensitivity analysis of the input parameter of nodal demand on demand and pressure met. 

The black line represents the baseline solution (no change in the input parameter ‘nodal 

demand’ in the post-hazard scenario).
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Figure 8. 
Percentage of local demand nodes without issuance of a boil water notice at each recovery 

time step.
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