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Av dos Astronautas 1758, 12227-010, São José dos Campos, SP Brazil, kJet Propulsion Laboratory, NASA, 4800 Oak Grove Drive,

Pasadena, CA 91109, USA, **Planetary Skin Institute, Silicon Valley, CA USA

Abstract

We present a generic spatially explicit modeling framework to estimate carbon emissions from deforestation (INPE-EM).

The framework incorporates the temporal dynamics related to the deforestation process and accounts for the bio-

physical and socioeconomic heterogeneity of the region under study. We build an emission model for the Brazilian

Amazon combining annual maps of new clearings, four maps of biomass, and a set of alternative parameters based

on the recent literature. The most important results are as follows: (a) Using different biomass maps leads to large differ-

ences in estimates of emission; for the entire region of the Brazilian Amazon in the last decade, emission estimates of

primary forest deforestation range from 0.21 to 0.26 Pg C yr�1. (b) Secondary vegetation growth presents a small impact

on emission balance because of the short duration of secondary vegetation. In average, the balance is only 5% smaller

than the primary forest deforestation emissions. (c) Deforestation rates decreased significantly in the Brazilian Amazon in

recent years, from 27 Mkm2 in 2004 to 7 Mkm2 in 2010. INPE-EM process-based estimates reflect this decrease even

though the agricultural frontier is moving to areas of higher biomass. The decrease is slower than a non-process

instantaneous model would estimate as it considers residual emissions (slash, wood products, and secondary vegeta-

tion). The average balance, considering all biomass, decreases from 0.28 in 2004 to 0.15 Pg C yr�1 in 2009; the non-

process model estimates a decrease from 0.33 to 0.10 Pg C yr�1. We conclude that the INPE-EM is a powerful tool for

representing deforestation-driven carbon emissions. Biomass estimates are still the largest source of uncertainty in

the effective use of this type of model for informing mechanisms such as REDD+. The results also indicate that efforts

to reduce emissions should focus not only on controlling primary forest deforestation but also on creating incentives

for the restoration of secondary forests.
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Introduction

Deforestation in tropical regions is one of the key com-

ponents of climate change concerns (Le Quéré et al.,

2009; van der Werf et al., 2009). Forest cover removal

releases CO2 and other greenhouse gases as a result of

tree burning, followed by the gradual decomposition of

the forest biomass left on the ground while pasture-

lands or crop plantations are established. The regrowth

of secondary vegetation on abandoned agricultural/

pasture land may constitute an important component

of the regional carbon balance because this growth

removes CO2 from the atmosphere, transferring it to

vegetation biomass and soil carbon compartments

(Ramankutty et al., 2007).

Emissions derived from such processes are consid-

ered one of the most uncertain components of the

global carbon cycle (Le Quéré et al., 2009; Ometto et al.,

2011), and several studies have attempted to estimate
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the contribution of land cover changes and deforesta-

tion to the global carbon budget. For the period from

1981 to 1990, Fearnside (2000) calculated a total of

2.4 Pg C yr�1 for the carbon emissions resulting from

tropical deforestation in the world. For the 1990s,

Houghton (2003a) estimated global land cover change

carbon emissions to be 2.2 Pg C yr�1, a value that rep-

resented almost 35% of the 6.4 Pg C yr�1 derived from

fossil fuel emissions in that decade. In contrast, DeFries

et al. (2002) and Achard et al. (2004) estimated values of

0.9 Pg C yr�1 and 1.1 Pg C yr�1, respectively, for the

same period, highlighting the level of uncertainty of

this component of the global carbon budget. Using

revised rates of land-use change for the period from

1960 to 2000, Houghton (2008) lowered the estimates of

average net flux from ~2.2 Pg C yr�1 (Houghton,

2003a) to ~1.5 Pg C yr�1 over the period 1990–2000 and

estimated a value of 1.47 Pg C yr�1 for the period 2000

–2005. In contrast, Malhi (2010) estimated tropical

biome conversion to be a source of 1.3 ± 0.2 Pg C yr�1

to the atmosphere from both 1990–1999 and 2000–2005.

These authors also suggested that this value may have

dropped to 1.0 Pg C yr�1 after 2005 if a recent drop in

deforestation rates in Brazil is taken into account

(Loarie et al., 2009). A more recent estimate of gross

emission from deforestation over pantropical regions

from a spatially refined and systematic approach pre-

dicted even lower value of 0.8 Pg C yr�1 (0.57–1.22) over

the 2000–2005 period, approximately 10% of the fossil

fuel emissions over the same period (Harris et al., 2012).

Le Quéré et al. (2009) also pointed out that, due to

increased fossil fuel emissions and below-average

deforestation emissions, the relative contribution of

LUC (Land-use change) to total anthropogenic CO2

emissions decreased from 20% in 1990–2000 to 12% in

2008. LUC CO2 emissions are largely attributed to

deforestation in tropical regions, mainly in developing

countries like Brazil and Indonesia, but they also

include logging and intensive cultivation of cropland

soils. According to Le Quéré et al. (2009), the total CO2

emissions from fossil fuel combustion and LUC in 2008

was 9.9 ± 0.9 Pg C yr�1, with LUC corresponding to

1.2 Pg C of this total. However, although LUC emis-

sions were the smaller factor, their uncertainty is

greater than the uncertainty associated with fossil fuel

emissions (±0.7 Pg C yr�1 and ± 0.5 Pg C yr�1, respec-

tively). Pan et al. (2011) estimated a source of

1.3 ± 0.7 Pg C yr�1 from tropical land-use change, con-

sisting of a gross tropical deforestation emission of

2.9 ± 0.5 Pg C yr�1 partially compensated by a carbon

sink in tropical forest regrowth of 1.6 ± 0.5 Pg C yr�1.

The high uncertainty associated with estimates of

tropical deforestation carbon emissions reflects both the

complexity of the deforestation process itself and the

variety of methodologies and data sources used in the

calculations (Ometto et al., 2005; Ramankutty et al.,

2007). Therefore, a great challenge in the climate change

community is to produce reliable and systematic data

regarding carbon emissions resulting from deforesta-

tion in tropical regions. These data are necessary not

only from a scientific perspective but also to support

appropriate monitoring, reporting and verification

capabilities for emissions reduction targets and mitiga-

tion schemes in different countries.

A critical issue in reducing such uncertainties is the

availability of reliable, spatially distributed information

on deforestation and biomass. In comparing previous

estimates of tropical deforestation carbon emissions,

Ramankutty et al. (2007) argued that to reduce uncer-

tainties, it is also important to correctly represent the

deforestation process itself, which includes the follow-

ing factors: (1) the full land cover dynamics during and

following deforestation (for instance, how the trees are

actually removed, how long it takes to completely clear

the land, and where and after how long agricultural

land is abandoned), (2) the explicit inclusion of histori-

cal land cover change for several decades (to account

for previous deforestation decomposition and vegeta-

tion recovery processes), (3) an accurate estimate of the

fate of cleared carbon (for instance, how much is

extracted by the forestry sector, how the timber is used

and how long it takes to be released to the atmosphere

after deforestation, how much is immediately released

by fire, and how much dead biomass is left on the

ground to decompose gradually).

We argue that another key to represent correctly the

deforestation process is to consider the socioeconomic

and biophysical heterogeneity of a given region. In the

Brazilian Amazon, for example, due to intense human

occupation in the last five decades, approximately 18%

of the original rainforest has been removed (INPE,

2011a). The Brazilian Amazon is a largely heteroge-

neous region with respect to its biophysical characteris-

tics, its occupation history and socioeconomic, political

and institutional aspects (Alves, 2002; Becker, 2004;

Aguiar et al., 2007; Alves et al., 2009). The regional

economy and society today constitute a complex

mosaic of actors and conflicting interests (Araújo &

Lená, 2010). The rural population includes traditional

riverside populations, small farmers, cattle ranchers,

mechanized grain producers, and large companies

from different sectors (e.g., mining, cosmetics, forestry)

that extract and industrialize natural resources. Set in

different production systems (Becker, 2004; Costa, 2008,

2009), these actors employ characteristic practices dur-

ing the deforestation process. These differences include

the speed of the process used to remove or explore the

primary forest, which depends on the capital and the

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 3346–3366
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techniques employed. It may or may not includethe use

of secondary vegetation as part of a given production

system (Perz & Skole, 2003; Costa, 2004; Mello et al.,

2011).

In this context, we designed a new emission model-

ing framework (INPE-EM) based on the bookkeeping

model developed initially by Houghton et al. (2000)

and Houghton (2003b). The framework is spatially

explicit, as in Loarie et al. (2009), to account for the spa-

tial distribution of biomass and deforestation while also

taking into account the intra-regional diversity of land-

use change practices regarding pristine and secondary

vegetation removal dynamics. The INPE-EM is a gen-

eric framework that can potentially be applied to any

tropical forest area if the correct parameters are pro-

vided. As an initial application of the framework, we

build a model to estimate annual carbon emissions

from deforestation in the Brazilian Amazon. For this

estimation, we use spatially explicit deforestation data

from 2002 to 2009 (INPE, 2011a,b,c) and non-spatially

explicit historical deforestation rates from 1961 to 2001.

We compare four different biomass sources (Saatch

et al., 2007; Nogueira et al., 2008; MCT, 2010; Saatchi

et al., 2011a) and alternative sets of parameters to

explore key deforestation process uncertainties.

The article is organized as follows. Section 2.1

describes the INPE-EM framework, and Section 2.2

details parameterization and data sources for its appli-

cation to the Brazilian Amazon. Section 3 presents the

carbon emission estimates resulting from alternative

model runs. Section 4 discusses the results of the article

with respect to both the deforestation-driven carbon

emissions in the Brazilian Amazon and the applicability

of the generic INPE-EM.

Material and methods

INPE-EM framework

This section describes the INPE-EM framework at the concep-

tual level, which was based on work published by Houghton

et al. (2000). The original model was modified to include the

spatial dimension and account for intra-regional biophysical

and socioeconomic heterogeneity. The INPE-EM allows the

creation of application models at different spatial and tempo-

ral scales, combining a spatial and a non-spatial mode:

• The ‘Spatial Mode’ requires a geographical database com-

posed of regular cells at a spatial scale adequate for the

study area application. This mode is applicable for the time

period in which spatially explicit vegetation removal (forest

to clear-cut deforestation) data are available (real or

projected – to permit future scenario analysis when neces-

sary). The spatial database must contain information about

the percentage of each cell that was deforested in each year,

the average aboveground biomass for each cell, and other

necessary parameters describing the heterogeneity of the

region. Emissions are computed for a given year for each

cell, and the total emission is given by the sum of all cells.

• For the time period for which only non-spatial deforestation

rates are available, we use INPE_EM in the ‘Non-spatial

Mode’. This is necessary to account for lagging contributions

of the past (for instance, slash decay emissions, secondary

vegetation absorption, and emission), which are summed

with the results of the spatial mode. The behavior of the

model is exactly the same in both modes: the non-spatial

model is equivalent to using a regular grid composed of a

single cell.

Figure 1 illustrates the overall INPE-EM structure, which is

composed of two independent components: (1) Primary Forest,

which represents the vegetation removal process from the ori-

ginal forest cover, and (2) Secondary Forest, which represents

the process of the regeneration of the vegetation following the

abandonment of deforested areas and the probable subse-

quent removal of at least part of this secondary vegetation for

agricultural purposes, as described below.

Primary forest component. For each year, this model compo-

nent uses the new deforested area in a given cell to compute

the removed aboveground biomass (AGB). This amount of

AGB is converted to carbon (C) by considering a mean content

(% of C given by carbonPercBiomass) in the plant biomass. The

AGB carbon content is used to compute the belowground bio-

mass (BGB) carbon content according to the BGB/AGB ratio

(BGBPercAGB). Although some biomass data sources may

report spatially explicit BGB, this is not always the case; thus,

we opted to treat all data sources in a uniform way using the

BGBPercAGB average ratio. The framework keeps the AGB

and BGB parameters for each data source as a Biomass submodel

(see Table 2). The INPE-EM primary forest model component

then considers that the estimated BGB will decay over the years

according to an exponential decay rate (decayRateBGB). The

deforested AGB carbon amount is divided into four possible

paths, as proposed by Houghton et al. (2000): (1) The percent-

age removed as timber (percWood), assuming that the carbon in

the derived wood products will be released to the atmosphere

over the years with an exponential decay rate (decayRateWood),

(2) The percentage of the remaining biomass, after timber

exploration, that is burnt and released to the atmosphere

immediately, in that same year (percFireFirstYear), (3) The per-

centage left on the ground to decompose (percSlash) with an

exponential decay rate (decayRateSlash), which can burn again

in subsequent years according to model parameter (slashFireCy-

cle), (4) The percentage converted to elemental carbon by fire

(percElementalCarbon), which decays at very slow rates (decayR-

ateElemCarbon). To account for the heterogeneity of actors in

the study area, INPE-EM allows such percentages to be spa-

tially represented. Therefore, parameters can be cell specific,

representing dominant land-use practices and trajectories.

These parameters define a Primary Forest Submodel, and multi-

ple submodels can be defined to test alternative values for a

given application model.

The bookkeeping process functions as follows. The percent-

age of burnt carbon is added to that year’s total emissions. All

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 3346–3366
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the other parts decay at potentially different rates in a process

that can require a different number of years. The model com-

putes the amount of C to be released in the subsequent years

for items (a), (c) and (d) separately, as Fig. 1 illustrates, and

stores the estimates in specific variables distributed over the

years for each cell. This is a cumulative process that is

repeated for every year simulated by the application model,

with annual updates of such variables for items (a), (c), and

(d). Therefore, in a given year, the total carbon emissions is

the sum of immediate release by fire (b) and the previous

year’s gradual release accumulated through (a), (c), and (d)

plus root decay (BGB).

Secondary growth component:. This model component repre-

sents different pathways in the dynamics of secondary vegeta-

tion using spatially distributed parameters, depending on

land-use practices (Ramankutty et al., 2007). The parameters

are the following: the percentage of the deforested area in a

given cell that will be abandoned after some years of agricul-

tural use (agriculturalUseCycle) and become secondary vegeta-

tion (percRegrow) according to the dominant land-use practice

in that cell; the vegetation growth curve (modelRegrow) after

abandonment; and the number of years, on average, it will

take for that growing vegetation to be removed again. We use

the parameter halfLife, based on the ideas of Almeida (2009), to

estimate the secondary vegetation removal rate in each cell.

The halfLife parameter indicates the number of years to remove

50% of the secondary vegetation (identified using remote sens-

ing images), following an exponential curve. The model esti-

mates the secondary vegetation removal rate for the following

years using this exponential curve. The other necessary param-

eter is an estimate of the number of years of abandonment that

must occur before the secondary vegetation can be recognized

in remote sensing images (initialAbandonmentCycle). Parameter

values for the Secondary Forest component are grouped as

Secondary Forest (SF) submodels.

In this component, the bookkeeping process works as fol-

lows. On the basis of parameters agriculturalUseCycle, perc-

Regrow, and modelRegrow, we estimate the regeneration rates

and store them as absorbed carbon for each cell over the years,

both above and belowground. Then we simulate the removal

of part of this new vegetation according to the parameters

initialAbandonmentCycle and halfLife and compute the amount

emitted. The current INPE-EM secondary forest component

considers all carbon (from BGB and ABG) to be released by

fire during the year in which it is deforested, assuming that

there is no biological decay or elemental carbon components.

After removal, that vegetation is assumed to regenerate in

subsequent years, simulating continuous abandonment, and

use of the percentage of land defined by percRegrow.

For each year, INPE-EM computes the balance of all the car-

bon released and absorbed, combining the two components in

the spatial or non-spatial mode, according to an application

model. An INPE-EM application model consists of defining

the temporal and spatial scale of the study, the deforestation

data source and the three submodels (Biomass, PF and SF).

Alternative submodels may be defined to explore process

uncertainties in a given study area. Table 1 summarizes the

parameters required in each submodel.

The current version of INPE-EM does not consider litter

biomass or changes in soil carbon derived from deforestation.

There is also no consideration of processes that can hold car-

bon for a longer time in the environment, such as land-use

practices, soil conservation or microbial biomass growth

rates. The current version also does not explicitly represent

the gradual loss of biomass due to forest degradation process,

which is associated with selective/cryptic logging and fire

(DeFries et al., 2002; Foley et al., 2007), for the whole study
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Fig. 1 INPE-EM: the conceptual model schematic representation.
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area. The parameter percWood partially captures the effect of

selective logging, but this parameter is restricted to explored

forest areas that ended up being converted to clear-cut

deforestation. We developed the INPE-EM framework using

the TerraME modeling environment (Carneiro, 2006). We

adopted a flexible and open-source architecture to allow not

only the easy creation of application models, but also the

modification of process representation in each model

component if necessary.

INPE-EM for the Brazilian Amazon

Study area and scales. The goal of this study is to use the

INPE-EM to estimate the carbon balance related to tropical

Table 1 The INPE-EM parameters

Parameter Description Unit

Spatial

dimension

Temporal

dimension

Deforestation deforest New deforestation area in a

given period, according to model

temporal scale.

ha (hectars) mandatory

for the

spatial mode

mandatory,

according to

the temporal

scale of the

model

Biomass AGB Avarage pristine vegetation AGB

(above ground biomass)

Mgha�1 mandatory for

the spatial

mode

no

carbonPercBiomass Carbon (%) in dry biomass (mean of

several plant tissues)

% no no

BGBPercAGB Percentage of AGB to consider as

BGB (bellow ground biomass)

% optional no

Primary

Forest

percWood AGB percentage removed as timber

(wood products carbon will decay

exponentially)

% optional optional

percFireFirstYear AGB percentage after timber

exploration which burns in the first

year (carbon released instantaneously).

% optional optional

percSlash AGB percentage after timber exploration

left in the ground as slash (carbon will

decay exponentially).

% optional optional

percElementalCarbon AGB percentage left in the ground as

slash (carbon will decay very slowly).

% optional optional

slashFireCycle Number of years to reburn slash left

in the ground from deforestation.

yrs (years) optional optional

decayRateWood Wood products decay rate. n.a. no no

decayRateSlash Slash decay rate. n.a. no no

decayRateElemCarbon Elementar carbon decay rate. n.a. no no

decayRateBGB Roots decay rate. n.a. no no

Secondary

Forest

agriculturalUseCycle Number of years it takes for agricultural

land to be abandoned or rest after

deforestation.

yrs optional optional

percRegrow Percentage of a given deforested area

which will become secondary forest.

% optional optional

initialAbandonmentCycle Number of years of abandonment, before

the secondaty vegetation can be identified

by Remote Sensing images.

yrs optional optional

halfLife Number of years it takes to 50% of the

secondary vegetation to be cut (after

identification in Remote Sensing images),

following an exponential curve

(representing permanence time).

yrs optional optional

modelRegrow Biophisical model of vegetation regeneration

adopted for a given region.

Model code optional no

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 3346–3366
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rainforest deforestation in the Brazilian Amazon, an area of

approximately 4 000 000 km2. Other types of native vegeta-

tion removal in the area (for instance, in savannas) are not

considered. Brazil is politically divided into 26 federative

states and a Federal District, and the Brazilian Amazon rain-

forest overlaps partially nine of these states. The spatial scale

of this study divides the federative arrangement in the Brazil-

ian Amazon into regular cells of 25 9 25 km2, as Fig. 2 illus-

trates. The temporal scale incorporates the period from 1961 to

2009, in annual steps. During this time period, the use of

INPE-EM in the spatial and/or non-spatial mode depends on

the availability of spatially explicit deforestation maps, as dis-

cussed below.

Deforestation and biomass data sources. We use the

PRODES Monitoring System, developed by the Brazilian

National Space Institute (INPE), as the source of annual

deforestation data (INPE, 2011a,b,c). The system estimates

the annual deforestation rates (km2 yr�1) since 1988 using

remote sensing imagery. Since 2000, PRODES has provided,

in addition to the annual deforestation rate estimate, detailed

spatial information (60 m resolution) about the new deforested

Table 2 The INPE-EM parameters for Brazilian Amazonia: alternative sets of parameters for each submodel

Biomass B1 (baseline) B2 B3 B4

AGB* Saatchi et al. (2007) Nogueira et al.

(2008)

MCT (2010) Saatchi et al. (2011)

Space-variant:

100–370 Mg ha�1

(non-spatial mode:

196 Mg ha�1)

Space-variant:

100–320 Mg ha�1

(non-spatial mode:

266 Mg ha�1)

Space-variant:

100–418 Mg ha�1

(non-spatial mode:

197 Mg ha�1)

Space-variant:

100–347 Mg ha�1

(non-spatial mode:

193 Mg ha�1)

BGBPercAGB* 30% 20% 28% 30%

carbonPercBiomass 48% 48% 48% 48%

Primary forest PF1 (baseline) PF2 PF3 PF4 PF5

percWood 15% 15% 15% 15% 15%

percFireFirstYear* 50% 30% 70% 90% Space-variant:

30–70%

(non-spatial

mode: 50%)

percSlash* 48% 68% 28% 8% Space-variant:

70–30%

(non-spatial

mode: 48%)

percElementarCarbon 2% 2% 2% 2% 2%

slashFireCycle 3 years 3 years 3 years 3 years 3 years

decayRateWood 0.1 0.1 0.1 0.1 0.1

decayRateSlash 0.4 0.4 0.4 0.4 0.4

decayRateElemCarbon 0.001 0.001 0.001 0.001 0.001

decayRateBGB 0.7 0.7 0.7 0.7 0.7

Secondary forest SF1 (baseline) SF2 SF3 SF4

agriculturalUseCycle 2 years 2 years 2 years 2 years

abandonmentCycle 3 years 3 years 3 years 3 years

percRegrow* Space-variant:

10–70% (non-spatial

mode: 19%)

30% Space-variant:

10–70% (non-spatial

mode: 19%)

30%

halfLife* Space-variant:

3–21 years

(non-spatial

mode: 5 years;

initial in 1960:

21 years)

Space-variant:

3–21 years

(non-spatial

mode: 5 years;

initial in 1960:

21 years)

21 years 21 years

modelRegrow Based on Houghton

et al. (2000)

Based on Houghton

et al. (2000)

Based on

Houghton et al. (2000)

Based on Houghton

et al. (2000)

*Parameters that vary across sub models.

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 3346–3366

AMAZON DEFORESTATION CARBON EMISSIONS 3351



areas identified in the satellite images each year. PRODES is

recognized by the international community as a reliable

source of deforestation information, being used as a refer-

ence to validate global assessments (Achard et al., 2002, 2004,

2007; DeFries et al., 2002; Hansen et al., 2008b) and several

other regional studies (Morton et al., 2006; Hansen et al.,

2008a; Broich et al., 2009). Previous similar emission studies

(Ramankutty et al., 2007; Loarie et al., 2009) also used

PRODES as a deforestation data source. Figure 3a and b

present the total deforested area up to 1997 and 2009, respec-

tively, according to the PRODES system (INPE, 2011a,b,c).

Figure 3 illustrates how the deforestation process is hetero-

geneously distributed throughout the region and presents a

spatially dependent pattern that is concentrated around

areas cleared in previous decades (Alves, 2002) that are more

connected to the rest of the country (Alves, 2001; Aguiar

et al., 2007). Figure 3c and d present the spatial distribution

of the annual change (deforestation rate) identified in 2004

and 2009, representing the basic information we use in

INPE-EM (see File S1).

With respect to the biomass information, there have been

several efforts to produce maps of biomass distribution in the

Brazilian Amazon using different resolution and data acquisi-

tion approaches (Houghton et al., 2001; Malhi et al., 2006;

Nogueira et al., 2007; Fearnside et al., 2008). In this study, we

choose four alternative maps: (B1) Saatch et al. (2007), (B2)

Nogueira et al. (2008), (B3) MCT (2010) and (B4) Saatchi et al.

(2011a,b). Please, refer the File S1 for further details about

the biomass data sources. As Fig. 4 illustrates, biomass is

heterogeneously distributed in the region. Besides, existing

estimates present a wide variation in spatial distribution and

magnitude.

Combining these data sources, we apply the INPE-EM for

the Brazilian Amazon using the non-spatial mode for the

period 1961–2001 and the spatial mode for 2002–2009. The

INPE/PRODES system reports annual rates after 1989 and

an average decadal rate from 1979 to 1988 (21 000 km2 yr�1).

INPE also estimated that the total extension of deforested

area was 77 172 km2 in 1978 and 28 595 km2 in 1975 (Tardin

et al., 1980). To fill the gap from 1961 to 1975and from 1975

to 1978, we adjusted an exponential curve to these values,

representing a gradual increase. Houghton et al. adopted a

constant 4000 km2 rate from 1960 to 1978, and INPE′s aver-

age rate from 1979 to 1989. Ramankutty et al. (2007) adopted

a linear increase for the intervals 1960–1975–1989. Like

Houghton et al. (2000), we chose to maintain the official

INPE′s average rate from 1979 to 1989, but decided to adjust

an exponential curve to the 1960–1975–1978 values, repre-

senting a gradual increase. Prior to 1961, we considered that

deforestation was negligible. From 2002 to 2009, we use the

INPE-EM spatial mode. Each 25 9 25 km2 cell has an esti-

mate amount of cleared area (deforest) in each year from

2002 to 2009 (see File S1).

Concerning the biomass, we preprocessed all the data

sources to remove low values corresponding to non-forest

vegetation aboveground biomass (AGB). In the spatial mode

(2002–2009), our model considers the average AGB value in

each 25 9 25 km2 cell excluding values smaller than

100 Mg ha�1. For the non-spatial mode (1961–2001), we adopt

a constant AGB value estimated as the average forest biomass

(>100 Mg ha�1) of deforested cells in 2002. As Fig. 4 illus-

trates, the four maps are quite distinct in terms of their magni-

tude and spatial distribution. These differences directly

influence the average AGB value computed for the non-spatial

mode. Table 2 summarizes the biomass parameter values

adopted for the Brazilian Amazon. With respect to below-

ground biomass (BGB), Nogueira et al. (2008) report spatially

explicit information, which corresponds, on average, to 20% of

the AGB (BGBPercAGB = 20%). MCT (2010) reports BGB as

28% of the AGB (BGBPercAGB = 28%). Saatch et al. (2007) do

PAAM
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RO

RR
AP

MA

TO

Brazilian Amazon 

federative states

South America 

countries
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Acre

Amazonas

Maranhão
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TocantinsBackground: 

MODIS/NASA image

Fig. 2 Study area - The Brazilian Amazon: Cellular space and federative states.
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not report BGB, and we adopted a value of 30% (BGBPer-

cAGB = 30%). This is a mean value, based on dry land forest

data from several studies (Fearnside et al., 2001; Keller et al.,

2004; Luizão et al., 2004; Palace et al., 2007; da-Silva, 2007).

Carbon content (carbonPercBiomass) is considered to be 48% of

biomass (AGB and BGB).

Parameters for the representation of the deforestation process:

primary forest parameters. To represent the primary forest

process, we modified some of the parameters used by Hough-

ton et al. (2000) based on more recent literature. The model rep-

resents the fate of the carbon in the removed biomass by timber

extraction and slash-and-burn deforestation in each cell for

B1–Saatchi et al. (2007) 

Federative 
States

0 Mgha
–1

450 Mgha
–1

B2–Nogueira et al. (2008) 

Federative 
States

0 Mgha
–1

450 Mgha
–1

B3–MCT (2010) 

Federative 
States

0 Mgha
–1

450 Mgha
–1 B4–Saatchi et al. (2011) 

Federative 
States

0 Mgha
–1

450 Mgha
–1

(a) (b)

(c) (d)

Fig. 4 The Brazilian Amazon forest biomass represented in the cellular space (25 9 25 km2): (a) B1 - Saatch et al. (2007); (b) B2 - Nogue-

ira et al. (2008); (c) B3 - MCT (2010); (d) B4 - Saatchi et al. (2011a,b).

Total deforestation until 1997 (%) 

Federative 

States

Total deforestation until 2009 (%)

Federative 
States

New deforestation in 2004 (%) 

Federative 
States

New deforestation in 2009 (%) 

Federative 
States

(a) (b)

(c) (d)

Fig. 3 The Brazilian Amazon deforestation represented in the cellular space (25 9 25 km2): (a) the total deforested area up to 1997;

(b) the total deforested area up to 2009; (c) spatial rate distribution in 2004; (d) spatial rate distribution in 2009 (source: INPE, 2011a,b,c)
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each year. Therefore, we must define the percentage of biomass

that is (1) removed as wood prior to clear-cut deforestation

(percWood), (2) burnt and released in the first year (percFireFirst-

Year), (3) left on the ground to decompose (percSlash), and (4)

converted to elemental carbon (percElementalCarbon).

The amount of wood removed by the forestry sector (perc-

Wood) in deforested areas is a large source of uncertainty in

the model. The wood sector is very important to the regional

economy of Amazonia. According to official information

about the forestry sector in Amazonia (MMA, 2011), the total

volume of timber consumed was 14.1 million m3 in 2009 and

24.5 million m3 in 2004. In 2009, 65% of this total volume

came from Sustainable Forest Management Plans, 17% from

Legal Deforestation Licenses, and 18% from unidentified

sources. Even though deforestation licenses are a significant

source of timber for the forestry sector in Brazil, a substantial

portion still comes from unauthorized irregular deforestation

and selective or cryptic logging. According to Asner et al.

(2006), selective logging in the Brazilian Amazon leads to

clear-cut deforestation of 32% of the areas within the next

4 years. Previous works have considered that emissions

derived from cryptic logging in Amazonia would add 7% to

clear-cut deforestation emissions (Nepstad et al., 1999; De-

Fries et al., 2002; Loarie et al., 2009). The current version of

INPE-EM does not calculate overall logging emissions for

Amazonia, but it is necessary to determine the percentage of

original biomass in deforested areas that was removed by

the forestry sector legally or illegally, including by previous

cryptic logging. Houghton et al. (2000) and Ramankutty et al.

(2007) adopted 8% as the portion of the original biomass

transferred to wood products during deforestation. However,

given the magnitude of the forestry sector in Amazonia that

is involved in both legal and illegal logging extraction

processes, this value may be an underestimate. Thus, we

adopted 15% as a mean value for percWood in all of our mod-

els, acknowledging that a more accurate estimate remains an

open scientific question. Another source of uncertainty is the

fate of the removed wood (whether in civil construction,

charcoal, furniture, objects, wasted in the manufacturing

process, other purposes). This uncertainty influences esti-

mates of the number of years over which this share of the

carbon will be released. As in Houghton et al. (2000), we con-

sider an exponential decay rate of 0.1 per year for the wood

products.

The most uncertain parameter, however, is the amount of

remaining biomass after timber exploration, which is burnt in

the first year (percFireFirstYear) and, consequently, how much

is left on the ground (slash) to decompose biologically (perc-

Slash). These parameters are crucial for annual emissions esti-

mates because they modify the rate of emissions (Ramankutty

et al., 2007). Two aspects influence the parameter percFireFirst-

Year: fire efficiency (associated with forest structure, species

distribution, previous natural disturbance, and weather condi-

tions) and the available capital and dominant land-use system.

Houghton et al. (2000) and Ramankutty et al. (2007) assumed

that only 20% of the original biomass would burn and release

carbon in the same year in which deforestation is detected.

However, considering recent studies of fire efficiency (Carv-

alho et al., 2001), agrarian heterogeneity (Walker et al., 2000;

Aguiar et al., 2007; Costa, 2008) and agricultural evolution in

the region (Morton et al., 2006; Martinelli et al., 2010; Espindo-

la et al., 2011), we assume in our baseline Primary forest

Federative 
States

Agrarian structure indicator (% small farmers in area)

Federative 
States

PF5 – Percentage of biomass carbon released by fire in the first year

Federative 
States

SF1 – Percentage of secondary vegetation in deforested areas  

Federative 
States

SF1 - Half life of secondary vegetation (years) 

(a) (b)

(c) (d)

Fig. 5 The Amazonia intra-regional heterogeneity and sub-model spatial distribution parameters: (a) agrarian structure indicator: the

percentage of small farms in relation to the municipality area; (b) the percentage of biomass released in the clear-cut year by fire accord-

ing to sub-model PF5 (source: Aguiar et al., 2007; Espindola et al., 2011); (c) the percentage of secondary vegetation in relation to defor-

ested areas according to sub-model SF1 (source: Almeida et al., (2009)); (d) the half-life of secondary vegetation according to sub-model

SF1 (source: Almeida et al., 2009).
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model (PF1) that, on average, 50% of the biomass (remaining

after timber exploitation) will burn in the first year (percFire-

FirstYear = 50%). We consider that the region today is com-

posed of heterogeneous actors that are able to clear the land

with different technologies and speeds. In the PF1 model, we

adopted an average value for the entire area because we did

not have a solid basis from the literature for its spatial distri-

bution in relation to the heterogeneity of actors and land-use

trajectories across the region. To investigate the sensitivity of

the model to the observed range and intra-regional heteroge-

neity of the percFireFirstYear parameter, we consider three

alternative model configurations using 30% (PF2), 70% (PF3),

and 90% (PF4) as average values, repeated for every cell. We

also define a spatially explicit model (PF5) in which this

parameter varies in each cell according to the dominant land

use after deforestation and agrarian structure indicators

derived from an agricultural census (IBGE, 2006; Aguiar et al.,

2007; Espindola et al., 2011). Figure 5b presents the spatial dis-

tribution of this parameter in the PF5 model. This exploratory

PF5 model is based on our field knowledge that highly capital-

ized actors in mechanized agricultural areas are able to clear

the land in 1 or 2 years; thus, in areas where large farms are

predominant, percFireFirstYear is higher than in areas of tradi-

tional small-scale agriculture.

Other primary forest process parameters are defined as fol-

lows. A fixed proportion of 2% of the remaining biomass after

timber exploration is transformed into elemental carbon (perc-

ElementalCarbon) in all submodels (Houghton et al., 2000). The

percentage of slash (percSlash) is adjusted as 100% � (percFire-

FirstYear) � (percElementalCarbon) for each cell. The decay

rates for components (c) and (d) are based on Houghton et al.

(2000). All submodels assume that the estimated BGB will

release carbon through biological decomposition at a 0.7 per

year exponential decay rate (decayRateBGB), based on Silver

et al. (2005). Table 2 summarizes the alternative primary forest

model parameters.

Parameters for the representation of the deforestation process:

secondary forest parameters. The INPE-EM model represents

the secondary forest emission/absorption process based on

three groups of parameters, as detailed in Section 4.1

(Table 1): the percentage of deforested area in which second-

ary vegetation grows (percRegrow) after some years of agricul-

tural use (agriculturalUseCycle); the secondary vegetation

growth curve (modelRegrow); and the secondary vegetation

removal time lag (halfLife) after some years of abandonment

(initialAbandonmentCycle). For the parameter modelRegrow, we

use the same vegetation growth curve proposed by Houghton

et al. (2000) and Ramankutty et al. (2007), in which forests

recover 70% of their original biomass in 25 years and the

remaining 30% over the next 50 years.

For parameter percRegrow, Houghton et al. (2000) adopted

average values for each state, ranging from 5% in Goiás to

65% in Maranhão, based on a land cover classification derived

from Landsat images in 1986. We refined the process represen-

tation of this parameter using spatially distributed variables

derived from Almeida (2009) and Almeida et al. (2009) as fol-

lows. In these studies, the area occupied by secondary vegeta-

tion in the Brazilian Amazon for 2006 is estimated with a

sampling scheme in which 26 Landsat TM images distributed

into seven strata were selected according to their degree of

deforestation. In these 26 scenes, secondary vegetation areas

were mapped and validated in the field. A regression model

was constructed to estimate the area covered by secondary

vegetation in the remaining images. The percentage of defor-

ested area (according to PRODES data) covered by secondary

vegetation in 2006 is the dependent variable in their regression

model. For the whole of Amazonia, they estimated that

19.38 ± 1.83% of secondary vegetation in deforested areas in

2006. Uncertainty was estimated using a Monte Carlo simula-

tion. The recently launched TerraClass land-use monitoring

system (INPE, 2011c) reported 21% of secondary vegetation in

deforested areas in 2008, confirming the estimates of Almeida

(2009). Figure 5b presents the distribution of the variable per-

centage of secondary vegetation in previously deforested

areas, derived using the regression equation. We use the spa-

tial distribution of these values as parameter percRegrow in our

baseline SF1 submodel.

The distribution of this variable (the percentage of second-

ary vegetation in previously deforested areas) represents

regional heterogeneity reflected by the selection of indepen-

dent variables in the regression analysis that were selected on

the basis of the literature: deforestation area, hydrographic

area, agrarian structure indicator, and the area of conservation

units in each scene. The authors estimated an uncertainty in

the regression model of approximately 1% for the 26 sample

images and 18% to the other images. Even with this level of

uncertainty, we consider this approach a better representation

than for instance state level averages used in previous works

(Houghton et al., 2000), which would hide large intraregional

internal differences. The regression model coefficients confirm

previous studies (Alves et al., 2003; Perz & Skole, 2003; Mello

et al., 2011) relating the distribution of secondary vegetation in

the Brazilian Amazon to the presence of small farmers

(according to the distance to rivers and indicators of agrarian

structure) and the degree of land availability and occupation

of a given area (deforested and conservation units per area,

independent variables).

Finally, it is necessary to define the permanence time of the

secondary vegetation so that the model can estimate how

much of the carbon captured during re-growth will be

released in a given year, represented by the parameters halfLife

and initialAbandonmentCycle. We also used the results of Alme-

ida (2009) as a basis for these parameters in our baseline SF1

model. These authors estimated the spatial distribution of the

secondary vegetation half-life according to the secondary veg-

etation mapped in 1997 and removed in subsequent years of

mapping. The half-life was computed using exponential decay

equations adjusted using 2000, 2003 and 2006 classified images

and based on the same seven strata according to the degree of

deforestation. For areas with deforestation below 30%, the

half-life lies between 4 and 7 years. For areas with greater than

30% deforestation, the half-life is 3–4 years. Therefore, we

computed the degree of deforestation in each cell in 2006 and

then distributed the half-life values according to the findings

of Almeida (2009) (Fig. 5b and d).
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In addition to the baseline SF1 submodel, we also run three

alternative secondary forest submodels (SF2, SF3 and SF4).

The goal of these simulations is to explore how the percent-

age of secondary vegetation in deforested areas and the

half-life affect the CO2 estimates. Submodel SF2 varies the

percentage of secondary vegetation in each deforested cell.

Using Almeida et al. (2009), the average percentage of sec-

ondary vegetation in the deforested areas is 19%. Ramankutty

et al. (2007), using a land-use transition matrix defined by

Fearnside (1996), considered 32% of the deforested land is in

regrowing vegetation. Thus, the SF2 submodel adopts 30% as

a unique value in all the cells. The SF3 submodel increases

the half-life parameter to 21 years, which is the maximum

value in Almeida (2009). SF4 changes both parameters at the

same time.

Table 2 summarizes the individual biomass, primary, and

secondary forest parameters for the Brazilian Amazon. The

next section describes how we combine the four alternative

biomass maps with primary and secondary forest submodels

to explore different model uncertainties.

Explorations: protocols of the submodel combination. There

are many possible combinations of Table 2 biomass, primary,

and secondary forest submodels. To explore different model

uncertainties in the results section, we selected some key

combinations (named Explorations), summarized in Table 3.

We first explore the primary forest submodel results with-

out considering the secondary forest in the estimates. Explora-

tion 1 compares the estimates obtained by the baseline PF1

submodel when using four different biomass data sources

(submodels B1 to B4). Then, to explore model uncertainties

other than the biomass, Exploration 2 compares alternative pri-

mary forest submodels (PF2 to PF5) with the baseline PF1 sub-

model using just one of the biomass maps represented by

submodel B1 (Saatch et al., 2007). We choose Saatch et al.

(2007) as a baseline for the explorations because it has been

used in recent similar spatially explicit models (Loarie et al.,

2009). Submodels PF1 to PF5 vary in relation to the most

uncertain parameters in that the component: the amount of

remaining biomass that is burnt in the year of clear-cut defor-

estation (percFireFirstYear) and the amount left in the ground

to decompose (percSlash), as Table 2 illustrates.

The influence of the secondary forest process on the emis-

sion estimates is also explored in two steps. Exploration 3 com-

pares the CO2 balance using the four alternative biomass

maps using the baseline PF1 and SF1 submodels. Then, in

Exploration 4, we compare alternative submodels (SF2, SF3

and SF4) representing the secondary vegetation dynamics,

also using biomass B1 as an example (Saatch et al., 2007).

Compared with SF1, model SF2 varies the percRegrow parame-

ter, SF3 varies the halfLife parameter, and SF4 varies both of

these parameters (see Table 2).

All explorations estimate emissions for the whole of the

Brazilian Amazon. To illustrate the impacts of the intra-regional

heterogeneity on the model results, Explorations 1 and 2 also

compare some results at the sub-regional level for selected fed-

erative states with distinct socioeconomic and biophysical

characteristics. Exploration 1 compares the primary forest

Table 3 A summary of the explorations for the Brazilian Amazon: biomass, primary, and secondary forest submodel combination

Exploration

Primary forest

submodel Secondary forest submodel

Biomass

submodel

Regional

analysis State level analysis

1 PF1 Not considered B1, B2, B3, B4 yes yes (MT, RO and PA)

2 PF1, PF2, PF3,

PF4, PF5

Not considered B1 yes yes (MT and AM)

3 PF1 SF1 B1, B2, B3, B4 yes no

4 PF1 SF1, SF2, SF3, SF4 B1 yes no
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Fig. 6 Results: CO2 emissions from primary forest deforestation comparing four biomass data sources (Model P1S1) at the Brazilian

Amazon level: (a) instantaneous (non-process) and (b) process-based.
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emission estimates using alternative biomass maps for the

three states with higher historical deforestation rates: Mato

Grosso, Pará and Rondônia. Exploration 2 illustrates the poten-

tial effects of using a spatially explicit variable to represent the

parameter percFireFirstYear (model SF5) by comparing two

states with distinct agrarian structures: Mato Grosso and

Amazonas (Fig. 5).

Results

According to the protocol discussed in the previous

section, Section 5.1 presents the emission model results

for the primary forest deforestation process (Explora-

tions 1 and 2). Section 5.2 includes the Secondary Forest

(SF) dynamics and explores the CO2 balance estimates

(Explorations 4 and 5).

Primary forest results

Figure 6 presents the estimate of CO2 emissions related

to primary forest deforestation for the whole of the

Brazilian Amazon from 1990 to 2009 using four differ-

ent biomass maps (Exploration 1). For comparison,

Figure 6a illustrates the results of a non-process

estimate, equivalent to the instantaneous emissions of

100% of the carbon. Figure 6b presents the estimates

using the baseline PF1 model (Table 2), in which 50% of

AGB carbon (after 15% of timber extraction) is released

in the first year by fire. Table 4 summarizes the

estimates for the different time periods, in TgCO2yr
�1

and PgCyr�1, using a 3.67 C-CO2 conversion factor.

As Fig. 6 and Table 4 show, emissions estimates

based on biomass submodel B2 (Nogueira et al., 2008)

are considerably higher than the estimates based on

other biomass submodels. For example, for the 2000–

2009 decade, the values for B2 process-based emissions

are 968 Tg CO2 yr�1 (0.26 Pg C yr�1). The average of

estimated emissions based on B1, B3 and B4 submodels

in the same period is 785 Tg CO2 yr�1 (0.21 Pg C yr�1).

The results from B1, B3, and B4 are quite similar when

considering the entire extent of the Brazilian Amazon in

spite of the visual differences among the biomass maps

(Fig. 4). However, when performing more detailed

analyses, for instance at the state level, the heteroge-

neous spatial distribution of the biomass values also

influence the model results based on B1, B3 and B4

submodels. As an example, we compare the emission

estimates for Mato Grosso, Pará and Rondônia (Fig. 7a–c,

respectively).

As Fig. 7 illustrates, submodel B4 leads to higher

estimates than those of B1 and B3 in Mato Grosso. In

Rondônia, for instance, B4 leads to smaller numbers,

whereas in Pará, the results are more similar to those

obtained at the regional level (Fig. 6b). In spite of this,

in Pará, emissions using B1 are smaller than the ones

obtained using B3 and B4. Such differences resulting

from the biomass data sources bring a significant com-

ponent of uncertainty to deforestation emission esti-

mates. In addition to the differences among data

sources discussed above, there are reported uncertain-

ties in each of the biomass sources. For instance, Saatchi

et al. (2011a,b) report a spatially explicit error in the

AGB biomass. On the basis of the reported error, we

estimated range emissions for each cell. The results

demonstrate a variation of 15–19% compared with the

estimate shown in 6b for Saatchi et al. (2011a,b),

depending on the year. In summary, there are two

sources of uncertainty in the emissions estimates

related to the biomass maps: (1) The variation of the

magnitude and spatial distribution among data sources

(above- and belowground). This variation can result in

a 20–25% increase or decrease in estimates for the entire

region, as well as causing intraregional relative differ-

ences. (2) The intrinsic error associated with the meth-

odology used to generate the biomass maps can be as

high as 15%.

Another important aspect of the biomass spatial

distribution and heterogeneity is the direction of the

new deforestation frontiers. In spite of the differences

in biomass data sources discussed above, an analysis of

the spatial distribution of deforestation spatial patterns

from 2002 to 2009 indicates that the deforestation fron-

tier is moving to areas of higher biomass. Table 4 sum-

marizes these results. This increase in biomass values

as was also previously pointed out by Loarie et al.

(2009). As deforestation rates have decreased consider-

ably since 2005, emission estimates have also decreased,

in spite of the increase in biomass values per unit of

area (ha).

The remainder of this section explores another

important source of uncertainty in the Primary Forest

deforestation process: the amount of remaining biomass

(after wood removal as timber) that is burnt in the year

of clear-cut deforestation (Exploration 2). Figure 8a com-

pares the results of the baseline model PF1 (percFire-

FirstYear = 50%) with the alternative models PF2 (30%),

PF3 (70%), and PF4 (90%), and a single biomass data

source (Saatch et al., 2007). Figure 8b–d represent the

relative contributions of the different model compo-

nents in the comparison of PF1, PF2, and PF3, respec-

tively.

Figure 8 illustrates how this parameter controls the

pace of carbon release. The larger the parameter, the

faster carbon is emitted. For instance, in 2004, a peak

deforestation rate year, PF1 submodel estimates 986 Tg

CO2 yr�1 (0.27 Pg C yr�1). PF2 estimates a smaller

value, 959 Tg CO2 yr�1 (0.26 Pg C yr�1), as the carbon

will be released along the following years. On the other

© 2012 Blackwell Publishing Ltd, Global Change Biology, 18, 3346–3366
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Fig. 7 Results: CO2 emissions from primary forest deforestation comparing four biomass sources (Model P1S1) at the state level in (a)

Mato Grosso, (b) Pará, and (c) Rondônia using biomass data from Saatch et al. (2007).
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Fig. 8 Results: CO2 emissions from primary forest deforestation comparing alternative process parameters at the Brazilian Amazon

level using biomass data from Saatch et al. (2007).
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Fig. 9 Results: CO2 emissions from primary forest deforestation comparing spatial process parameters at the Brazilian Amazon level
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hand, in 2009, when deforestation rate is lower, PF1

estimates 551 Tg CO2 yr�1 (0.15 Pg Cyr�1) and PF2 a

larger value, 590 Tg CO2 yr�1 (0.16 Pg C yr�1), because

of the past years slash contribution. In the long term,

the same amount of carbon will be emitted indepen-

dent of this factor. In contrast, the differences in the

biomass data sources discussed above actually control

the overall amount of carbon released. However, the

percentage of biomass burned in the first year is a

crucial factor for accurate annual estimates. Figure 9

compares the results of applying the PF5 model, in

which parameter percFireFirstYear is spatially explicit,

to those of PF2 (percFireFirstYear = 30%) and PF3

(percFireFirstYear = 70%), considering different areas of

analysis (the Brazilian Amazon, Mato Grosso and

Amazonas) to explore the intra-regional variability.

Figure 9 shows that the PF5 estimates lie between

PF2 and PF3 at the regional level; on average, parame-

ter percFireFirstYear is close to 50%. Nevertheless, the

models’ results differ in Mato Grosso State, where PF5

results are more similar to those of PF3 (70%). In con-

trast, in Amazonas State, PF5 is closer to PF2 (30%).

This difference indicates the importance of refining this

parameter for more local analyses, especially when

detailed annual estimates are required.

Carbon balance results

Table 4 presents the CO2 balance for the entire exten-

sion of the Brazilian Amazon from 1990 to 2009 using

the PF1SF1 model (Exploration 3). Our average balance

estimates, considering all biomass data sources, are 697

(1990–1999) and 795 Tg CO2 y�1 (2000–2009), or 0.19

and 0.22 Pg C yr�1, respectively. Compared with the

primary forest process-based emission estimates, the

re-growth of deforested vegetation does not contribute

significantly to the emissions reduction (on average, 5%

in both periods of time, see Table 4). The short lifetime

(5 years, on average) of the secondary vegetation in our

baseline SF1 model (Almeida, 2009) explains this result.

In the remaining part of this section, we compare

alternative secondary forest submodels. The goal is

to explore how the percentage of secondary vegetation

in deforested areas (percRegrow) and lifetime (halfLife)

affect the CO2 estimates (Exploration 4). We fix

the baseline primary forest (PF1) and biomass (B1)

submodels, and perform three alternative secondary

forest model simulations (SF2, SF3, and SF4). We vary

one parameter at a time in SF2 and SF3 and both

parameters in SF4 (Table 3). Figure 10 presents the

results.
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Saatch et al. (2007): (a) secondary forest emissions; (b) secondary forest absorption; (c) balance, using primary forest model PF1.
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As Fig. 10 illustrates, SF2 submodel results produce

higher emission and absorption values when compared

to SF1. The comparatively higher percRegrow parameter

(30% in SF2 vs. 19%, on average, in SF1) explains this

result. The larger area of secondary vegetation

increases CO2 absorption rates because more vegetation

is growing. However, emission rates also increase

because consequently a larger amount of secondary

vegetation biomass will be removed some years later,

according to the halfLife parameter. Thus, submodel SF2

results in a small increase in the difference between the

balance and primary forest deforestation emissions

(Fig. 10b and c). In comparison, increasing the halfLife

parameter, as in model SF3 (21 years compared with

5 years, on average, in model SF1), contributes to a

higher difference between balance and primary forest

emissions (Fig. 10c). Finally, model SF4 explores chang-

ing both parameters. Balance estimates using PF1SF4

are considerably lower than the primary forest defores-

tation emissions (PF1), at 15%, on average, for the time

period 2000–2009. When using PF1SF1, this decrease is

only 5%.

This result is important for emission reduction poli-

cies: valuing the secondary vegetation, both by restor-

ing previously deforested areas and creating incentives

for a longer lifetime, would positively influence final

balance results, reducing net CO2 emissions in the

region. We further discuss this and other implications

of our results in the next section.

Discussion

In the Brazilian Amazon, the largest source of uncer-

tainty regarding carbon emissions from deforestation is

the spatial distribution of biomass. Differences among

emissions estimates based on different biomass data

sources can be on the order of 20% using our baseline

model parameters. Although estimates based on sub-

models B1 (Saatch et al., 2007), B3 (MCT, 2010) and B4

(Saatchi et al., 2011a,b) are relatively similar at the

regional level, those based on B2 (Nogueira et al., 2008)

are significantly higher. This difference could be even

higher if we had adopted the same percentage of BGB

in relation to AGB in all the submodels. Parameter BGB-

percAGB is 20% in B2, 28% in B3 and 30% in

B1–B4. Thus, the emission estimate differences would

increase to 30% as BGB contribution in B2 would be lar-

ger. In addition to magnitude differences, existing bio-

mass maps have significant heterogeneous spatial

distributions of high and low AGB values throughout

the region (see Fig. 4). Therefore, when using the model

to estimate emissions at the sub-regional or local level,

estimates based on different maps will not necessarily

follow the same relative order of magnitude. These

results have a direct impact on the implementation and

efficacy of emissions reduction mechanisms, such as

REDD or REDD+. Although relative changes of emis-

sions from deforestation and degradation may be less

influenced by absolute value of biomass, the magnitude

of emission and its geographic distribution depend sig-

nificantly on the forest biomass and its uncertainty.

Therefore, a key issue in the implementation of REDD+

is the reduction of uncertainty in the magnitude and

the spatial distribution of forest biomass. In general, the

methodology to improve the biomass estimation in

Amazonia can be divided into two categories: (1) Devel-

opment of a systematic forest inventory as in most

national inventory systems in temperate countries such

as the US Forest Service FIA (Forest Inventory and

Analysis) (Heath et al., 2010). Given the vast region of

Amazonia, inaccessibility of different regions, and the

small-scale variations of forest structure and biomass

compared to the even-aged temperate forests, the estab-

lishment of a systematic inventory system may not be

feasible (Clark and Clark, 2000; Shugart et al., 2010). (2)

The use of satellite remote sensing data sensitive to for-

est structure and biomass such as Lidar and Radar sen-

sors calibrated with limited ground measurements

(Dubayah et al., 2010; Shugart et al., 2010; Le Toan et al.,

2011; Saatchi et al., 2011a,b). Although there are several

ongoing projects to develop the spaceborne missions,

currently, the most effective remote sensing techniques

are airborne (Asner et al., 2010; Dubayah et al., 2010;

Saatchi et al., 2011a,b). We consider an integrated

approach using existing airborne and satellite observa-

tions and a reasonable network of the field inventory

plots for calibration and upscaling of the biomass to

landscape scale as the most cost-effective approach to

provide spatially refined and temporally constraint esti-

mates of forest biomass and changes in tropical forests

(Saatchi et al., 2011a,b).

A large uncertainty in estimating tropical forest

biomass over the landscape is also related to the scale of

maps and the analysis. In this study, we used maps gen-

erated at different scales (~ 1–5 km) that do not corre-

spond to the scale of mapping deforestation (30 –

100 m), and the scale of the analysis (25 km). Forest bio-

mass mapped at different spatial resolutions and using

different approaches will aggregate to different values

at larger scales (e.g. 25 km). In general, biomass maps

based on remote sensing approaches capture the hetero-

geneity in the forest cover, structure, and landscape

variations (e.g. topography, soil). However, maps that

are developed from interpolations of limited field data

do not include the heterogeneity of the landscape and

forest cover. In general field samples collected in a non-

random or nonsystematic method represent forests with

higher biomass, a phenomenon known as the majestic
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forest bias (Phillips et al. 2004). In this study, maps

based on derived field data as in B2 and B3 may have

higher estimate of biomass due to interpolation of field

data. In contrast, maps based on remote sensing data

may tend to slightly underestimate the forest biomass

due to the scale of analysis and lack of sensitivity to for-

est biomass (e.g. the saturation effect in optical spectral

data). We expect that by improving the scale of maps

and the scale of analysis, the emission estimates will also

improve. Ideally, a forest biomass map at about 1.0 ha

spatial resolution, generated using a combination of

remote sensing calibrated using a reasonable network of

field plots, as discussed above, and a more direct spatial

analysis can readily improve the estimate of the gross

emission from deforestation. Such analysis should not

be limited to the tropical forests, but include the Brazil-

ian Cerrado and Caatinga biomes, also at risk.

The biomass uncertainty can only partially explain

the differences between our estimates and previous

studies of carbon losses directly related to deforesta-

tion processes in the Brazilian Amazon (Fearnside,

1996; Houghton et al., 2000; DeFries et al., 2002; Achard

et al., 2004; Hirsch et al., 2004; Loarie et al., 2009; Potter

et al., 2009). Differences may also emerge from pro-

cesses that a given model represents. For instance, our

baseline model balance estimates using Saatch et al.

(2007) for the period 2001–2007 are 0.22 Pg C yr�1.

Loarie et al. (2009) estimated annual carbon emissions

of 0.16 Pg C yr�1 for the same period using the same

AGB data; they also use a similar spatially explicit

approach based on Houghton et al. (2000) and PRODES

deforestation maps. Our primary and secondary forest

parameters modified from Houghton et al. (2000) may

explain some of the differences (e.g., percFirstYear). But

they are possibly explained mostly by the following: (1)

The inclusion of belowground biomass (roots decom-

position process) in our model. (2) The fact we do not

consider cryptic logging and Loarie et al. (2009) adds

7% to their final estimates to roughly account for this.

In a rough comparison, if we remove the BGB contribu-

tion, we would obtain a 0.17 Pg C yr�1 in our balance

estimate, a closer value to the one estimated by Loarie

et al. (2009) for this period. These values are also in

general accordance to the ones estimated by DeFries

et al. (2002), Achard et al. (2004), and Houghton (2008)

for previous time periods.

In contrast, if we use the Nogueira et al. (2008) bio-

mass map, our baseline model estimates increase to

0.27 Pg C yr�1 for 2001–2007. This value is of the same

magnitude as the one estimated by Fearnside (1996),

0.261 Pg C yr�1, using a similar biomass data source.

On the other hand, the values obtained by Potter et al.

(2009) are extremely higher: a balance of 0.6 Pg C yr�1

(2000–2004). However, these estimates use a completely

different approach based on the MODIS sensor data

and the CASA ecosystem model. For the same period

of high deforestation rates, our PF1SF1 model, even if

considering the Nogueira et al. (2008) biomass map,

estimates a balance of 0.27 Pg C yr�1. Nevertheless, we

consider that given the proper weight to the data

sources, compatible methods and processes repre-

sented, our estimates are in general accordance with

previous work results.

One important difference although is the possibility

of representing the primary and secondary forest pro-

cess parameters in a spatially explicit manner. In the

current model we build for the Brazilian Amazon, we

spatially explicitly represent the secondary forest

dynamics. The parameters we adopted, based on Alme-

ida (2009), capture the current understanding about

how the dynamics of the secondary vegetation depends

on the degree of occupation of a given area (Alves et al.,

2003; Mello et al., 2011; Almeida et al., 2010). In areas

with high degree of occupation the amount and lifetime of

secondary vegetation is comparatively lower due to the

increase in land prices and the influence of agricultural

economic activities. As deforestation in Amazonia pre-

sents a highly concentrated spatial pattern (Alves,

2002), our baseline secondary vegetation parameters

have relatively low values where most deforestation

takes place. As a result, according to our baseline SF1

model, the average carbon balance is only 5% lower

than the estimated emissions from primary forest

deforestation in 2000–2009. This means that current sec-

ondary forest dynamics make a small contribution to

the final balance. Previous works have in general esti-

mated a considerably larger impact of secondary vege-

tation in the regional carbon balance because they have

adopted averages that hide this intra-regional variabil-

ity and overestimate the secondary vegetation area.

Hirsch et al. (2004) and Ramankutty et al. (2007), for

instance, considered that the percentage of secondary

vegetation is one third of the deforested area. Given the

large area occupied by the growing vegetation, Rama-

nkutty et al. (2007) estimated that secondary vegetation

dynamics reduces carbon emissions in approximately

20%, even when considering that 17% of the area is

re-cleared every year. On the other hand, Hircsh et al.

(2004) estimated secondary forests dynamics does

not modify the overall estimatives when re-clearing is

considered.

In contrast to secondary forest parameters, our base-

line model does not adopt spatially explicit parameters

to represent the primary forest deforestation process.

The percentage of biomass burned in the first year

(percFirstYear) is one of the most important variables in

the model as it controls the pace of the emissions. How-

ever, we did not have a reliable estimative to distribute
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this variable in space. The current baseline model for

the Brazilian Amazon adopts an average 50% value in

all cells. This value is larger than the 20% adopted in

previous works (Houghton et al., 2000; Loarie et al.,

2009). The higher the parameter the faster the emission

estimates reflect deforestation rates temporal evolution.

We consider 50% better captures the heterogeneity of

actors and practices in the region. For more accurate

intra-regional analysis in future work, INPE_EM allows

to represent the spatial distribution of this parameter

(as the PF5 submodel illustrates).

A look into the future

Since 2004, deforestation in the Brazilian Amazon has

decreased significantly, from 27 772 km2 yr�1 in 2004

to 7000 km2 yr�1 in 2010 (INPE, 2011a,b,c). INPE-EM-

based estimates reflect this decreasing rate. The aver-

age balance, considering all biomass, drops from 919

(2002–2005) to 702 Tg CO2 yr�1 (2006–2009), or 0.25

to 0.19 Pg C yr�1. However, the decrease is rela-

tively slower than that the non-process instantaneous

emissions model would estimate because this model

considers residual emissions distributed over time

(slash, wood products, and secondary vegetation). The

non-process model would estimate this decrease as

being shaper, from 1021(2002–2005) to 528 Tg CO2 yr�1

(2006–2009), or 0.28 to 0.14 Pg C yr�1, respectively.

In the context of recent global assessments discussed

in the Introduction (Le Quéré et al., 2009; Malhi, 2010;

Pan et al., 2011), the Brazilian Amazon deforestation-

driven CO2 emissions, considering the primary and

secondary forest balance of 0.15 PgC in 2009, would

represent around 12% of the global LUC emissions (1.2

PgC according to Le Quéré et al. (2009), for instance). In

the context of the overall global CO2 emissions (9.9 PgC

according to Le Quéré et al. (2009)), the Brazilian Ama-

zon deforestation contribution would currently repre-

sent approximately 1.5%.

However, in spite of this considerable reduction in

clear-cut deforestation rates and, consequently, in car-

bon emissions, there is still an enormous uncertainty

about the fate of the forest (Malingreau et al., 2012). The

Brazilian government is now committed (both under

the UNFCCC framework and through its National

Policy on Climate Change) to reducing the Brazilian

Amazon clear-cut deforestation by 80% from the histor-

ical rate of 19 500 km2 yr�1 by 2020 (Federal Law

12187/2009). However, in the coming decades, we can

expect an increase in food demand associated with glo-

bal population growth and consumption patterns,

which are likely to induce both direct and indirect pres-

sure on the forest (Lapola et al., 2010; Lambin & Mey-

froidt, 2011). Ambitious governmental infrastructure

plans also may lead to the occupation of unprotected

areas (BRASIL, 2011). There is also an on-going debate

about the possible negative impacts of the revision of

the Brazilian Forest Act on deforestation and emission

rates (Sparovek et al., 2012). In addition to the direct

and indirect land-use-change-related threats, possible

climate change effects may also affect this stock of car-

bon through the intensification of droughts (Marengo

et al., 2011a,b) and vulnerability to forest fires (Silves-

trini et al., 2011), influencing the deforestation frontier

itself (Lapola et al., 2011). Recent remote sensing assess-

ments of (primary) forest degradation through selective

logging and fire estimated areas of 15 987 km2 in 2007,

27 417 km2 in 2008 and 13 301 km2 in 2009 (INPE,

2011b).

In this context of uncertainty, our results point out

relevant aspects about future emission estimatives.

First, our analysis reinforces what was already pointed

out by Loarie et al. (2009): the deforestation frontier is

moving toward areas of higher biomass (Table 4).

As deforestation rates decreased so steeply in the last

few years, emission rates decreased too. However, if

clear-cut deforestation rates begin to rise again in the

future, emission estimates can be expected to increase

in a nonlinear pattern if compared with similar past

deforestation rates. Aragao & Shimabukuro (2010)

highlighted that the amount of carbon stored in the

vegetation of the Brazilian Amazon is higher than the

total global human-induced CO2 emissions from an

entire decade; thus, the implied risks are enormous.

Besides, even if clear-cut deforestation remains under

control, the forest degradation process discussed above

poses a threat. Reliable estimates of emissions related

to forest degradation are an open scientific question

and current INPE-EM does not account for them.

Although spatially explicit information about the loca-

tion of degraded forest and timber activities are avail-

able (Serviço Florestal Brasileiro - SFB, 2010a,b; INPE,

2011b), the scientific challenge resides in understanding

the underlying process that leads to forest degradation

and the fate of the biomass in those areas. There is a

need to understand and correctly represent the follow-

ing: the land cover change trajectories after exploration

(regeneration, fire or clear-cut); the intensity of explora-

tion vs. the level of biomass loss; and the fate of the

wood products removed from an area. The INPE-EM

framework flexible structure allows the inclusion of

new components. As pointed out by Malingreau et al.

(2011), attention now must shift away from the strict

clear-cut deforestation process to the continuous assess-

ment of degraded forest ecosystems.

The second point relates to our secondary forest

component results. As we have already discussed,

according to our baseline model the secondary forest
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dynamics has currently a small impact on decreasing

carbon emissions due to their short lifetime. How-

ever, Almeida et al. (2010) pointed out that secondary

forests are potential carbon sinks if they were left

alone to regrow. Secondary forests could also play

an increasingly important role in maintaining genetic

diversity and hydrological function of altered land-

scapes, but are also being converted to more inten-

sive agricultural uses (Almeida et al., 2010). To

explore this hypothesis regarding carbon emissions,

we created a hypothetical scenario of a longer sec-

ondary vegetation life time and a larger occupied

area (percRegrow = 30%, halfLife = 21 years). Using

these parameters the difference between the balance

and the primary forest deforestation emissions

increases to 15%. This exploratory simulation result

suggests that secondary forest dynamics could play a

decisive role in the regional CO2 balance in the case

the current land-use change trajectories are modified.

A scientific question which remains to be explored in

future work is how to quantify the impact of differ-

ent land-use trajectories in the emission estimates.

For instance: how the regeneration of part of the illegally

deforested areas inside private properties (legal reserves

and permanent protection areas) would impact emission

estimates in the following decades? The restoration of

the legal reserves and permanent protection areas is

of the key issues around the possible changes in the

Brazilian Forest Act (Sparovek et al., 2012).

In summary, our results for the Brazilian Amazon

indicate that efforts to reduce greenhouse gas emis-

sions should continue to focus on improving defores-

tation control policies to ensure that rates continue to

decrease. But they also suggest the importance of cre-

ating secondary- and degraded-forest-oriented poli-

cies and emission monitoring systems. INPE-EM

provides the necessary support to tackle such efforts

in terms of carbon emission reductions or increases.

The current framework allows the representation of

the spatial heterogeneity and complexity of the defor-

estation process and secondary vegetation dynamics.

New components can be added to represent other

processes, such as forest degradation. Application

models can be created for different regions and scales

once reliable biomass and deforestation data are

available. Process parameters representing can be

spatially distributed, making estimates more reliable

in highly heterogeneous and large regions. For small-

scale studies, which may be required for local REDD

+ analysis, the selection and refinement of appropri-

ate parameter values will be critical to obtain unbi-

ased estimates; in the Brazilian Amazon, the most

important issue will be the definition of a reliable

biomass data source.
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Amazônia legal por meio de imagens Landsat/TM.INPE, São José dos Campos, 2009;
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S.1 Annual deforestation rate  

According to the procedure described by PRODES project (available at 

http://www.obt.inpe.br/prodes/metodologia.pdf ), there are a number of considerations that must 

be taken into account in order to estimate an accurate annual rate of deforestation (total area of 

clear-cut deforestation that happens in given year) to the whole Brazilian Amazon. These 

considerations are related to the different acquisition dates among the several LANDSAT/TM 

images used to build the satellite mosaic of the whole region. These intrinsic differences are due 

to the satellite revisiting cycle as well as to cloud coverage, which can prevent the use of a set of 

images acquired in nearby dates. To completely cover the Brazilian Amazon, approximately 230 

LANDSAT TM scenes are required (Fig. S.1). In order to provide a more accurate estimate of 

the overall rate of deforestation, the date of August 1st is adopted as a reference. In general 

lines, the amount of deforestation identified in each LANDSAT/TM is corrected summing or 

subtracting the estimated amount deforested per day in relation to the dereference date.  In this 

sense, the PRODES procedure computes a local rate for each LANDSAT/TM scene according 

to the acquisition date. The sum of the local rates for every LANDSAT/TM scene that cover the 

rainforest area of the Brazilian Amazon is the estimated rate that year. The same procedure is 

also applied for each Federative State. 



Figure S.1. Landsat TM scenes required to cover the Brazilian Amazon. 

 Depending on the year, this procedure may yield significant differences between 

the simple sum of cell increments and the official estimated rate. These discrepancies 

were larger between 2002 and 2006, as Fig. S.2 illustrates. In more recent assessments, multiple 

satellite sensors have been combined to minimize cloud cover problems, making the time 

interval between the scenes smaller.    

 Because of these methodological aspects of the PRODES project in computing the 

yearly deforestation rates, the estimation of greenhouse gases (GHG) emissions based on the 

raw PRODES land cover maps (also available at http://www.obt.inpe.br/prodes/) can result in 

disparate results in a given year, if compared to GHG emissions estimates that take into account 

only the overall deforestation rate. Therefore, we developed an adjustment procedure to 

guarantee that INPE-EM gives compatible estimates in the spatial and non-spatial modes, while 

preserving the original spatially distributed information as much as possible.   



 

 

Figure S.2. (a) Historical Brazilian Amazon deforestation rates according to the PRODES 

system; (b) difference between PRODES rates and the sum of the area of new clearings 

identified in each scene. 

  The procedure (repeated every year) is as follows: (a) First, we compute, for 

each 25 x 25 km2 cell and for each LANDSAT/TM scene, the total amount of new deforestation 

identified in the raw PRODES raster map for a given year. (b) Then, for each LANDSAT/TM 

scene, we compute the difference between (a) and the local rate for that scene (available at 

http://www.obt.inpe.br/prodes/rates/). (c) Finally, this local difference (positive or negative) is 

distributed evenly in the cells with increment greater than zero covering that scene. As a result, 

the sum of our 25 x 25 km2 cell deforest attributes match the official annual PRODES rate (Fig. 

S.1.2), while maintain the spatial distribution information of the newly deforested areas (see 

Fig. 3 in the article). 



S.2 Biomass data sources 

Chave et al. (2005) highlighted four sources of uncertainty for aboveground biomass (AGB) 

estimates in tropical forests, including the following: (a) error in tree measurements, (b) the 

choice of the allometric model relating AGB to other tree dimensions, (c) the size of the study 

plot, and (d) the representativeness of the study plot to the larger forested area. These authors 

report an uncertainty in AGB estimates that varies from 4 to 20% depending on the sample size 

and, most importantly, the choice of the allometric model and indicate that estimates of wood 

density can contribute to the reduction of ABG estimate uncertainty (Chave et al., 2005). In this 

paper, we selected four recent AGB data sources, which are briefly described below: 

 B1 - Saatchi et al. (2007) reported a method based on remote sensing, 

environmental variables and more than 500 plot measurements of forest biomass 

distributed over the Brazilian Amazonia basin. According to their estimates, AGB is 

higher in northern and western Amazonia, generally above 300 Mgha-1. In eastern 

Amazonia, where most of the deforestation is historically concentrated (Alves 2001, 

2002), AGB ranges from 150 to 300 Mgha-1 (Fig. 3a). The authors reported greater 

than 80% accuracy for their method using a cross-validation approach with the field 

plots.  The spatial analysis of error using bootstrapping approach suggested that the 

uncertainty in northern and western Amazonia where field plots were scare 

exceeded 40%. 

 B2 - Nogueira et al. (2008), studying wood density distribution in a high 

deforestation risk area, proposed a 7% reduction in the general accepted wood 

density value for the region (0.69 gcm-3), updating the biomass distribution data 

from Fearnside et al. (1997). In eastern Amazonia, AGB ranges from 250 to 300 

Mgha-1 (Fig. 3a). The range of variation is smaller than in Saatchi et al. (2007), but 

the values are considerably higher (Fig. 3b).  

 



 B3 - MCT (2010): The third biomass map used in the present study is derived from 

the Brazilian National Communication to the United Nations Framework 

Convention on Climate Change (UNFCCC). This estimate is based on the project 

RADAM Brazil, which extensively mapped the Brazilian Amazonia region from 

1971-1986 at a 1:1,000,000 scale. This project identified eight forest classes in the 

region and inventoried areas from 0.5 to 1.0 ha, measuring all trees with a DBH 

(diameter at breast height) greater than 38 cm. Based on these measurements, the 

MCT (2010) used allometric equations proposed by Higuchi et al. (1998) to 

estimate forest biomass. The biomass correction for measurements smaller than 38 

cm DBH was corrected according to the distribution histogram produced by 

RADAM (Brazil, 2006). As in Saatchi et al. (2007), AGB ranges from 150 to 250 

Mgha-1 in most of the Eastern Region except for the northern part of Pará State (Fig. 

3c). This data source apparently has some inconsistencies derived from the original 

RADAM vegetation maps, but these problems do not affect the area known as the 

arc of deforestation in southeastern Amazonia, which concentrates most of the 

process. Thus, we included this map in our analysis to compare our model results 

with the estimates of the Brazilian National Communication to the UNFCCC.  

 B4 – Saatchi et al. (2011): In a global analysis, these authors used ground 

information on forest structures and biomass in different forest types (old growth 

tropical forest, woodland savanna, dry forest, and recovering forest) and more than 3 

million remotely measured forest height and biomass at footprints of about 0.25 ha 

derived from the Geoscience Laser Altimeter System (GLAS) LiDAR onboard 

ICESAT satellite. These data were used to map the above- and belowground forest 

biomass in several regions, including the tropical forest of Brazilian Amazonia, at a 

1 km spatial resolution. The uncertainty was assessed by validating the results with 



ground observations and an independent set of LiDAR derived biomass across 

tropical forests (Saatchi et al., 2011, Supporting Information).  

 As Fig. 4 in our paper illustrates, the four maps are quite distinct in terms of their 

magnitude and spatial distribution. In addition to these variations among data sources, the level 

of uncertainty in each map must also be considered in the emission estimates. Saatchi et al. 

(2007) reports values from 0 to greater than 400 Mgha-1 classified into eleven categories; we 

considered the medium value in each interval to compute the average and the minimum and 

maximum interval values as an error range. Saatchi et al. (2011) report spatially explicit 

uncertainty values, which we also consider in our estimates.  
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