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Abstract

The mechanisms of goal-directed behavior have been studied using reinforcement learning theory,
but these theoretical techniques have not often been used to address the role of memory systems in
performing behavioral tasks. The present work addresses this shortcoming by providing a way in
which working memory and episodic memory may be included in the reinforcement learning
framework, then simulating the successful acquisition and performance of six behavioral tasks, drawn
from or inspired by the rat experimental literature, that require working memory or episodic memory
for correct performance. With no delay imposed during the tasks, simulations with working memory
can solve all of the tasks at above the chance level. When a delay is imposed, simulations with both
episodic memory and working memory can solve all of the tasks except a disambiguation of odor
sequences task.
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Introduction

Reinforcement learning theory (Sutton and Barto 1998) provides a powerful theoretical
framework for describing problems in which an agent (an animal, robot, etc.) interacts with its
environment by selecting actions and receives a scalar reward signal after each action is taken.
Recently much attention has been paid to the possibility that a similar system is used in the
brains of animals, especially since midbrain dopaminergic neuron firing appears to resemble
the error signal used in this framework (Schultz et al. 1997, Montague et al. 2004, but see
Morris et al. 2006, Redgrave and Gurney 2006). Neural network models of reinforcement
learning that do not rely on dopamine have also been proposed (Hasselmo 2005, Koene and
Hasselmo 2005, Zilli and Hasselmo 2005).

Traditional approaches to reinforcement learning are limited by the requirement that tasks or
environments have the Markov property. Roughly, this requirement means that the optimal
action to take in a particular observed state must depend only on that state and not on the recent
history of the agent. The theory thus does not easily apply to many of the common behavioral
tasks that require an animal to make a decision based on memory of a past state, such as delayed
matching to sample or spatial alternation. Lin and Mitchell (1992) overcame this limitation by
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using order-n Markov chains, in which an agent’s state becomes the set of its n most recent
observations. McCallum (1995) improved on this idea using his utile-distinction learning
approach by which an agent could learn to include aspects of a state from up to a fixed number
of steps in the past into its current state. In this way an agent could act more flexibly by
incorporating only the most relevant of the most recent n observations instead of all of them.
A drawback to this approach is that it still does not overcome the inflexibility that arises from
referring to observations from a fixed number of states in the past.

Part of the flexibility that animals show during behavior arises from their access to multiple
memory systems that provide a variety of information. Two commonly studied memory
systems are working memory (Baddeley 1986) and episodic memory (Tulving 2002). Working
memory has been defined as memory “active and relevant only for a short period of
time” (Goldman-Rakic 1995) whereas episodic memory is a longer lasting memory that allows
one to recall and re-experience personal events (Tulving 2002). A given task might be solvable
using more than one distinct system (Redish 2001), which complicates understanding how an
animal may perform and which memory systems will be used. Here we introduce simple,
abstract forms of these two memory systems in the reinforcement learning framework and
simulate common behavioral tasks from experimental work on memory systems.

First we describe the ideas and implementation of abstract versions of working memory and
episodic memory. Then we demonstrate the memory systems on a few common tasks, some
of which can be solved with either working memory or episodic memory and some by only
one of the two. The tasks are all presented in delayed and non-delayed conditions, where the
simulated effects of the delay prevents the agent from using a working memory strategy, thus
demonstrating whether episodic memory is capable of solving the task.

The primary insight that allowed these tasks to be modeled in this framework was that the
memory systems of an agent can be treated as part of the environment instead of part of the
agent, allowing the agent to take actions upon its memory systems in the same way it takes
actions on its physical environment. Environment in this context does not refer to the common
usage of the word, but rather to the technical definition from reinforcement learning where the
environment can be defined as anything which provides state input to the agent and changes
its state in response to the agent’s actions. Although the memory systems are environment, we
will still refer to “the agent’s working memory,” for instance, where the possessive is meant
to indicate not containment, but rather possession.

Materials and Methods

Reinforcement Learning

Recent work from this lab has shown that reinforcement learning type systems can be
implemented in neural circuits (Hasselmo 2005, Koene and Hasselmo 2005, Zilli and Hasselmo
2005). For the purposes of this paper, however, we used the more common, abstract
implementation of the system, because our focus here was on demonstrating that use of memory
systems can be treated as an active, learned process. These simulations were written in C++
and the source code is available upon request.

We used a tabular, actor-critic temporal difference learning architecture with ε-greedy
exploration (Sutton and Barto 1998). In this architecture, the agent maintains a table of state
values V, where V(s) is the agent’s current estimation of the expected, temporally-discounted
reward that will follow state s (thus more temporally distant rewards are considered as having
less value than immediate rewards of the same magnitude). The agent also maintains a table
of action values Q, where Q(s,a) is the value of taking action a in state s.
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The agent followed a simple policy in which it took the action with the highest action value in
its current state with ties broken randomly, except, with probability 0 ≤ ε ≤ 1 the agent selected
an action completely at random. All state and action values were initialized to 0 at the beginning
of a simulation, so the agent always selected a random action the first time it entered a novel
state. This is the actor half of the architecture.

When the agent takes action a in state s and finds itself in state s′ having received a scalar
reward r, the TD error δ is computed by the critic half of the architecture:

(1)

where 0 ≤ γ ≤1 is a temporal discounting factor (smaller values of γ cause the agent to consider
immediate rewards to be more valuable than distant rewards). This is the difference between
the value of the old state (s) and the sum of the reward signal (r) and the discounted value of
the new state (s′) and is used to update the old state’s value and the action value for the action
just taken.

where α is a learning rate parameter. If δ>0 then V(s) was less than the combined reward and
discounted value of the new state, so V(s) should be increased to provide a better estimate.
Similarly, if δ<0 then the agent’s estimated value of state s was found to be too high and so V
(s) should be decreased. No learning occurs if the predicted state value exactly matches the
sum of the reward and the discounted value of the new state.

To speed up the agent’s learning of the tasks, replacing eligibility traces were used (Singh and
Sutton 1996, Sutton and Barto 1998). With eligibility traces, multiple state and action values
are updated on each step with the update scaled proportional to the amount of time since the
agent last visited the state and took the action. Now receipt of a reward while entering the
current state not only affects values at the previous state but also at the most recently visited
states. Each time the agent leaves state s taking action a, we assign E(s,a)←1 and for all other
states s′ we assign E(s′,a)←λE(s′,a), where λ is a decay coefficient. The learning equations
become:

(2)

(3)

for each pair of s and a. In the simulations, E(s,a) was set to 0 if it was below a threshold value
θ.

In all simulations presented here, α was set to 0.01, γ was set to 0.95, and ε was set to 0.01. λ
was set to 0.25 and θ was set to 0.01 so that at most 4 state-action pairs had non-zero eligibility
trace strengths at any time.

States and Actions

We assume a factored representation of state S = S1×S2×…×Sn, so elements of S are n-tuples
{(x1, x2, …, xn) | x1∈S1, x2∈S2, …}. In the simulations below, there were usually two or three
state elements: the location state SL (numbered square in a gridworld) and the working memory
and episodic memory states SWM and SEP (described below). We thus had S = SL×SWM for
working memory simulations and S = SL×SEP×SWM for episodic memory simulations, where,
for example, each triple is of the form (location, episodic memory contents, working memory
contents), and each such double or triple has its own set of action values. As noted in the results,
in a few tasks an extra state element was used to represent sensory input: olfactory input in the

Zilli and Hasselmo Page 3

Hippocampus. Author manuscript; available in PMC 2008 May 12.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



odor sequence disambiguation task, visual input for barriers in the non-match to position task,
and auditory input in the tone-cued alternation task.

We include two types of actions: motor actions (north, south, east, west) which change the
location state SL, and we introduce two new types of memory actions that change SWM and
SEP.

Notice that, because the agent receives state information reflecting memory and can take
actions affecting memory states, from a physiological point of view we are effectively including
many parts of cortex as a part of the agent’s environment and not of the agent itself. We leave
the specific location of the agent undefined, but it might be thought of as basal ganglia or medial
prefrontal and orbitofrontal cortices, which are thought to be involved in learning and decision
making (Houk et al. 1995, Schoenbaum and Setlow 2001, Krawczyk 2002, O’Reilly and Frank
2006). Our present results, however, do not rely on any particular anatomical locus for the
agent. Sutton and Barto (1998) suggested that muscles and sensory organs, for example, should
be considered environment and not agent. We are simply further restricting the agent to
represent roughly the highest levels of the cortical hierarchy, which can take actions mediated
by neurophysiological interactions with other regions.

Working Memory

The traditional definition of working memory is the ability to maintain a representation of a
stimulus online and to be able to manipulate it mentally (Baddeley 1986), but for our present
purposes we will consider only the former aspect. The first action we introduce is an action
that sets SWM to the current sensory state, keeping that state in memory until it is overwritten
when the next memory action is taken. Until this action is initially taken or if memory is cleared
(e.g. to simulate imposition of a long delay during a task), an extra state representing empty
memory is used. Therefore |SWM| = |SL| + 1, the number of possible working memory states
is one more than the number of possible location states. This functionality is summarized in
Table 1. In future work, this type of action could be extended in a few obvious ways. First, one
could allow multiple working memory “buffers,” allowing a separate action for each buffer,
e.g. states SWM1 and SWM2 with one action to store a sensory state in SWM1 until that storage
action is taken again (and replaces SWM1) and another action to store a sensory state in
SWM2 until that storage action is taken again. Another extension would be to allow separate
actions to buffer the value of a specific state element. For example, one could have separate
working memory buffers for visuo-spatial state and for auditory state, as in the working
memory model of Baddeley and Hitch (1974).

This idea is similar to the more biological neural network model of gating working memory
updating proposed by O’Reilly and Frank (2006). In both mechanisms, the agent learns the
appropriate times in a task at which to buffer stimuli into working memory by increasing the
action value of the working memory action (or gating action in the O’Reilly and Frank 2006
model) at the proper states. The concept also overlaps with the idea of options as described by
Sutton et al. (1999), which are temporally extended actions that change the agent’s policy until
the option terminates, essentially providing the agent a continuing memory of the ongoing
option. Sutton et al. (1999) defined an option formally as a triple <I, π, β> where I is the set of
states where the option is available as an action, π is the policy to be followed for the duration
of the action (i.e. a set of Q-values), and β(s) is a function giving the probability for each state
s that the option will terminate in that state. Thus our working memory concept is roughly
equivalent to a set of options, each with a single initiation state reflecting the specific state
element to be buffered in working memory (i.e. in a two-by-two environment there would be
four options or four possible states to hold in working memory). Because the model uses a
factored state representation in which working memory content is one element, each possible
item in working memory effectively defines a separate policy. With this interpretation, in our
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delayed tasks, the probability of terminating at the location where the delay is enforced is 1
and is 0 elsewhere. However, an item in working memory can also be overwritten at any state
by a new one, at which point the old item is lost. Options, on the other hand, may be nested,
so that by taking one option, then taking another, when the second option terminates the first
one may still apply. Hence the concept of an option and our working memory mechanism are
similar, but distinct in certain details.

Episodic Memory

The next two actions we introduce are episodic memory actions. First, however, we describe
an abstract episodic memory system to motivate the new actions. The two important
characteristics of this memory system are: 1. it is content addressable and 2. it is temporally
indexed (this description is somewhat different from the phenomenological characterization
used by Tulving 2002). Content addressability means that a memory can be elicited from a cue
that is contained as part of the memory (Marr 1971; e.g. given the cue word “breakfast” one
can recall a specific memory containing the concept of breakfast). The term “temporally
indexed” means that once a memory is retrieved, one can “replay” the memory from the
retrieved point as if it were a movie. In contrast, semantic memory is effectively content
addressable memory that lacks a temporal index: one can retrieve specific facts given
associated facts, but there is no sense of temporal progression (e.g. given USA and capital one
might retrieve Washington DC, but the concept of “the next moment in time” given such a
memory is undefined).

We now describe a simple episodic-like memory system designed to model these two
characteristics. A specific mathematical implementation and a biological interpretation for it
can be found in the appendix.

The model maintains a list of the n most recently visited states in order. After each action, the
agent’s previous state is added to the end of the list and the oldest state in the list is removed
(however, no state is removed for the first n steps). This list is the complete episodic memory
of the agent. The agent’s episodic memory state SEP will contain either one state from this list
or an additional state representing “nothing recalled.” Each time the agent takes a spatial
movement action, SEP is reset to “nothing recalled.”

The agent has two actions available to it with which it can interact with its episodic memory.
The first action, “cue retrieval,” finds the most recent instance of the agent’s current state in
the list and sets SEP to that state (or to the “nothing recalled” state if the current state is not
found in the list). The other action, “advance retrieval,” sets SEP to the state following its current
state in the list (or, if SEP is “nothing recalled,” it remains unchanged).

Simulations including the episodic memory system also include a working memory system to
buffer episodic retrieval. Effectively this introduces a third action that stores the current
episodic memory state SEP in working memory.

For some of the simulations below, SEP forms memories of SL to allow retrieval and replay of
sequences of visited locations. The exceptions are: in the tone-cued alternation task, SEP forms
memories of both location and auditory input, in the non-match to position and sample tasks,
SEP forms locations of both location and visual input regarding barriers and levers, respectively,
and in the odor sequence disambiguation task, SEP forms memories only of odors.

The function of these two actions and their interaction with the other environments in the
simulations are summarized in Table 2.
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This mechanism maps closely onto the path readout model of hippocampus proposed by
Hasselmo and Eichenbaum (2005), but differs in that this earlier model treated cuing retrieval
and advancing multiple steps in memory as a single process that occurred automatically at
every step of a simulation, instead of treating the two as separate actions that must be actively
selected, as in the present framework. Thus the important difference is that retrieval of episodes
is now under the control of the agent instead of being automatically performed on every step.
Though, here, as in that model, encoding still happens automatically and constantly (see also
Morris and Frey 1997).

The content addressability in this context also differs somewhat from the traditional definition.
Content addressability as described in Marr (1971) is what has also been described as pattern
completion (O’Reilly and McClelland 1994), a process by which a subset of the representation
of some cue or memory elicits the entire memory directly. The present mechanism introduces
an intermediate indexing step which still allows for a subset of a memory to elicit the complete
memory via the index, but also provides an ordering on the indices so that subsequent memories
can be read out in the proper order. The intermediate step has some similarity with the context
signal used in some models of verbal working memory (Burgess and Hitch 2005) which are
more similar to our episodic mechanism than to our working memory mechanism.

Rewards and Limitations on Actions

The agent was free to take any action in any state; however, some actions did not change the
agent’s state and resulted in a reward of −1. These included attempting to move out of the
environment or into a barrier, attempting to store something in working memory that is already
stored, and attempting to advance episodic retrieval without first cuing retrieval. Also, as is
common in behavioral tasks using T-mazes, the agent was prevented from moving backwards,
here by giving a reward of −1 if the agent attempted to re-enter a location it had just left. In
general, attempting to take any “illegal” action resulted in this negative reward and no state
change. Finally, four tasks (all except spatial alternation and tone-cued spatial alternation) had
an upper limit on the number of steps allowed, 100. When this limit was reached, the episode
ended and was counted as incorrect. For most tasks, the agent received a reward of +9.5 for a
correct response, −6 for an incorrect response, and −0.05 for all other actions to encourage the
agent to find the shortest solution to a task (particularly important when memory actions are
available, to avoid the agent repeatedly taking those actions instead of taking spatial movement
actions). For the odor sequence disambiguation task, the agent received a reward of +1 for
reaching a correct goal state, −5 for an incorrect response, and −0.5 for all other actions. These
values were selected to produce learning at a reasonably fast rate (the odor sequence task
required different values). In many cases, faster learning could be achieved by setting task-
unique reward values.

Results

Before we present results of our simulations of various tasks, one aspect of episodic memory
should be emphasized to make the performance figures more clear. All simulations with
episodic memory also included a working memory system, to allow the agent to hold the
retrieved episodic memory online to guide behavior (a requirement for proper learning in these
simulations, this is similar to the context-reinstantiation idea described in Redish 2001). In
general, if an agent in a non-delayed task with working memory could solve a task, so could
an agent in a simulation with episodic memory (an agent with episodic memory may, for
example, react differently at a novel state or a state not visited for a large number of steps, as
these cases may produce “nothing recalled” states in response to the cue retrieval action). It
was in delayed tasks, where working memory was cleared at locations as described below
(shown as striped squares in the figures), that the difference between agents with episodic
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memory and working memory became clear. If an agent with episodic memory could solve a
delayed task, then it must be that the agent was using episodic retrieval as a means of retrieving
an old memory sequence, instead of simply using its working memory component to hold a
state online. Table 1 summarizes the states and actions available to a working memory agent;
Table 2 summarizes those for an episodic memory agent.

For all tasks, there were ultimately two possible responses of which one was correct, thus
chance performance was at 50% correct. In some cases, as described below, an agent
consistently performed well below chance and in one case the agent was above chance but not
at 100% performance.

Spatial Sequence Disambiguation

We first consider a task that is a simple demonstration of the use of working memory. Spatial
sequence disambiguation was implemented here in an I-shaped maze, shown in Figure 1, top,
comprising a vertical stem with left and right horizontal arms on both ends. The agent was
randomly started in one of the two bottom arms and was forced to enter the vertical segment
by a barrier blocking the other start arm. It received a positive reward only in the opposite side
arm on the top of the maze. Whether the agent was rewarded or not, it was removed from the
maze and re-positioned on a random start arm for the next trial. We simulated two versions of
this task. In the delayed version, the agent’s working memory was cleared when it reached the
bottom of the stem to represent a delay period imposed by an experimenter.

Figure 2 demonstrates the way the agent with working memory could solve this task by showing
different sets of action values, depending on which location was held in working memory,
represented in the figure by a square of small circles around the location being held. In
particular, for each location on the starting arms in memory, the choice point had one action
with a positive value (dark arrows), indicating the direction the agent should go to receive a
reward. It should be emphasized that these action values are learned and that the action values
learned for each value of working memory contents are independent. Figure 1 shows
performance on the delayed and non-delayed versions of this task. For each version of the task,
we show performance for an agent with episodic memory and working memory (EP+WM),
an agent with only working memory (WM), and a normal agent with no extra memory systems
(Plain). As shown on the left in that figure, both the episodic and working memory agents were
able to solve the non-delayed task, whereas only the episodic agent could solve the delayed
version (Figure 1 middle and bottom). The standard agent could not learn the task in either
version. As mentioned above, because the episodic agent could solve the delayed version, it
must have been using something more complex than a straightforward working memory
approach. Since the trial types (on which arm the agent starts, and therefore on which arm it
is rewarded) were selected randomly on each trial, it may be surprising that episodic memory
could solve this task. At the choice point, the agent’s working memory had been cleared, so it
must have relied on memory of a state that followed its last visit to its current state. However,
the last visit to the choice point had been on the previous trial, so the reward arm it selected on
that trial was independent of the correct reward arm for the current trial. The strategy that the
agent discovered was, in fact, to retrieve the memory of that previous trial and then to advance
retrieval multiple steps, replaying the episode up to and past the rewarded state at the end of
the arm, which then brought its memory to the beginning of its current trial. It was thus able
to recover at which location it began the trial and could make its decision based on that memory.

This strategy worked in the simulations because there was effectively no intertrial interval:
each trial began immediately after the previous one ended. Because experiments with real
animals often use a delay between trials, either so that the experimenter may reset the apparatus
for the next trial or to reduce interference across trials, real animals may not be able to use this
strategy.
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Spatial Alternation

The next task we consider is spatial alternation (Wood et al. 2000, Lee et al. 2006, Ainge et al.
2007). This task took place in the environment shown in Figure 3, top. The agent began at the
bottom of the center hallway in the maze and proceeded up to the choice point. On the first
trial, the agent could turn either left or right and received a positive reward at the end of the
arm. The agent then continued along a return arm and back to the starting point and then again
proceeded up the center hallway to the choice point (at the starting point, the agent was
prevented from entering the side hallway instead of the center hallway by use of a barrier).
After the first trial, the agent received a positive reward if it chose the opposite direction as on
the previous trial, otherwise it received a negative reward. The delayed version of this task was
identical, except that the agent’s working memory was cleared on every visit to the start position
(bottom of the stem). Performance in this task is plotted in Figure 3.

As in the previous task, this task is non-Markov because the correct turn at the choice point
depends on the agent’s previous response. However, with a working memory action available,
the agent could buffer a location on the return arm while heading back to the start position and
maintain it in memory until the choice point was reached, thus allowing disambiguation as to
the trial type. In this way working memory can also be thought of as a sort of memory for
ongoing context. The agent learned different policies for each item that may be stored in
working memory, which may be interpreted as learning behaviors appropriate for a given
context. Specifically this works because, due to the factored state representation, the agent had
many different policies depending on which location state was in its working memory.
Alternatively, episodic memory could be used to solve the task by cuing retrieval at the choice
point, advancing one step in memory to retrieve the previous response made, then making the
opposite response (sometimes the simulated agents would instead, for example, cue retrieval
one step before the choice point, then advance retrieval by two steps to recall the previous
response). In the delayed version, only an agent with episodic memory could solve this task,
as shown in Figure 3, right, in agreement with experimental work using hippocampal lesions
(Ainge et al. 2007).

Electrophysiological recordings of neurons in animals performing this and similar tasks have
shown that neurons in the hippocampus sometimes discriminate between left-response trials
and right-response trials (Wood et al. 2000, Frank et al. 2000, Ainge et al. 2007), but in other
cases the hippocampal cells do not discriminate (Lenck-Santini et al. 2001, see also Bower et
al. 2005). The fact that the spatial alternation task could be successfully performed with either
episodic or working memory may provide insight into the differences seen in neuronal
responses. This suggests that subtle differences in training or task demands in those studies
may bias the animal to use a working memory strategy over an episodic memory strategy, or
vice versa.

Non-Match to Position (NMP)

Our simulated NMP task took place on a T-maze as in the spatial alternation task, but without
the return arms leading from the reward states to the starting position (Griffin et al. 2007), as
shown in Figure 4, top. Each trial in this task consisted of two stages, both of which began with
the agent being placed at the bottom of the stem and proceeding to the choice point. In the
sample stage, one of the two arms of the maze at the choice point was blocked, forcing the
agent to go in a particular direction. The agent received a reward at the end of the arm it was
forced to enter, then was placed back at the starting point to begin the choice stage. In the
choice stage, neither arm was blocked at the choice point. If the agent entered the same arm it
had entered on the sample stage (a match response), it received a negative reward at the end
of the arm; if the agent entered the opposite arm (a non-match response), it received a positive
reward at the arm’s end. The blocked arm on the sample stage was selected randomly on each
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trial. In the non-delayed version of this task, the agent’s working memory was cleared before
it was placed at the start position in each sample stage but not each choice stage (this improved
the learning rate by eliminating interference across trials). For the delayed version, the agent’s
working memory was cleared before both sample and choice stages. The choice point and the
state immediately below it were each represented by one of three different states: choice point
with right arm blocked, choice point with left arm blocked, and choice point with no arms
blocked. These correspond to a conjunctive state of spatial location and barrier position, to
reflect differences in visual or tactile input a real animal would receive in such a task.

As shown in Figure 4, middle and bottom, this task could be solved by episodic memory in
both the delayed and non-delayed versions and by working memory in the non-delayed version.
Using working memory, the agent could buffer a location on the reward arm during the sample
stage, which could then indicate the correct response at the choice point in the choice stage,
allowing success only in the non-delayed version (Figure 4, middle).

If the agent did not receive state information reflecting the presence of barriers, which signal
the sample stage, performance was significantly impaired (unpublished observations). This
requirement of representing task stage is supported by hippocampal recordings of rats
performing a delayed NMP task on a T-maze, where many units show modulation by task stage
(Griffin et al. 2007). Our simulated task differs slightly from that of Griffin et al. (2007) in that
we began each stage of the task with the agent at the bottom of the stem, whereas rats in the
Griffin study began the sample stage on a pedestal with a ramp leading to the stem and they
began the choice stage at the bottom of the stem. As in our spatial sequence disambiguation
task, the different starting positions could be held in working memory to differentiate the two
task stages, improving performance and suggesting a means by which the stage selective firing
in real rats could have come about.

Non-Match to Sample (NMS)

We also simulated a non-match to sample task in which responses were made on two levers in
an operant chamber (Hampson and Deadwyler 1996). Here each trial consisted of a sample
stage in which only one of the two levers was available for making a response, then a choice
stage in which both levers were available. The agent received a negative reward for making a
response at the same lever as had been available during the sample stage and a positive reward
for making a response at the other lever. As shown in Figure 5, top, the two levers were
positioned at opposite corners of the environment along the same wall. After making a response
at a lever, the animal was moved back to the starting position (a slight difference from
experimental versions of this task which may require the animal to, e.g., make a nose poke at
a sensor at a location distant from the pair of levers). In the delayed version of this task, the
agent’s working memory was cleared before starting the choice stage (working memory was
cleared before the sample stage in both task versions to eliminate interference between trials).
To simulate visual input regarding the state of the levers, the agent had separate state
representations for the sample stage with the left lever extended, the sample stage with the right
lever extended, and the choice stage with both levers extended. The spatial environment
comprised two rows and three columns of locations, two of which are locations at which a
lever may be present. Thus there are 18 location states in total (six locations times three different
task stage conditions). The need for separate states for sample and choice stages was mentioned
above, in the NMP task section, and will be discussed again later in the paper.

In principle, both versions of this task were solvable using episodic memory; however, the
non-delayed version was more readily solved using working memory, as shown in Figure 5,
middle. By maintaining in working memory the lever at which a response was made during
the sample stage, the agent could learn to proceed to and respond to the opposite lever during
the choice stage. When the agent could not solve the task, its performance was well below
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chance. This occurred because the agent rarely made responses and the episode eventually was
terminated when the upper time step limit was reached.

Performance did not depend on the non-match rule used here and in the NMP task above; both
tasks were solvable with either a match or a non-match rule (unpublished observations).

Odor Sequence Disambiguation

Our odor sequence disambiguation task was modeled after the task from Agster et al. (2002),
though some simplifications were made. As shown in Figure 6, top, the simulated task took
place on a linear track with 5 pairs of odors spaced along its length. On each trial the agent was
to make a response to one odor of each pair. On sequence 1, the agent was rewarded for
responding at each of the odors 1–5 (the ‘top’ odors). For sequence 2, the agent was rewarded
for selecting each of the odors 6, 7, 3, 4, and 10. Thus the two sequences overlap in that odors
3 and 4 were always correct and odors 8 and 9 were never correct. After selecting the correct
odor from a pair, the barrier in front of the rat was removed and it could advance to the next
pair. Except for the final pair, if the agent attempted to dig at the incorrect odor, it was allowed
to correct itself (in fact, it had to before it could continue). On the final pair, the agent could
dig at either odor and the trial was recorded as correct or incorrect, depending on the response
and the sequence type. In the delayed version of this task, the agent’s working memory was
cleared before the final pair was presented.

The agent had 5 actions available: move forward, sample top odor, sample bottom odor, dig
at top odor, and dig at bottom odor. Each odor had 3 corresponding states: sampling odor,
successfully digging at an odor (if it selected the correct odor for a pair), and unsuccessfully
digging at an odor (if it selected the incorrect odor for a pair). Until the agent sampled an odor
from the current pair, it was in a state simply corresponding to its location. After sampling an
odor, the agent remained in the state of smelling that odor until it sampled the other or advanced
to the next odor pair after successfully digging. In some experimental versions of this task, the
scented cups had perforated lids that the rat had to remove before it may dig. To simulate these
lids, we used the restriction that until the agent had sampled an odor, it could not attempt to
dig at it (thus it was able to smell the odor before it could dig in the cup). Without this restriction,
the agent was still able to learn the task, but at a slower rate (unpublished observations).

As with the spatial sequence disambiguation task, this task required the agent have a form of
working memory to perform correctly. Specifically, the agent had to hold in working memory
the state of having successfully dug at one of the two initial odors in order to make the correct
choice on the final pair. For this reason, an agent with only working memory could not solve
the delayed version of this task, shown in Figure 6, bottom.

The agent with episodic memory had two possible strategies to use, as in the spatial sequence
disambiguation task. In the non-delayed version, it could simply take a working memory
approach to perform successfully (Figure 6, middle). An alternative approach might be for the
agent to use episodic retrieval with one of the cups in the final pair as the cue, which could
retrieve a memory of the end of the previous trial. Then the agent could advance retrieval by
multiple steps until it reaches a memory of successfully digging in one of the cups in the first
pair on the current trial. Real animals may not be able to use this strategy for the same reason
given in the sequence disambiguation task: in the simulations there were no intervening stimuli
between the end of one trial and the beginning of the next, whereas behavioral experiments in
lab animals often did contain such stimuli because of the presence of an intertrial delay. Agents
required a significant amount of training to learn this strategy which further argues against the
likelihood of animals using this approach (so the simulation in Figure 6 was not run long enough
to show the agents with episodic memory learning to correctly perform the task). In this case,
the first state the agent experiences on a trial did not disambiguate the trial type, so it was forced
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to continue advancing retrieval until it reached a state where an odor was successfully dug.
The increased number of ambiguous states leading up to the successful digging made the
agent’s performance much more sensitive to random exploration either during retrieval at the
end of the trial or during behavior at the beginning of the trial itself.

Tone-Cued Spatial Alternation

Next we consider a tone-cued spatial alternation task. To our knowledge, this task has not been
used in the literature, so the present simulation results constitute a prediction of this model.
This task took place on a figure-8 maze as in the earlier spatial alternation task, shown in Figure
7, top. The agent began at the bottom of the center hallway in the maze and proceeded up to
the choice point (the agent was prevented from directly entering a return arm from the start
point with the use of two barriers, as shown in the figure). Here one of two tones was randomly
sounded (implemented in the simulations as two different states due to the factored state
representation: choice point with tone 1 and choice point with tone 2). The agent could go in
either direction on its first exposure to each tone and received a positive reward at the end of
the arm. The agent then followed the return arm back to the bottom of the center hallway,
proceeded to the choice point and a random tone was again played. Now the agent was only
rewarded for choosing to move in a direction opposite to its response when the current tone
was last presented. That is, if the agent last made a left response when tone 1 was played, the
next time tone 1 is played it had to make a right response, regardless of how it had responded
at any number of intermediate presentations of tone 2. Likewise, each time tone 2 was presented
the agent had to make the opposite response as on the previous presentation. In the delayed
version of this task, the agent’s working memory was cleared on each visit to the bottom of
the stem. The use of two tones as the cue was selected arbitrarily. If this experiment were
attempted with animals, using cues from different modalities (such as a tone and a light) may
reduce interference and make the task easier to learn.

In order to perform the task correctly, the agent was forced to use its episodic memory actions
to retrieve the last presentation of the current tone and advance one step in memory to discover
which direction it previously went, then choose the opposite direction. Working memory could
not correctly solve this task as the correct choice does not depend on the immediately preceding
trial, but rather on the most recent trial in which a given tone was presented.

As indicated in Figure 7, middle, however, in the non-delayed task, the working memory agent
was above the chance level and the agent with no memory systems was well below chance.
The plain agent tended to choose the same arm over and over again, thus producing a series of
incorrect trials, until it selected a random action at the choice point or the action values became
low enough that the agent switched responses, receiving two correct trials followed by another
series of incorrect trials.

With working memory, though, a better strategy was available: simple spatial alternation.
Consider the following: the agent is at the start position, having just returned from making a
left response, for example. There are three possible situations the agent might face. It could be
that, for both tones, the agent was to go right on the previous trial, so regardless of which tone
was played, the agent just made an error (thus, in a sense, the rewards of both tones are currently
on the right reward arm). Or it could be that the reward for tone 1 is on the left reward arm and
the reward for tone 2 is on the right reward arm (in which case it must be that tone 2 was played
on the previous trial, because if tone 1 had been played the agent’s response would have been
correct, so tone 1’s reward would now be on the right arm). Similarly, it could be that the
reward for tone 2 is on the left reward arm and tone 1 on the right arm (the previous case, with
tones 1 and 2 reversed). However, it could not be the case that both tone 1 and tone 2 currently
have their rewarded arm on the left, because the agent just came from the left arm, so one of
the two would have been switched to the right arm.
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With an alternation strategy, its next response will be to choose the right arm, regardless of
which tone is played. In the first case, for either tone 1 or tone 2, the agent will be rewarded
on the right arm, so one-third of the time it is guaranteed to receive reward. In the other two
cases, its probability of receiving a reward on the right arm is 0.5, since that is the probability
that the tone corresponding to the reward on the right arm will be played. Thus there are six
possible outcomes of which four are favorable, so the agent will receive a reward on 2/3 of the
trials, as shown in Figure 7, middle, which is above chance level. In contrast to the partial
reward strategy for agents with only working memory, the agent with episodic memory
received a higher average reward than the working memory agent on both the non-delayed and
the delayed version of the task.

Discussion

The goals of the present work were twofold. First, we sought to extend the reinforcement
learning framework to include memory systems analogous to those thought to exist in animals
so that common tasks used in behavioral experiments could be simulated in a single,
quantitative framework. Second, we sought to determine the way that slight differences in these
tasks can change the demands on different subsystems in the brains of animals so as to inform
future experimental work. To the extent that our abstractions of these memory systems are
correct, we have shown that the information required to make correct choices may require
different systems whose utility may overlap, but which can be dissociated by specifically
designing tasks to preclude the use of all systems except those of interest. We now discuss
these points in more detail.

Working Memory vs. Episodic Memory

A formal description of working and episodic memory may guide future research on memory
function by providing a means to evaluate potential tasks to see which forms of memory can
be successfully used in performing them.

If a task can be solved based on which of a set of states was most recently experienced, then
working memory can solve the task (though the time required to learn the task increases as the
amount of time or number of states between the choice point and the most recently experienced
disambiguating state increases). If a task can be solved based on the states that previously
followed some given experienced state on the current trial, then episodic memory can solve
the task (though the time required to learn the task increases as the number of retrieval steps
required to access the disambiguating state increases).

As was demonstrated, for instance, by the spatial sequence disambiguation task, even though
a task may appear to be solvable with only one memory system, there may be unexpected
(sometimes artifactual) ways that other memory systems can be used instead. Even with the
simple systems presented here this was possible, so with more complex and realistic memory
systems, the possible strategies may greatly increase in number.

Multi-Stage Matching Tasks

A common feature of tasks used in behavioral or electrophysiological studies is the presence
of multiple, distinct stages. For example, a non-match-to-sample (NMS) task consists of a
sample stage during which a stimulus is presented, then a choice stage in which multiple stimuli
are presented, either simultaneously or consecutively, during which the animal must respond
to the non-matching stimulus (i.e. the stimulus not presented during the sample stage). A
problem in implementing such tasks in the reinforcement learning framework is that the animal
must know which stage it is in to make the proper response. In an NMS task, the agent must
make a response to the sample stimulus in the sample stage, but not to that stimulus in the
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choice stage, so without task stage information as part of its state, it cannot learn such a task.
When real animals perform such tasks, there is often stage information provided to them in
some form (i.e. in primate matching tasks the animal often begins the trial by pulling on a lever
which it releases to respond during the choice stage, Miller et al. 1996, and in rodent NMS
tasks with levers, Hampson and Deadwyler 1996, there is one lever available during the sample
stage and both available during the choice stage—in both cases sensory information or memory
of recent actions can signal task stage). In such cases, one can simply include an extra element
in an agent’s factored state representation that indicates task stage, but in other tasks where the
animal must learn on its own which stage it is in, the proper reinforcement learning approach
is not clear. Indeed, in some tasks each trial is both a sample and choice stage, such as the
continuous odor non-matching task used by Wood et al. (1999) and Young et al. (1997) or the
analogous n-back task used in humans (Stern et al. 2001).

In the present work, we have simulated only two matching tasks: a delayed NMP task in a T-
shaped maze and a delayed match to sample task using levers in an operant chamber. There
are, however, many other variants of matching tasks, each of which has its own idiosyncrasies
when considered in the reinforcement learning framework. In primate experiments, the stimuli
in the matching tasks tend to be either visual stimuli on a computer screen (Miller et al.
1996, Riches et al. 1991) or objects at spatial locations in front of the animal (Buckmaster et
al. 2004). In experiments with rodents, the stimuli are often levers (Hampson and Deadwyler
1996), cups of scented sand (Dudchenko et al. 2000), objects at spatial locations (Kirwan et
al. 2005), or spatial locations themselves (Zironi et al. 2001).

One dimension along which we can categorize matching tasks is whether the stimuli are unique
on every trial or are repeated over the course of the experiment. In tasks with levers it is clear
that the levers’ identities are always the same on every trial, and, with odors, it is usually the
case that the odors are eventually repeated (as the experiment would otherwise require a very
large library of odors to be used). When objects are used, either as visual images on a computer
screen or real objects placed around the animal, the objects are sometimes reused (Rapp and
Amaral 1989) and sometimes always unique (Buckmaster et al. 2004). This distinction is
relevant to simulations using the reinforcement learning framework, as such an agent makes
its decisions by selecting the action with the highest value for its current state. If the stimuli
are unique on each trial, then on each trial the animal will not have learned any actions to take
from the state corresponding to a specific object and it will never fully learn the task. Suppose
that the agent learns to hold the unique sample stimulus in working memory (perhaps by
learning the utility of ignoring the object’s identity and simply taking a “set working memory”
action in the sample stage), the agent must still be able to detect a match or non-match during
the choice stage of the task. Even if, on the first trial of a match task, the agent makes a correct
response to the factored state of (A in working memory, A being experienced), on the next trial
the agent will have no action values for the factored state of (B in working memory, B being
experienced). Thus, in addition to a working memory system, an agent needs a mechanism by
which it can detect a match between its working memory and its sensory input. One potential
means of solving this problem is a role-filler mechanism as is used in analogical reasoning
models (Hummel and Holyoak 1997). It should be noted that although increased or decreased
neuronal firing rate to matching stimuli has been reported in temporal cortex (e.g. Miller et al.
1993, Holscher et al. 2003), this neuronal activity does not solve the problem noted above, as
the increased firing is stimulus dependent and so does not provide the abstract signal of
“matching” needed for the present purposes. These firing rate differences, however, are thought
to reflect familiarity and so a mechanism by which they can be used to influence decision
making will likely be very important to modeling this type of task.

Another dimension of matching tasks is the question of whether the identities of the choice
stimuli are made known simultaneously or consecutively. For example, in the T-maze delayed
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NMP task simulated above, when the agent is at the choice point in the maze, both of the
possible responses are available to it at the same time (go left or go right) and are consistent
across trials. Making a response then is as simple as selecting the action with the highest action
value at that state (where, through some memory mechanism, the state should be different on
right trials versus left trials). The delayed match to sample task also described above is
somewhat in between the simultaneous and consecutive extremes. The identities of the stimuli
are consistent across all trials (i.e. the left lever is always the left response) but there is no single
location from which both the left and right lever responses are immediately available. Still, as
the agent starts the choice stage knowing which response it should make, it can take the
appropriate series of actions to bring it to the correct lever. The distinction can be made more
clear by contrasting it with a purely consecutive task, such as an odor non-match task. Suppose
the agent is presented with a cup of scented sand in the sample stage, then is presented with
two scented cups of sand (one with the same odor from the sample stage and one with a different
odor as well as a food reward) for the choice stage in randomized spatial positions (Dudchenko
et al. 2000, McGaughy et al. 2005). In this case the agent from afar is not aware of which cup
has which odor, and thus which cup contains the food reward. The agent must select one cup
to approach, then only after sampling the odor may the agent make a response (if at the non-
matching odor) or withhold a response and approach the other cup (if at the matching odor).
From a reinforcement learning standpoint, this is a relatively complex task. It appears to require
first that the agent have actions to select one of the two cups of sand as a destination which
then alter the action values of the location states to direct it to the cup. The agent must then
learn to select the other cup as a destination if the odor in memory matches the odor at that
cup, or must learn to make a response if the odors do not match. This requirement is not trivial,
as if there are more than a few odors used in the task, the number of conjunctive states for
which the odor in memory does not match the experienced odor can be quite large, and, for
each such state, the agent must learn to make a response. Here a utile distinction learning
approach (McCallum 1995) may be helpful, allowing the agent to distinguish between the two
states, one being the triple (choice stage, sampling odor, match detected) and the other being
the pair (choice stage, sampling odor), with the former taking precedence over the latter.

Relationship to Other Models

To our knowledge, this is the first report showing that retrieval of episodic memories during
behavior increases the domain of problems reinforcement learning systems can solve, but it is
not the first use of hippocampal mechanisms in reinforcement learning. Foster et al. (2000)
treated hippocampal place cells as radial basis function units for representing space, associating
action values to individual place cells and linearly summing them, scaled by the activation of
each unit. Arleo and Gerstner (2000) used a similar approach, using a form of Q-learning
(Watkins 1989) to modify the strength of synapses from hippocampal place cells representing
location to neurons in the nucleus accumbens representing actions.

Johnson and Redish (2005) also used place cells as radial basis functions, but showed further
that offline (during awake states, but not while engaged in the task) replay of activation in
hippocampus can be interpreted as a form of the Dyna-Q reinforcement learning algorithm
(Sutton 1990) which allows the agent to learn tasks more quickly. Recent reports of
hippocampal replay when rats are idle during a task (Foster and Wilson 2006, Jackson et al.
2006) also support this suggested role.

These two functions are not at all exclusive of the present suggestion of prefrontal-initiated
hippocampal retrieval of episodes for guiding behavior. In fact, all three proposals could easily
work together to combine all their individual advantages. The fact that these aspects of
hippocampal function work well within the reinforcement learning framework, along with the
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suggestions that the basal ganglia may be implemented with an reinforcement learning-like
mechanism suggest that this may be a fruitful theoretical approach for future research.

Other modeling work (Gaussier et al. 2002, Banquet et al. 2005) has interpreted hippocampal
place cells as representing transitions between states, using these to form graphs to represent
trajectories through space for navigation. These graphs are similar to those used by Hasselmo
(2005) and Zilli and Hasselmo (2005) in neural implementations of reinforcement learning-
like algorithms for navigation and behavior. The reinforcement learning framework provides
an abstract framework for action selection through which different neural implementations can
be tested and which can guide research toward the correct neural implementation.
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Appendix

Episodic Memory Equations

Here we describe the abstract episodic memory system with equations of vectors and matrices,
providing one possible way that the system might be implemented.

Let T be a binary row vector with n elements, where n is the number of temporal indices to be
used, letting T have only one non-zero entry at any time. Let S be a binary row vector with a
number of elements equal to the number of state components for each of the state elements
(i.e. all of the factored state elements are treated as vectors concatenated together, the length
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of which is |S1|+|S2|+…+|Sn|), where all entries are 0 except those representing the active states.
As an example, suppose S = {Svision, Stactile} where the Svision element has a red, a green, and
a blue component and Stactile has a rough and a smooth component. If the current state is green
and smooth, then, as a vector, S = [0 1 0 0 1]. We can break S into separate vectors for each
nonzero element, where Si is a vector the same size as S where the ith element equals 1 and the
others are zero. That is, the example S from above can be broken into S2 = [0 1 0 0 0] and S5

= [0 0 0 0 1]. (These vectors Si should not be confused with the factored state elements Si,
where Si is the set of values that the ith element in the state can take, i.e. the components of
Si).

We can now define matrices for associating states with temporal indices and vice versa. Let
M be a matrix where the ith row contains the state S last associated with temporal index i. This
matrix will allow retrieval of a sensory vector given a temporal index vector. Then for encoding,
M is updated after each selected movement action as:

Or:

(A1)

Notice that this equation simply adds S to the row indicated by temporal index vector T
(containing a single, non-zero entry) and subtracts the old memory vector, TM, that was stored
in that temporally indexed row at some previous time. It follows that we can retrieve the sensory
vector associated with T by using the same product:

(A2)

This can be understood from a neural network standpoint if M is treated as a synaptic weight
matrix, S is a vector of postsynaptic activity, and T a vector of presynaptic activity (here with
only one presynaptic unit active). With this interpretation, equation A1 becomes a learning
rule with two components: TTS is a Hebbian term that associates the sensory vector to the
temporal index vector. The second term then represents presynaptically-gated long-term
depression (LTD) that can be written in the simple form TTTM because T has only a single
active unit (a rule analogous to A3 below can handle the general case with multiple active
units). This produces a matrix the same size as M where only the ith row is nonzero (equal to
TM) where i is the index of the non-zero unit in T. The equation as a whole then simultaneously
applies LTD to all synapses from unit i in T to set them to zero except those where the
postsynaptic units S are active.

Next we define the matrix N with one row for each state element that contains the temporal
index vector for the time the given state was last experienced. This will allow a sensory vector
to retrieve an associated temporal index vector. N is updated as:

(A3)

where the summation index i is over all nonzero elements in S and Si is a vector the same size
as S with all entries zero except for the ith.

The neural network interpretation of this equation is identical to that for equation A1 except
this allows for the case of multiple active presynaptic units, by simply computing the LTD
component separately for each active presynaptic unit in the summation over i.

To later retrieve the temporal index vector given a cue vector Si, we multiply:

(A4)
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This can again be interpreted as a synaptic matrix and two populations of units in a neural
network.

To finish characterizing the episodic memory abstraction in terms of matrices, we can define
a shift operator matrix that takes a temporal index vector and advances the single non-zero
entry by one position. This matrix, O, is simply an identity matrix with each row shifted up
one and with the first row moved to the last row. As an example, the 3×3 shift operator matrix
would be:

(A5)

So, for example, [1 0 0]O = [0 1 0].

In actual implementations, two other concerns must be addressed. If the update to M is
performed upon entering a state, then any cued retrieval actions in that state will retrieve the
current temporal index, which was just associated to the location. It is, however, desired that
the cuing retrieves the previous visit to the present state, not the current visit, so M should only
be updated upon leaving a state (in the same manner that state and action values in temporal
difference learning algorithms are updated for the state that was just left, not the upcoming
state). Also, the agent should not be allowed to advance the temporal index past the current
temporal index. In our implementation, attempts to do so return the “nothing recalled” state.

Thus the computations performed when the cuing retrieval action is taken on cue vector Si are:

then:

On taking the advance retrieval action we compute:

then:

This implementation of the model can produce retrieval errors under certain conditions. If the
agent has not visited a given state in a large number of trials, it may be that the temporal index
last associated with that state has been reused and no longer indexes the correct memory.
Including a general decay term in the associations from states to temporal indices and
thresholding retrieval may solve this problem, e.g. replacing equation (A3) with

 with 0 ≤ ε ≤ 1.

Though not presented here, we have also simulated spatial memory with a nearly identical set
of equations. The primary difference is that, in spatial memory, the analog of advancing
retrieval is imagined motion in a particular direction. Thus instead of a single operator matrix
to advance one step in time, there are multiple operator matrices that each advance the spatial
index in a different direction (e.g. in the case of four spatial directions there would be operator
matrices for each of north, south, east, and west). It is also simple to take into account head or
eye direction dependence of retrieved memories by including the direction as part of the spatial
index (e.g. retrieving based on looking north or south from the same position would result in
different states being retrieved and one would also have to include operator matrices for
changing the head or eye direction without changing the location aspect of the spatial index).
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The spatial memory version would allow an agent to use a cue stimulus to retrieve a spatial
location and sensory stimuli present there, then to mentally navigate through the spatial
memory.

Multiple Retrieval Cues

The retrieval system described above has at least one major limitation: a given state cue might
belong to multiple episodic memories and it may not be the most recent one whose retrieval is
desired. To overcome this limitation, we can allow retrieval based on multiple cues so that the
most recent episode containing all of the cues is retrieved, ignoring episodes containing only
a subset of the cues. First we change the updating of N so that it is no longer a binary process:

(A6)

where 0<λ<1 is a decay term (if λ=1 this equation reduces to the binary case described above).
Now a given state element will be associated with multiple temporal indices with the most
recent association having a value of 1, the next most recent having a value of (1−λ), the next
most recent (1−λ)2 and, in general, the ith most recent having a value of (1−λ)i−1. This concept
is similar in some ways to the temporal context model proposed by Howard and Kahana
(2002) (also used in Hasselmo and Eichenbaum 2005). The neural network interpretation also
applies here. The only difference from equation A3 is that there is a learning rate associated
with the presynaptically-gated LTD that is less than 1, so synapses are not completely zeroed
after a single application of the learning rule.

Now given a state vector S with all elements 0 except i1, i2, …, in, we compute:

(A7)

where the product is an entry-wise product of each of the vectors, []max is an operation that
sets all elements to 0 except the maximum element in the vector, and Si is the cue vector S
broken into independent components as above. Any temporal index that is not shared by all of
the Si will be 0 by the multiplication, and, if more than one index is shared by all the retrieval
cues, all except the most recent index will be set to 0 by the max operation. If no temporal
index is shared by all of the cues, the 0 vector will result and SEP is set to the “no recall” state.

To see that this works, consider each Ti = SiN. Ti is a vector of the temporal indices at which
a given state element has been present, weighted exponentially as described above such that
the more recent indices have higher values. For example, suppose state element Sa was present
at temporal indices 7, 5, and 1. The value for Sa at index 5 is greater than that at 1 (by a factor
of 1−λ, in fact) because 5 was more recently experienced. Calculating SaN will produce the
first row of N as a vector. Similar calculations of SbN and ScN produce rows two and three as
vectors. If we desire the temporal index at which all three of Sa, Sb, and Sc were most recently
present, we can first find any temporal indices for which all were present, then find which of
those was the most recent.

For a given temporal index, t, we know that at least one of the state elements was not present
if at least one of them has a value of 0 for that index. Therefore, if we multiply the value of the
association between each state element and temporal index t, the result will be 0 if at least one
was not present and will be greater than 0 otherwise.

Finally we ask which of the temporal indices shared by all elements was the most recent. Clearly
it is the one for which the product of the temporal index strengths is largest. Consider two
distinct, non-zero products, p and q, of temporal index strengths. Each element in N is of the
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form (1−λ)z for some z, and each of p and q are the product of m such terms, so we have p =
(1 − λ) p1 + p2 + … + p

m
 and q = (1 − λ)q1 + q2 + … + q

m
. If we assume without loss of generality

that p corresponds to a time that happened before q (by assumption they are distinct and so do
not represent the same time), then we must have pi>qi for all i. Then the sum of all pi must
exceed the sum of all qi so p<q because (1−λ)<1. Thus the largest entry in the entry-wise product
of the rows from N corresponds to the most recent co-occurrence of all the state elements of
interest.

Similar equations can be applied to spatial memory, as a given sensory state may be associated
with multiple spatial locations.
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Figure 1.

Spatial sequence disambiguation. Top, environment used in this task. S indicates starting
position and G indicates a position where a reward may be available. Filled black squares are
static barriers. Filled gray squares are movable barriers. The striped square is where working
memory is cleared as described in the text. Middle and bottom, average performance of 10 runs
with both episodic memory and working memory (EP+WM), working memory only (WM)
and an agent with no memory systems (Plain) in the non-delayed (middle) and delayed (bottom)
versions of the task. In the non-delayed task (middle), the agents with working memory learn
slightly faster than the agents with episodic memory on average. In the delayed task (bottom),
the working memory of the two agents with memory systems is cleared before each episode,
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reducing interference across trials. Performance in each block of 20 trials is the number of
correct responses divided by the total number of responses.
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Figure 2.

Working memory’s effect on policy. The arrows show the agent’s learned action values
corresponding to the two trial types (“Should go left” trial on left, “should go right” trial on
right). The state in the agent’s working memory is indicated by a square of circles, which
determines the indicated action values. Black arrows represent positive action values, light
gray arrows represent negative or zero action values. Filled black squares represent impassable
barriers; filled grey squares represent movable barriers.
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Figure 3.

Spatial alternation. Top, environment used in this task. S indicates starting position and G
indicates a position where a reward may be available. Filled black squares are static barriers.
Filled gray squares are movable barriers. The striped square is where working memory is
cleared as described in the text. Middle and bottom, average performance of 10 runs with both
episodic memory and working memory (EP+WM), working memory only (WM) and an agent
with no memory systems (Plain) in the non-delayed (middle) and delayed (bottom) versions
of the task. Performance in each block of 2,000 steps is the number of correct responses divided
by the total number of responses.
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Figure 4.

Non-Match to Position (NMP). Top, environment used in this task. S indicates starting position
and G indicates a position where a reward may be available. Filled gray squares are movable
barriers. The striped square is where working memory is cleared as described in the text. Middle
and bottom, average performance of 10 runs with both episodic memory and working memory
(EP+WM), working memory only (WM) and an agent with no memory systems (Plain) in the
non-delayed (middle) and delayed (bottom) versions of the task. The agent with episodic
memory is always able to perform the task and the agent with no memory is always at chance,
while the working memory agent can perform correctly only in the non-delayed version
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(middle). Performance in each block of 40 trials is the number of correct test stage responses
divided by the total number of test stage responses.
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Figure 5.

Non-Match to Sample (NMS) with levers as stimuli. Top, environment used in this task. S
indicates starting position. L indicates a response lever. The striped square is where working
memory is cleared as described in the text. Middle and bottom, average performance of 10 runs
with both episodic memory and working memory (EP+WM), working memory only (WM)
and an agent with no memory systems (Plain) in the non-delayed (middle) and delayed (bottom)
versions of the task. The agent with episodic memory is always able to perform the task at
greater than 80%, and the agent with no memory is always at chance, while the working
memory agent can perform correctly only in the non-delayed version (middle). Performance
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in each block of 20 trials is the number of correct test stage responses divided by the total
number of test stage responses.
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Figure 6.

Odor Sequence Disambiguation. Top, environment used in this task. S indicates starting
position. Each number indicates a different odor and the thin rectangles represent barriers that
were not explicitly included as locations (black are static barriers and gray are movable
barriers). The striped square is where working memory is cleared as described in the text.
Middle and bottom, average performance of 10 runs with both episodic memory and working
memory (EP+WM), working memory only (WM) and an agent with no memory systems
(Plain) in the non-delayed (middle) and delayed (bottom) versions of the task. In the delayed
task (bottom), the working memory of the two agents with memory systems is cleared before
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each episode, reducing interference across trials. Performance in each block of 1,000 trials is
the number of correct responses divided by the total number of responses.
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Figure 7.

Tone-cued Spatial Alternation. Top, environment used in this task. S indicates starting position
and G indicates a position where a reward may be available. T indicates the location where
one of two tone-cues are played. Filled black squares are static barriers. Filled gray squares
are movable barriers. The striped square is where working memory is cleared as described in
the text. Middle and bottom, average performance of 10 runs with both episodic memory and
working memory (EP+WM), working memory only (WM) and an agent with no memory
systems (Plain) in the non-delayed (middle) and delayed (bottom) versions of the task. In the
delayed task (bottom), the working memory of the two agents with memory systems is cleared
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before each episode. Performance in each block of 3,000 steps is the number of correct
responses divided by the total number of responses.
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