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Abstract: In this paper, a new approach for modeling the static force characteristic of Festo pneumatic
muscle actuators (PMAs) will be presented. The model is physically motivated and therefore gives
a deeper understanding of the Festo PMA. After introducing the new model, it will be validated
through a comparison to a measured force map of a Festo DMSP-10-250 and a DMSP-20-300,
respectively. It will be shown that the error between the new model and the measured data is
below 4.4% for the DMSP-10-250 and below 2.35% for the DMSP-20-300. In addition, the quality of
the presented model will be compared to the quality of existing models by comparing the maximum
error. It can be seen that the newly introduced model is closer to the measured force characteristic of
a Festo PMA than any existing model.

Keywords: pneumatic muscle actuator (PMA); pneumatic artificial muscle (PAM); pneumatic system;
pneumatic robot

1. Introduction

In recent years, pneumatic muscle actuators (PMAs, Figure 1) were integrated in many robotic
systems [1–4] and are still particularly favored, especially in applications that have to be lightweight
and powerful.

Figure 1. Different Festo pneumatic muscle actuators (PMAs). The depicted connector form is called
DMSP. See the data sheet [5] for further information.
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As can be seen in [6], most robotic systems driven by PMAs, but also driven by other actuators,
require an underlying torque controller. While integrating PMAs in robotic systems, the control of
PMAs and especially the precise torque control of PMA-driven joints consequently becomes an essential
feature. The modeling of PMAs, strongly coupled to model-based controller designs, is therefore still
a much discussed topic.

On the one hand, PMAs have their own dynamics, like hysteresis [7], some thermodynamic
effects [8,9] and can even be interpreted as a spring–damper combination [10]. On the other hand,
it has been shown in [11–13] that controlling PMAs, with only a static force map approach, can lead to
accurate and high-performance controller designs. The reason is that the PMA dynamics are dominated
by the fluid dynamics of the air inside the PMA and the stream of mass characterizing the valve that
controls the PMA [14,15]. Nevertheless, a model describing the static PMA force precisely is crucial
for the accuracy of the torque controller. Finding the most accurate model to describe the static force
characteristic is therefore one goal of this paper.

Different approaches for modeling the static force characteristic of PMAs can be found in literature.
The most popular approach is based only on air compression [16]. Although this approach is valid
for McKibben PMAs, it is shown by measurements in [14] that this approach does not hold for Festo
PMAs. To improve the accuracy of the model presented in [16], the model has been extended in
many different ways [8,9,17,18]. It has been shown that these extensions are leading to fewer errors
between measured static force maps and the forces predicted by the models. Another approach for
the specific use on Festo PMAs has been presented in [12]. The basic idea is the approximation of
a Festo PMA as a piston with a virtual, pressure-dependent piston area and a spring that counteracts
the expansion. A second approach for the specific use on Festo PMAs is presented in [19], where the
static force characteristic is supposed to behave like a mechanical spring with variable stiffness.
Because of uncertain parameters, all models, except the first presented in [16], have in common that
they must be identified by minimization of the error between a measured static force map and the
force defined by the model. By comparing the maximum error, it will be shown in this paper how
the accuracy of existing models varies. Furthermore, a new approach for modeling the static force
characteristic of Festo PMAs will be presented. The model is physically motivated and therefore
gives a deeper understanding of the Festo PMA. After introducing the new model in Section 3 and
an explicit discussion of existing models in Section 4.1, all models will be compared to a measured
force map of a Festo DMSP-10-250 (DMSP-<initial inner diameter in millimeter>-<initial length in millimeter>)
and a DMSP-20-300 in Section 4.3. It will be shown that the error between the new model and the
measured data is below 4.4% for the DMSP-10-250 and below 2.35% for the DMSP-20-300. In addition,
the quality of the presented model will be compared to the quality of existing models by comparing
the maximum error.

2. The Static Force Characteristic

A PMA is characterized by its force map. The PMA force FPMA is a function of the muscle
pressure p and its length L, as can be found in [5,17,20,21]. The force map (Figure 2) can be read in
the following way: Starting with an unfastened PMA at initial conditions, which means initial length
and atmospheric pressure, the PMA does not exert any force. Now putting pressure inside, the PMA
gets shorter until it is fully contracted (about 25% [5]). The exerted force is still zero. While pulling the
pressurized PMA back to initial length, the PMA will react with the maximum force. The exerted force
can be varied between zero and a length-dependent upper limit by varying the PMA pressure [13].
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Figure 2. Measured static force map of a Festo DMSP-10-250 with an initial length of 250 mm and
an initial inner diameter of 10 mm.

3. A New Model of the Static Force Characteristic

PMAs are a combination of a flexible tube and two stiff aluminium connectors (see Figure 1).
The membrane that the tube is made of is a combination of a stiff aramid fiber mesh and a flexible
rubber that encloses the air inside the PMA. While putting pressure inside the PMA, the membrane
expands and, due to the stiff aramid fibers, the PMA gets shorter. According to [17], the approach
for the presented PMA model also is that the fiber length LFiber stays constant and therefore only the
membrane rubber deforms.

3.1. PMA Volume

Following the ideas of [14,15,17], the PMA volume can be approximated by a cylinder. The volume

V(L, D) =
π

4
D2L (1)

of a cylinder is a function of length L and diameter D. Cutting the PMA membrane open and flattening
it to a plain (Figure 3), the dependency of the diameter on the length can be calculated by using the
Pythagoras theorem [17]. Supposing that LFiber is constant, the diameter equation

D(L) =

√
L2

Fiber − L2

nπ
(2)

holds, whereby

LFiber =
L0

cos Θ0
and n =

L0 tan Θ0

πD0
. (3)

The index 0 indicates the initial state of the PMA, with atmospheric pressure p0, initial length L0,
inner diameter D0, membrane thickness H0 and fiber angle Θ0. In [14], it is proven by measurements
that the initial fiber angle is Θ0 = 28.6◦. This is the only value that can be found in literature. The initial
membrane thickness, H0 = 1.8 mm for both the DMSP-10-250 and the DMSP-20-300, can easily be
calculated from the given initial inner diameter D0 and the measurable outer initial diameter of the
PMA rubber tube.
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nπD

LFiber = const.

Θ

L

Figure 3. Unreeled membrane of PMA.

Inserting the functional dependency on the diameter back into the approximated volume (1),
the PMA volume loses its dependency on the diameter and is only a function of the PMA length:

V(L) =
L · L2

Fiber
4πn2 − L3

4πn2 . (4)

3.2. Energy-Based Modeling

While pulling a contracted PMA, the muscle reacts with a force FPMA against the pulling direction.
The virtual work of the PMA WPMA is given through

WPMA = −FPMA · dL. (5)

Furthermore, the virtual work of the PMA can be separated into two parts. On the one hand,
the virtual work WVAE has to be done to change the included air volume. On the other hand,
additional virtual work WElast is necessary to change the potential energy of the elastic membrane
rubber. Therefore,

WPMA = WVAE + WElast (6)

always holds.

3.2.1. Virtual Work of the Changing Air Volume

The virtual work needed to change the included air volume inside is given by

WVAE = p · dV. (7)

3.2.2. Elastic Energy of the Membrane

While putting pressure inside the PMA, the actuator gets shorter and expands. The deformation
of the membrane is a plane state strain and can be described by the strain in direction of the PMA
length εL and the PMA perimeter εPE. Rotating the coordinate system by the membrane fiber angle Θ,
the deformation is given by the strain in fiber direction εAF and the direction of pure rubber εRU that is
perpendicular to the fiber direction (see Figure 4). Following the approach of a constant fiber length,
the strain εAF is always zero. This means that the PMA membrane only expands perpendicularly to
the fibers.

For this paper, a one-dimensional state of stress is assumed and, therefore, according to Hooke’s
law, the tension inside the rubber σRU will be approximated by

σRU = ERU(L) · εRU, (8)
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where the modulus of elasticity is supposed to be a function of the PMA length.

εL

εPE

Θ

εRU
εAF

Figure 4. Schematic of the PMA membrane and the fiber angle.

Following the approach of a one-dimensional membrane deformation, the strain

εRU =

√(
L− L0

L0

)2
+

(
D− D0

D0

)2
(9)

is given by the Pythagoras theorem.
Rotating the tension σRU back to initial coordinates, it is possible to calculate the tension in

length direction

σL = σRU · sin θ = ERU(L) · εRU · sin θ = ERU(L) · L− L0

L0
(10)

and the tension in perimeter direction of the PMA

σPE = σRU · cos θ = ERU(L) · εRU · cos θ = ERU(L) · D− D0

D0
. (11)

Multiplying the tension with the edge surfaces of the unreeled membrane, the virtual work to
deform the membrane in length direction is given through

WElast-L = σL · H0 · π · D(L)︸ ︷︷ ︸
= FL

·dL. (12)

This approach neglects any effect of lateral contraction. The virtual work that is necessary to
deform the membrane in perimeter direction can be calculated in an analog way:

WElast-PE = − σPE · H0 · L · π︸ ︷︷ ︸
= FPE

·dD. (13)

The negative sign in Equation (13) is necessary because an increase in length of the PMA has to
result in a decreasing perimeter, and this is defined to be positive for this paper.

3.2.3. Summarizing the Energy

Inserting Equations (5), (7), (12) and (13) in Equation (6), the force of the PMA is given by

FMartens(p, L) = FPMA(p, L) = −p · dV
dL

+ FPE ·
dD
dL
− FL. (14)
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It must be noted that Equation (14) is positive, in case the PMA exerts a pulling force.
Because the modulus of elasticity of the membrane rubber and the fiber angle cannot be measured

directly, both terms are identified by minimization. The modulus of elasticity ERU used in Equations (10)
and (11) is approximated by a polynomial of the third order:

ERU(L) = c3L3 + c2L2 + c1L + c0. (15)

This order is chosen by experiment. It can be seen that higher order polynomials do not lead to
better results. However, for lower order polynomials, the calculated error, defined later in this paper
(Equation (23)), is much higher. Furthermore, the approximately known fiber angle Θ0 is corrected by
a constant d0:

Θcorr
0 = Θ0 + d0. (16)

Θcorr
0 is now used as the new, corrected fiber angle. In this paper, all parameters cj and dj (j ∈ N0)

have to be identified through solving the minimization problem (22). The parameters cj and dj are
calculated in such a way that the quadratic error between a measured force map and the forces
predicted by the models is the smallest. A more detailed discussion of the optimization will be given
later in this paper.

4. Validation and Comparison to Existing Models

4.1. Existing Models

Defining a valid model describing the static force characteristic of a PMA is still a much discussed
topic. The first model that was introduced to describe a McKibben Muscle [16] was only based on
the energy that is needed to change the inner PMA air volume. Effects of elasticity of the membrane
material were fully neglected:

FMcKibben(p, L) = −p · dV
dL

= p ·
L2

Fiber
(
3 cos2 Θ− 1

)
4πn2 . (17)

It is shown in [14] that the remaining error between the measured static force characteristic of
a Festo PMA and (17) is not negligible. The reason for this is that the Festo PMA stores potential energy
in its deformed membrane and the McKibben PMA does not.

A modified version of Equation (17) is presented in [8,9], where Equation (17) has been corrected
by two additional factors c0 and c1:

FAndrikopoulos(p, L) = p · c0 ·
πD2

0
4

[
3

tan2 Θ0

(
1− c1 ·

L0 − L
L0

)2
− 1

sin2 Θ0

]
. (18)

Although the parameters c0 and c1 were calculated directly in [8,9], in this paper, both parameters
will be identified by solving the minimization (22). A third improved, inspired by Equation (17) model
variant is presented in [18]:

FSarosi(p, L) = (c0 · p + c1) e
c2 ·(L0−L)

L0 + p ·
(

d0 ·
L0 − L

L0
+ d1

)
+ d2. (19)

A model for the specific use on a Festo PMA is presented in [12]. This model is a combination of
the pressure-virtual-piston-area product p · A(L) and a length-dependent counter force Fc(L). The idea
is that the PMA behaves like a combination of a pneumatic piston with a variable piston area and
a mechanical spring that counteracts the expansion of the PMA:

FHildebrandt(p, L) = p · A(L)− Fc(L) = p ·
2

∑
j=0

cjLj −
(

3

∑
j=0

djLj + d4L2/3

)
. (20)
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In [19], the static force characteristic of a Festo PMA is supposed to be equivalent to a mechanical
spring, with a displacement-pressure-dependent spring stiffness k(p, ∆L):

FWickramatunge(p, L) =
(

c3 p2 + c2 p∆L + c1∆L2 + c0

)
︸ ︷︷ ︸

= k(p,∆L)

·∆L , with ∆L = L−min(L). (21)

4.2. Test Rig

The static force maps of a Festo DMSP-10-250 and a DMSP-20-300 have been measured with the
test rig depicted in Figure 5.

Figure 5. Photo of the test rig that the characteristic force maps have been measured with.

During the measurement, all screws are fastened and the PMA length is fixed. The pressure
is varied between the length-dependent lower limit and the maximum pressure. While varying
the pressure, the PMA force is measured by a 1D-forcesensor KD9363-0.5t and a GSV-1A
measurement amplifier, both from ME-Meßsysteme GmbH (Hennigsdorf, Germany). Combining the
pressure-dependent force characteristics for different lengths, it is easy to determine the static force
characteristic as shown in Figure 2. To reduce the influence of measurement errors, the measurement
process has been repeated ten times. The depicted force map therefore shows the mean values.
Both measured force maps, for the Festo DMSP-10-250 and the DMSP-20-300, can be found in the
appendix in Tables A1 and A2, respectively.

4.3. Results

The measured static force maps are characterizing the force behavior of the Festo DMSP-10-250
and DMSP-20-300, respectively. First, the presented PMA models (14), (18)–(21) are identified by
minimizing the quadratic error between the measured force map and the force map calculated by
the model. The optimization has been solved by using the MATLAB (R2015b, The MathWorks, Inc.,
Natick, MA, USA) function fminsearch:

min ∑
pi

∑
Lj

(
FMeasurement(pi, Lj)− FModel(pi, Lj)

)2

i = Number of pressure points

j = Number of length points.

(22)

Because the optimization problem (22) is nonlinear, only a local, start point-dependent minimum
can be found. The start point for all models was identified by iterative testing. It can be seen that
good results—in the sense of a small error—can be achieved if the start points are chosen with respect
to the physical meaning and within a proper range. According to the SI units—1 m for lengths
and 1 Pa = 1× 10−5 bar for pressure—any parameter cj and dj (j ∈ N0) is set to 1 if it is only multiplied
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to a length-dependent factor and to 1× 10−5 if it is multiplied by the pressure. The modulus of
elasticity of rubber, necessary for Equation (14), is supposed to be in the area of 1 MPa, and therefore
the chosen start point is set to 1× 106. The initial fiber angle Θ0 in Equation (14) is supposed to be
correct. The chosen parameter estimation’s start points for all models are given without units in Table 1.

Table 1. Start points of parameter estimation for all models without units.

c0 c1 c2 c3 d0 d1 d2 d3 d4

FAndrikopoulos 1× 10−5 1× 10−5 - - - - - - -
FWickramatunge 1 1 1× 10−5 1× 10−10 - - - - -
FHildebrandt 1× 10−5 1× 10−5 1× 10−5 - 1 1 1 1 1
FSarosi 1× 10−5 1 1 - 1× 10−5 1× 10−5 1 - -
FMartens 1× 106 1× 106 1× 106 1× 106 0 - - - -

To demonstrate the validity of the the estimated parameters c0−3 and d0 defining the new
model (14), they are given in Table 2. As assumed, the values for the modulus of elasticity are
in the range of MPa = 1× 106 Pa, and the initial fiber angle is only slightly corrected by −5.73◦ for the
DMSP-10-250 and −4.18◦ for the DMSP-20-300, respectively.

Table 2. Estimated parameters for FMartens; optimization start point is given in Table 1.

c0 c1 c2 c3 d0

DMSP-10-250 74.085 MPa −689.20 MPa/m 1.8370 GPa/m2 −848.79 MPa/m3 −5.73◦

DMSP-20-300 93.232 MPa −715.29 MPa/m 1.5483 GPa/m2 −502.95 MPa/m3 −4.18◦

All identified models can now be used for calculating their own specific force maps. The error
between the calculated and the measured force map

err = 100 · max(|FMeasurement − FModel|)
max(FMeasurement)

(23)

is defined as the maximum difference between a measured and a calculated force point, normalized
to the maximum measured force. Multiplied by 100, the error is given by percentage and is shown
in Table 3.

Table 3. Force error of each model by percentage.

err of FMcKibben FAndrikopoulos FWickramatunge FHildebrandt FSarosi FMartens

DMSP-10-250 46.1% 20.05% 13.49% 10.12% 5.1% 4.4%
DMSP-20-300 30% 13.04% 8.2% 5.75% 3.59% 2.35%

It can be seen in Table 3 that the presented model is closer to the measured static force map of the
Festo DMSP-10-250 and DMSP-20-300 than any existing model. The error of Equation (14) for the Festo
DMSP-10-250 is smaller than 4.4% and, for the Festo DMSP-20-300, smaller than 2.35%. Furthermore,
it can be seen that Equation (17) leads to a maximum error for both PMAs and does not seem to be
accurate enough to describe the static force characteristic of a Festo PMA.

5. Conclusions

In this paper, a new approach for modeling the static force characteristic of Festo PMAs is
presented. After a detailed derivation of the new model (14), the validity of the model is demonstrated
by a comparison to a measured static force map of a Festo DMSP-10-250 and DMSP-20-300, respectively.
It is shown that the maximum error between the„true“ force and the one predicted with Equation (14)
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is smaller than 4.4% for the Festo DMSP-10-250 and smaller than 2.35% for the Festo DMSP-20-300.
Furthermore, it is shown that the presented model is closer to the measured data than any existing
model that can be found in literature.
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Appendix A. Measurement Data

Appendix A.1. Force Map of DMSP-20-300

Table A1. Measured force map of a Festo DMSP-20-300 in [N].

Pressure [Pa]

Length [m]
0.296 0.282 0.267 0.25 0.237 0.222

35,000 0 0 0 0 0 0
60,000 54.9 0 0 0 0 0
85,000 113.4 0 0 0 0 0
110,000 179 0 0 0 0 0
135,000 241.8 0 0 0 0 0
146,250 273.3 21.1 0 0 0 0
157,500 300.2 42.9 0 0 0 0
168,750 331 70.3 0 0 0 0
180,000 355.6 93.7 0 0 0 0
197,500 402.5 131 27.7 0 0 0
215,000 446.5 165.2 61.6 0 0 0
232,500 495.9 204.1 92.7 0 0 0
250,000 543.4 244.7 122 0 0 0
281,250 623.5 309.7 170.2 42.8 0 0
312,500 708.8 380.4 221 80.6 0 0
343,750 787.9 443.7 277.4 118.7 0 0
375,000 870.9 518.9 328 157.6 0 0
450,000 1065.2 676.4 462.3 252.1 65.5 0
525,000 1268.9 837.5 587.8 352.3 124.7 0
600,000 1460.1 1004 714.8 443.5 188.1 0
675,000 1653.5 1164.3 840.7 535.8 253.3 0
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Appendix A.2. Force Map of DMSP-10-250

Table A2. Measured force map of a Festo DMSP-10-250 in [N].

Pressure [Pa]

Length [m]
0.25 0.234 0.219 0.204 0.198

5000 0 0 0 0 0
68,750 32.1667 0 0 0 0
132,500 84.8333 0 0 0 0
196,250 139.5 0 0 0 0
260,000 195.6667 0 0 0 0
285,000 217.6667 17 0 0 0
310,000 239.6667 35.1667 0 0 0
335,000 261.6667 52.6667 0 0 0
360,000 283.8333 71.3333 0 0 0
402,187 321.5 101.5 22.8333 0 0
444,375 359 132.3333 46.1667 0 0
486,562 396.6667 162.5 69.3333 0 0
528,750 434.3333 193.6667 92.1667 0 0
559,062 461.6667 216.3333 109.3333 11.5 0
589,375 488.3333 238.1667 126.3333 23.3333 0
619,688 515.8333 261 142.6667 35 0
650,000 542.5 282.8333 158.6667 46 0
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