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Abstract While sunspots are easily observed at the solar surface, determining their subsur-
face structure is not trivial. There are two main hypotheses for the subsurface structure of
sunspots: the monolithic model and the cluster model. Local helioseismology is the only
means by which we can investigate subphotospheric structure. However, as current linear
inversion techniques do not yet allow helioseismology to probe the internal structure with
sufficient confidence to distinguish between the monolith and cluster models, the develop-
ment of physically realistic sunspot models are a priority for helioseismologists. This is
because they are not only important indicators of the variety of physical effects that may in-
fluence helioseismic inferences in active regions, but they also enable detailed assessments
of the validity of helioseismic interpretations through numerical forward modeling. In this
article, we provide a critical review of the existing sunspot models and an overview of nu-
merical methods employed to model wave propagation through model sunspots. We then
carry out a helioseismic analysis of the sunspot in Active Region 9787 and address the se-
rious inconsistencies uncovered by Gizon et al. (2009a, 2009b). We find that this sunspot is
most probably associated with a shallow, positive wave-speed perturbation (unlike the tradi-
tional two-layer model) and that travel-time measurements are consistent with a horizontal
outflow in the surrounding moat.
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1. Introduction

1.1. Why Sunspots Are Interesting

Sunspots are the surface manifestations of intense magnetic-flux concentrations that have
intersected with the solar surface. As such, they represent one of the major connections of
the internal magnetic field of the Sun with its wider environments and are the main sites of
solar-activity phenomena. They are at the center of many ongoing challenges in the study
of the Sun, as the structure and evolution of sunspots, individually and collectively, are still
not fully understood.

Sunspots tend to appear at well-defined latitudes, which vary with the 11-year solar cy-
cle, as summarized in the so-called butterfly diagram. Any theory of the mechanism of the
solar global dynamo has to be able to explain this collective behavior. Understanding dy-
namo processes is of the utmost importance, as they are believed to play crucial roles in
many astrophysical phenomena, and sunspots are the best-known candidates to provide us
important clues on how they operate.

While the sunspots are easily observed at the surface, determining their subsurface struc-
ture is not at all trivial. There are two main hypotheses for the structure of the subsurface
magnetic configuration of the spot: the monolithic model (e.g. Cowling, 1946, 1957, 1976)
and the jellyfish/cluster/spaghetti model (e.g. Parker, 1975, 1979; Spruit, 1981; Zwaan,
1981). Determining the parameters of these tubes, that is typical size, field strength etc.,
will help reveal details of the operation of the solar dynamo and how magnetic field is trans-
ported up through the convection zone.
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Figure 1 A Hinode G-band
image of the well-developed
sunspot AR 10953, acquired at
10:10:16 UT, 2 May 2007 (the
spatial scale is indicated by the
horizontal bar in the upper left).
There is a light-bridge close to
the northern (upper) tip, and
another is beginning to form near
the southern edge.

Our understanding of sunspot structure has been somewhat hampered in the past by a
lack of high-resolution observations. However, recent advances in adaptive optics, image
selection and reconstruction at ground-based telescopes, and the advent of high-resolution
space observations with Hinode (see Figure 1), have all led to a wealth of detailed infor-
mation about the fine structure of sunspot umbrae and penumbrae (see e.g. Scharmer et al.,
2002; Thomas and Weiss, 2008). On the other hand, the subsurface structure of sunspots is
still poorly understood.

Local helioseismology (e.g. time – distance helioseismology, helioseismic holography,
acoustic imaging, ring-diagram analysis; see Gizon and Birch, 2005 and references therein)
is the only means by which we can investigate subphotospheric structure. However, in-
terpretations of data have been somewhat ambiguous and inconsistent for applications of
local-helioseismic methods in solar active regions. Furthermore, current linear inversion
techniques do not yet allow helioseismology to probe the internal structure of sunspots with
sufficient accuracy to distinguish between monolith and cluster models. But progress has
been made in addressing some of these inconsistencies (e.g. Braun and Birch, 2008; Birch
et al., 2009; Gizon et al., 2009a, 2009b) and significant advances have also been made in
the simulation of helioseismic wave propagation in magnetized plasmas (see e.g. Cameron,
Gizon, and Daiffallah, 2007; Parchevsky and Kosovichev, 2007; Cameron, Gizon, and Du-
vall, 2008; Hanasoge, 2008; Moradi, Hanasoge, and Cally, 2009; Khomenko et al., 2009;
Parchevsky and Kosovichev, 2009; Shelyag et al., 2009; Cameron et al., 2010).

1.2. The Need for Sunspot Models in Helioseismology

Sunspot models are important indicators of the variety of physical effects that may influence
helioseismic inferences in active regions as well as enabling assessments of the validity of
helioseismic inversions. Currently it is also important, in the absence of adequate non-linear
inversion techniques, to have models that may be close to the truth as starting points for
linear inversions. The associated danger of course is an over-reliance on a small range of
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models that may limit our imagination of what structures may exist and which may bias the
helioseismic inversion results.

As illustrated in Figure 2, there are several existing classes of sunspot models – radiative
magnetohydrodynamical (MHD) numerical simulations, semi-empirical models, monolithic
models, cluster/spaghetti models, self-similar models, potential-field models, current-sheet
models, pressure-distributed models, etc. – which are more or less suited to local helioseis-
mology.

The availability of powerful computers has only recently made it possible to produce
numerical simulations of sunspots using realistic physics (radiative MHD equations; see
Section 4.4). These simulations are more than adequate for studying surface dynamics and
fine structure, conducting experiments regarding the subsurface structure, and for providing
very useful artificial oscillation data that can be used to test helioseismic inversion methods.
Although this is a huge step forward, this approach is unfortunately not suitable for com-
putational helioseismology (where detailed parametric studies need to be conducted using
existing numerical wave-propagation codes) for a number of reasons:

i) The subsurface structure of the “realistic” simulations depends on the lower boundary
and initial conditions, neither of which is necessarily realistic. The surface properties
obtained are more or less correct because the timescales for the evolution at the surface
are essentially determined by the radiative-loss term (i.e. convection on the Sun is driven
from the surface). The timescale for the subsurface structure of the spot is huge, and is
dependent on both the bottom boundary and initial conditions. Nevertheless, work is
currently under way to establish whether models with such artificially restrictive lower
boundary conditions are able to produce results that are compatible with helioseismic
measurements.

ii) The cumbersome computational requirements of such ab-initio simulations. As an indi-
cation, simulating the two-hour evolution of a pair of sunspots in Rempel et al. (2009b)
takes a number of weeks on extremely powerful supercomputers.

iii) Such simulations still do not address the question of the nature of the deep structure of
sunspots. While one may ask whether a sunspot model with the magnetic field clamped
10 Mm below the photosphere is, or is not, compatible with helioseismic measurements,
probing down to these depths, however, will first require that we adequately model (and
remove) the effects of the surface layers.

Examining a number of different sunspot models is not only essential to test the robust-
ness of helioseismic inferences, but it is also an indispensable need in computational helio-
seismology where effective inference by matching wave-field simulations to observations
relies on the availability of sunspot models. For example, sunspot models with very differ-
ent subsurface configurations (e.g. cluster or monolith, connected or disconnected, etc.) can
be used to verify what helioseismic signatures would be observed for a sunspot with that
particular subsurface structure. It is also essential to be able to continually tune the surface
parameters of the model to actual observations in order to match the wave-field signatures
observed. So the aim here is not to have the best sunspot model, but to have a group of
models that can be useful for computational helioseismology – models that can be tuned to
match the non-helioseismic observations, and then in turn be used in inversions to determine
the subsurface structure. Of course, with multiple models the inversions are unlikely to be
unique. Therefore, such parametric studies will provide us with an idea of what is, and what
is not, reliable in the inversions. As well as more or less realistic models, highly simplified
models which isolate just a few physical effects can also be useful for elucidating the sensi-
tivity of inference methods in helioseismology to particular effects. Nonetheless, it must be
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borne in mind if using such models that other physical effects may have seismic signatures
that are qualitatively or quantitatively similar.

1.3. What Basic Properties Should be Included in the Models?

Apart from the desired characteristics mentioned above, models of the gross magnetic struc-
ture of sunspots for use in computational helioseismology should ideally posses a high de-
gree of flexibility and computational efficiency to allow for extensive parameter studies
using existing numerical simulation codes. A number of other essential, observationally
derived, characteristics should also be embodied by the models. For example, an accurate
prescription for the surface (photospheric) magnetic-field characteristics (of both the um-
bra and penumbra, e.g. field strength, orientation, twist, return flux, etc., see Section 2.2.1
and Section 2.2.2). These should comply with observations and, ideally, one should be able
to model the sunspot field on extrapolations from observed surface magnetic profiles (e.g.

vector magnetograms). One should also be able to choose the profile of thermodynamic pa-
rameters (pressure, density, temperature, etc., see Section 2.3 and Section 4.1) in the umbra
and penumbra from either spectro-polarimetric inversions or semi-empirical models of the
solar atmosphere. Some important dynamical phenomena (e.g. the Evershed flow, moat flow,
etc.; see Section 2.2.4 and Section 2.2.5) should also be taken into account, while a realistic
and consistent (e.g. Section 2.4) description of the Wilson depression is also essential.

1.4. The Premise of the Article

The basic premise of this article is to satisfy two complementary goals: The first goal is
to present a critical review of the existing physical models for the subsurface structure of
sunspots, in the context of local helioseismology and numerical simulations of wave fields,
and magnetic field – wave interaction. As discussed above, physical sunspot models are crit-
ically important to assess the validity of the helioseismic inversions. In addition, numerical
simulations of the propagation of solar waves through model sunspots are emerging as a
valid and realistic technique to interpret helioseismic data. The success of this approach
relies on a very close interaction between sunspot modelers and helioseismologists.

The second goal is to extend the helioseismic analysis undertaken by Gizon et al. (2009a,
2009b) of the sunspot in Active Region (AR) 9787, which was the topic of the Third HELAS
(European Helio- and Asteroseismology Network) Local Helioseismology Workshop, held
in Berlin on 12 – 15 May 2009. This sunspot was observed during the period 20 – 28 January
2002 by the SOHO/MDI instrument. Serious inconsistencies between the different helioseis-
mic methods were uncovered, which cannot be left unanswered.

2. Surface Observational Constraints

In this section we briefly review some of the main observational characteristics of sunspot
formation and evolution. The aim here is to present a very general overview of some of the
pertinent issues related to sunspot observations that need to be considered when developing
a realistic sunspot model. Comprehensive reviews by Solanki (2003), Thomas and Weiss
(2004), Tobias and Weiss (2004), Schlichenmaier (2009), and the books by Thomas and
Weiss (1992, 2008) (and references therein), have excellent extended discussions on both
the observational and theoretical aspects of sunspots and active regions.
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2.1. Sunspot Formation and Evolution

2.1.1. Flux Emergence

Individual bundles of magnetic flux are believed to rise from deep in the convection zone
and break through the surface of the Sun. As they approach the surface, each flux bundle is
shredded into many separate strands which, upon emergence, are quickly concentrated into
small, intense (kG strength) magnetic flux bundles (or elements) by the vigorous convection
occurring in the thin superadiabatic layer at the top of the convection zone. These small
flux elements then accumulate at the boundaries between granules or supergranules, and
some of them coalesce to form small pores (Keppens and Martínez Pillet, 1996; Leka and
Skumanich, 1998). Some pores and flux elements in turn coalesce to form sunspots.

A number of studies have examined the buoyant rise of magnetic flux from just below
the surface and rising into a non-magnetized atmosphere (e.g. Magara and Longcope, 2001,
2003; Manchester et al., 2004; Cheung, Schüssler, and Moreno-Insertis, 2007). A number of
studies modeling the rise of thin flux tubes through the convection zone have also shown that
the tubes must have a significant amount of twist in order to maintain their integrity and not
fragment in the face of hydrodynamic forces, and indeed observations show that magnetic
flux usually emerges at the surface already in a significantly twisted state (e.g. Riethmüller
et al., 2008).

2.1.2. Sunspot Formation and Decay

When the flux does emerge, it is often in the form of pore structures of the order of a
Mm or so in size (Vrabec, 1974; Zwaan, 1978, 1992; McIntosh, 1981). Pores have con-
tinuum intensities ranging from 80% down to 20% of the normal photospheric intensity,
with maximum magnetic-field strengths of 1500 – 2000 G. If a growing pore reaches a
sufficient size (a diameter of about 3500 km, but sometimes as much as 7000 km) or a
sufficient total magnetic flux of order 1020 Mx (Leka and Skumanich, 1998), and if the
magnetic field reaches an inclination from the vertical that is greater than about γ = 35°
(Martínez Pillet, 1997), then it forms a penumbra at its periphery and becomes a full-
fledged sunspot. The formation of a penumbra is a rapid event, occurring in less than
20 – 30 minutes, and the characteristic sunspot magnetic-field configuration and Evershed
flow are both established within this same, short time period (Leka and Skumanich, 1998;
Yang et al., 2003). Furthermore, the fact that the largest pores are observed to be bigger than
the smallest sunspots also provides evidence that the pore – sunspot transition is associated
with hysteresis (Bray and Loughhead, 1964; Rucklidge, Schmidt, and Weiss, 1995).

The time scale for the formation of a large sunspot is between a few hours and several
days. A sunspot can span a lifetime of months, but more typically of weeks (Solanki, 2003).
However, this life expectancy is considerably shorter than the magnetic diffusion time [tD =
l2/η where l is the width of the current sheet and η = 1/σ is the magnetic diffusivity] across
a solar active region where estimates for tD range from hundreds to thousands of years (e.g.

Priest and Forbes, 2000). This reduced lifetime suggests that a convective instability sets in
that enhances the decay process, via fragmentation. Another possible process is the action
of turbulent diffusion, owing to the non-linear dependence of the diffusivity on the strength
of the magnetic field (Petrovay and Moreno-Insertis, 1997). An overview of sunspot decay
was presented by Martínez Pillet (2002).
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2.1.3. Surface Evolution

Observational evidence indicates a significant change in the dynamical properties of
sunspots and active regions from “active” to “passive” evolution shortly after their emer-
gence (Schüssler, 1987; Schrijver and Title, 1999; Schüssler and Rempel, 2005). Initially,
the emerging magnetic flux displays the characteristics of a rising, fragmented flux tube and
evolves according to its internal large-scale dynamics (e.g. McIntosh, 1981; Strous et al.,
1996). Within a few days after emergence, the proper motion of the sunspots with respect
to the surrounding plasma begins to decay. Larger magnetic structures also start to fragment
into small-scale flux concentrations, which are largely dominated by the local near-surface
flows (granulation, supergranulation, differential rotation, meridional circulation). The mag-
netic flux is then passively advected by these velocity fields, gradually dispersing over a large
area. This process is efficiently described by well-established surface flux-transport mecha-
nisms which model the evolution of the magnetic field at the solar surface (e.g. Wang, Nash,
and Sheeley, 1989; van Ballegooijen, Cartledge, and Priest, 1998; Schrijver, 2001; Baumann
et al., 2004).

2.2. Sunspot Surface Structure

2.2.1. Field Strength and Orientation

A sunspot’s maximum magnetic-field strength tends to increase approximately linearly with
sunspot diameter, from around 2000 G for the smallest to 4000 G or more for the largest
sunspot (e.g. Ringnes and Jensen, 1960; Brants and Zwaan, 1982; Kopp and Rabin, 1992;
Collados et al., 1994; Livingston, 2002; Livingston et al., 2006). The field strength drops
steadily toward the sunspot’s periphery, becoming 700 – 1000 G at the edge of the visible
sunspot (e.g. Mathew et al., 2004).

The field strength decreases with height within the visible outline of the spot. At pho-
tospheric levels in the umbra, line-of-sight field strength decreases of ≈ 1 – 3 G km−1 are
observed (Balthasar and Schmidt, 1993; Schmidt and Balthasar, 1994), but when aver-
aged over a height range of 2000 km or more, the field strength gradient reduces to 0.3 –
0.6 G km−1 (Solanki, 2003). The strongest field within a sunspot is usually associated
with the darkest part of the umbra and is generally close to vertical. At the visible outer
sunspot boundary it is inclined by 70 – 80◦ to the vertical (Bellot Rubio et al., 2003a;
Mathew et al., 2004) if one applies inversions that assume a constant field inclination in
the atmosphere. Assuming more than one magnetic component or gradients along the line
of sight, high-resolution polarimetric studies present evidence for magnetic flux that returns
to the surface in the outer penumbra (e.g. Westendorp Plaza et al., 2001; Bellot Rubio,
Balthasar, and Collados, 2004; Borrero et al., 2004, 2006; Langhans et al., 2005; Ichimoto
et al., 2007, 2009; Beck, 2008; Jurčák and Bellot Rubio, 2008), i.e. there is evidence that a
fraction of the sunspot magnetic field does not extend into the chromosphere, but submerges
beneath the photosphere in the outer penumbra.

2.2.2. Field Twist

As we have already mentioned, it appears that at least a small amount of twist is needed
in a rising flux tube in order for it to resist fragmentation and preserve its identity as it
rises through the convection zone; hence systematic twists of sunspot fields are relevant
to the emergence and stability of sunspot magnetic fields. Observations also indicate that
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the magnetic field of regular sunspots can be twisted, with an azimuthal twist φ ≈ 10◦ – 35◦

(Hagyard, West, and Cumings, 1977; Gurman and House, 1981; Lites and Skumanich, 1990;
Skumanich, Lites, and Martínez Pillet, 1994; Westendorp Plaza et al., 2001).

However, the more recent observations of Mathew et al. (2003) indicate that for regu-
lar isolated sunspots, the global azimuthal twist of the field does not significantly exceed
20°. Moreover, Yun (1971) and Osherovich and Flaa (1983) have included the effects of
an azimuthal field twist in their (self-similar) sunspot models and find that the introduction
of a moderately twisted field, compatible with observations, contributes little to the force
balance in spots and only slightly changes the main characteristics of their sunspot models
(e.g. the mixing-length parameter, effective temperature, Wilson depression, and the central
field strength remain practically the same). This is not surprising, in view of the fact that the
measured Bψ from observations is small compared to Bz and Br over most of the sunspot
region.

2.2.3. Umbral Dots

Umbral dots, bright dot-like feature observed inside an umbra, are found in almost all
sunspots and also in pores (Sobotka, 1997, 2002). They are observed to cover only 3 –
10% of the umbral area but contribute 10 – 20% of the total umbral brightness (Sobotka,
Bonet, and Vazquez, 1993). Their distribution is not uniform: they can occur in clusters and
alignments, and no large dots are found in dark nuclei (Rimmele, 1997).

On average, umbral dots are 500 – 1000 K cooler than the photosphere outside a spot,
but about 1000 K hotter than the coolest parts of the umbra itself (Kitai et al., 2007). The
magnetic field in umbral dots appears to be weaker than that in the umbral background
(Sobotka, 1997). Socas-Navarro et al. (2004) found differences of several hundred gauss
and deduced that the fields were more inclined to the vertical, by about 10°. Furthermore,
a small upward velocity of 30 – 50 m s−1 and 200 m s−1 has been reported in umbral dots
relative to the umbral background by Rimmele (1997) and Socas-Navarro (2002).

Schüssler and Vögler (2006) have presented realistic numerical simulations of umbral
magnetoconvection in the context of the monolithic model, by assuming an initially uniform
vertical magnetic field. Their model reproduces all of the principal observed features of
umbral dots, including their dark lanes (Rimmele, 2008). Their results provide support for
the monolithic model, demonstrating that umbral dots can arise naturally as a consequence
of magnetoconvection in a space-filling vertical magnetic field. The more recent numerical
simulations of Heinemann et al. (2007) and Rempel, Schüssler, and Knölker (2009a) also
confirm this.

2.2.4. Evershed Flow

The Evershed flow is observed as an outward-directed (horizontal) flow observed in the
photospheric layers of penumbrae. The inverse Evershed flow is an inward-directed flow in
chromospheric layers. A number of well-established observational properties of the Ever-
shed flow are:

• The averaged flow velocity increases from the inner to the outer penumbra. From observed
line asymmetries it is concluded that the flow is located in the deep photosphere (Maltby,
1964; Schlichenmaier, Bellot Rubio, and Tritschler, 2004).

• Observed velocities of the flow typically exceed 6 km s−1 (Rouppe van der Voort, 2002;
Bellot Rubio et al., 2003a) in the outer penumbra, but can also exceed 10 km s−1 in
localized patches (e.g. Bellot Rubio, Balthasar, and Collados, 2004).
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• The direction of the Evershed flow is close to horizontal. Azimuthal averages reveal that
the flow angle varies from 70° (average flow points upward) in the inner penumbra to
some 100° (flow points downward) in the outer penumbra (Schlichenmaier and Schmidt,
2000).

• The Evershed flow is magnetized. This is obvious from Stokes V profiles with more than
two lobes. These additional lobes are Doppler shifted (e.g. Schlichenmaier and Collados,
2002).

Two models have been proposed to explain a number of observational properties: the
“siphon-flow” model as proposed by Montesinos and Thomas (1997), and the “moving-
tube” model by Schlichenmaier, Jahn, and Schmidt (1998). Montesinos and Thomas (1997)
elaborated on the idea of Meyer and Schmidt (1968) that the flow is driven by a gas-pressure
difference between the footpoints of a thin magnetic-flux tube in magnetohydrostatic (MHS)
equilibrium. On the other hand, Schlichenmaier, Jahn, and Schmidt (1998) developed a
dynamical 2D model of a thin magnetic-flux tube that acts as a convective element in a
superadiabatic and magnetized penumbral atmosphere. In their model, the convective rise
of the thin flux tube to the surface initiates a local pressure-gradient build up, leading to a
gas flow along the tube. Penumbral grains are then identified as the hot upflow locations
where the gas reaches the (optical) surface.

Numerical simulations of radiative magnetoconvection in inclined magnetic fields (e.g.

Heinemann et al., 2007; Scharmer, Nordlund, and Heinemann, 2008; Rempel, Schüssler,
and Knölker, 2009a; Rempel et al., 2009b) are only beginning to reproduce the structure
of the outer penumbra, with its horizontal and returning magnetic fields and fast Evershed
flows along arched channels. They have already succeeded in reproducing single elongated
filaments with lengths of up to a few Mm, which resemble in many ways what is observed as
thin light bridges and penumbral filaments of the inner penumbra. In their simulations, they
find that the progression of the filament heads toward the umbra during their formation phase
is not caused by the inward motion of a narrow flux tube, but rather due to the expansion of
the sheet-like upflow plumes along the filament.

2.2.5. Moat Flow and Moving Magnetic Features

The moat flow is an outflow that initiates immediately after the formation of a penumbra.
Moats are typically 10 to 20 Mm wide, with the outer radius of the moat appearing to
scale with the size of the enclosed sunspot, being about twice the radius of the spot itself
(Brickhouse and Labonte, 1988). The moat-flow velocity is about 0.5 to 1 km s−1, and can
be seen by proper motions of granules as well as by Doppler-shift measurements (Balthasar
et al., 1996). The flow usually persists over the duration of the spot’s life, while the area
and magnetic flux of the sunspot decrease at a roughly constant rate. As the moat flow
evolves, it pushes the magnetic flux to its periphery, leaving the moat largely free of magnetic
field except for small magnetic features (known as moving magnetic features) that move
outward across the moat at speeds of about 1 km s−1 (Sheeley, 1969, 1972; Vrabec, 1971,
1974; Harvey and Harvey, 1973; Brickhouse and Labonte, 1988; Wang and Zirin, 1992;
Yurchyshyn, Wang, and Goode, 2001; Sainz Dalda and Bellot Rubio, 2008a).

The moat flow is only present in the presence of a penumbra. Pores that have no penum-
bra also lack the moat flow. Observations of irregular sunspots by Vargas Domínguez et al.

(2007) indicate that the moat flow exists only on sunspots sides where a penumbra has
formed. On sunspot sides where the umbra and the granulation are adjacent, no moat flow is
detected. Moreover, in such irregular configurations moat flows are only observed as radial
extensions of penumbral filaments, but not perpendicular to the filament.
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The moat flow has also been detected through local helioseismology, using f -mode
time – distance helioseismology. Using azimuthally averaged MDI data, Gizon, Duvall, and
Larsen (2000) find an outflow extending well beyond the sunspot boundary (up to 30 Mm)
which reaches a peak of 1 km s−1 just outside the penumbra. This flow is consistent with the
moat flow. In another recent study, Gizon et al. (2009a, 2009b) used f to p4 ridge-filtered
time – distance travel times to produce linear inversion for flows around AR 9787. These
inversions showed an azimuthally averaged horizontal outflow in the first 4 Mm beneath the
surface, reaching an amplitude of 230 m s−1 at a depth of 2.6 Mm and radial distance of
some 5 Mm outside the outer spot boundary. The inversion results were in line with obser-
vations of the moat flow in AR 9787 presented by Gizon et al. (2009a, 2009b), the strength
and extent of which was characterized by measuring the observed motion of the moving
magnetic features (MMFs) using a local correlation-tracking method. Their measurements
indicated a peak amplitude of 230 m s−1 for the moat flow, extending out to about 45 Mm
from the spot center.

As the moat flow is unmagnetized and has velocities that are much smaller than the Ever-
shed flow, the link between the two is not obvious. One possibility is that the gas pressure
that builds up beneath the penumbra could drive the moat flow (beneath the penumbra the
magnetopause is largely inclined). Sainz Dalda and Bellot Rubio (2008b) detect bipolar
MMFs within the penumbra, which migrate outward into and throughout the moat. This is
consistent with a scenario proposed by Schlichenmaier (2002): a magneto-convective over-
shoot instability in an Evershed flow channel leads to a bipolar MMF that travels outward
along the magnetic canopy.

2.3. Sunspot Thermodynamics in the Photosphere

There are a number of semi-empirical and observational models as reference, consisting
of both one- and two-component models, for the umbra and for the penumbra (see Sec-
tion 4.1 for a more detailed discussion). The basic assumption underlying almost all single-
component models is that it is possible to describe all umbrae (or at least those above a
certain size) by a single thermal model.

Thus, a very important question in this context is whether sunspot brightness (temper-
ature) or magnetic-field strength actually varies with the size of the sunspot. Theoretical
models of sunspots based on MHS equilibrium and inhibition of convective heat transport
(e.g. Deinzer, 1965; Yun, 1970) typically obtain lower temperatures for stronger magnetic
fields. However, observations by Rossbach and Schröter (1970) and Albregtsen and Maltby
(1981) indicated no dependence of umbral intensity on umbral size for umbral diameters
greater than about 8′′. On the other hand, the observations of Kopp and Rabin (1992) showed
a nearly linear decrease in umbral brightness with umbral radius for six sunspots. A similar
result was obtained for seven spots at visible wavelengths by Martínez Pillet and Vazquez
(1993) and Collados et al. (1994). This was also confirmed in a more recent study of contin-
uum images of more than 160 sunspots taken during Solar Cycle 23 by Mathew et al. (2007).
Indeed, Norton and Gilman (2004) use this dependence to predict the peak field strength of
a sunspot from its brightness to an accuracy of about 100 G. Hence, even though the rel-
atively homogeneous umbral nuclei cannot be described by a single universal atmosphere,
these models may nonetheless be used as boundary conditions in theoretical global sunspot
models.

Another related question is whether the umbra – photosphere brightness ratio of large
sunspots varies over the solar cycle. Albregtsen and Maltby (1978, 1981) find that sunspots
were darkest at the beginning of Sunspot Cycle 20 and that spots appearing later in the cy-
cle were progressively brighter (with a nearly linear dependence on the phase of the cycle),
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up until the new Cycle 21 spots appeared, which were again darkest. Subsequent observa-
tions showed that the same behavior occurred in Cycle 21 (Maltby et al., 1986). Penn and
Livingston (2006) found similar behavior during Cycle 23. However, the results of Mathew
et al. (2007) find no significant change in umbral brightness over Cycle 23.

2.4. The Wilson Depression

The reduced opacity in a sunspot, and the consequent depression of the τ = 1 level, arises
mainly from two effects: i) the reduced temperature in the spot atmosphere leads to a de-
crease in the H− bound-free opacity, and ii) the radial force balance (including magnetic
pressure and curvature forces) demands a lower gas pressure within the spot, further reduc-
ing the net opacity.

A purely observational determination of the Wilson depression is complicated by evo-
lutionary changes in the shape of the spot. Estimates from observations range from
400 – 1500 km for mature spots (Bray and Loughhead, 1964; Gokhale and Zwaan, 1972;
Balthasar and Wöhl, 1983). Martínez Pillet and Vazquez (1993) assume a linear relation be-
tween magnetic pressure and temperature in a spot (as indicated by observations), in which
case the radial force balance yields a simple relationship between the net magnetic curva-
ture force and the Wilson depression. They computed a Wilson depression of 400 – 800 km
in the umbra of their observed sunspot (the range being due to different assumed values of
the curvature forces). Solanki, Walther, and Livingston (1993) and Mathew et al. (2004)
used this approach to determine the variation of the Wilson depression with radius across
a sunspot. They found values of some 100 km in the penumbra and some 400 km in the
umbra, with a fairly sharp transition at the umbra – penumbra boundary. In a more recent
study, Watson et al. (2009) compared observations of sunspot longitude distribution and
Monte Carlo simulations of sunspot appearance using different models for spot growth rate,
growth time and depth of Wilson depression, deducing a mean depth for the umbral τ = 1
layer of 500 – 1500 km.

3. The Deep Structure of Sunspots

Though the small-scale structure seen at the surface of a sunspot is not exactly in equilib-
rium, the spot itself survives on much longer time scales than would be expected if it were
a superficial structure. It lives much longer than the time scale on which it would evolve if
it were not in a stable equilibrium, which is the time for the Alfvén speed to cross the spot
(on the order of an hour).

The magnetic field of a spot cannot be just a surface phenomenon, however, since
magnetic-field lines have no ends. The extension of the spot’s field lines above the solar
surface can be observed in the chromosphere and corona, but they must continue below
the surface as well. In contrast with a scalar field such as pressure, the magnetic field of a
sunspot cannot be kept in equilibrium simply by pressure balance at the surface: the tension
in the magnetic-field lines continuing below the surface exerts forces as well. The question
of spot equilibrium thus involves deeper layers, down to wherever the field lines continue.
This is the well-known “anchoring” problem of sunspots (Parker, 1979): at which depth, and
by which agent is the sunspot flux bundle kept together?



14 H. Moradi et al.

3.1. The Anchoring Problem

As an answer to this problem, Parker (1979) postulates the existence of a horizontal flow at
some depth below the surface, converging on and flowing through the magnetic-flux bundle
of the spot. The drag force of this flow on the field would prevent the bundle from frag-
menting. There are some obstacles to this idea. A horizontal flow is observed around spots
(the moat flow), but it is of the opposite sign to the proposed inflow. There is no theory for
the cause of the proposed flow of Parker (1979). In fact, the “heat-flux blocking” by the
sunspot would cause a flow of opposite sign, and this is actually observed in the form of
the moat flow. It is also questionable if the proposed flow would actually be sufficient to
keep the flux bundle together, in view of the (interchange) instabilities to be expected in this
picture (Schüssler, 1984). What has kept Parker’s proposal alive, however, is the helioseis-
mic inference (Duvall et al., 1996) of a huge downflow of 2 km s−1 of the sign proposed
by Parker. It is a puzzling observation, which, if confirmed, would require new theoretical
ideas. However, more recent helioseismic inferences derived from inversions of subsurface
flows around the sunspot in AR 9787 (see Section 7.6.2) do not confirm the existence of this
downflow.

A second proposal (already implicit in Cowling, 1953, and developed by Babcock, 1963;
Leighton, 1969; Spruit and Roberts, 1983) is that the flux bundle of a spot actually continues
all of the way to the base of the convection zone, to the layer of toroidal field from which the
active region erupted. At this depth, a field strength of ≈ 80 kG is inferred from flux-tube
emerging calculations (see e.g. D’Silva and Choudhuri, 1993; Caligari, Moreno-Insertis, and
Schüssler, 1995). The Alfvén travel time for a change at the base to propagate to the surface
(more accurately: the propagation time of a transverse tube wave) is then about five days.
This is the time scale on which the spot would change if there were nothing to maintain
conditions at the base. The idea is thus that a spot, while in equilibrium at the surface, would
actually be a transient structure in the layers from which its magnetic field originates. This
proposal agrees roughly with the lifetime of most small spots. It is too short, however, to
explain the anchoring of stable, long-lived spots.

3.2. The Issue of Flux Emergence

The anchoring problem of long-lived spots is thus still somewhat open. Quite clear, how-
ever, is the picture of flux emergence: the process by which a loop of flux rises from
a horizontal layer of magnetic flux at the base of the convection zone to form an ac-
tive region, as discussed briefly in Section 2.1.1. Simplified 1D calculations in the “thin
tube” approximation (D’Silva and Choudhuri, 1993; Fan, Fisher, and McClymont, 1994;
Caligari, Moreno-Insertis, and Schüssler, 1995) point to a field strength of about 105 G at
the base of the convection zone. At this strength, agreement is reached with three inde-
pendent key properties of active regions: i) the time scale of emergence (a few days), ii) the
heliographic-latitude range of emergence, and iii) the tilt of active-region axes (e.g. Caligari,
Schüssler, and Moreno-Insertis, 1998, and references therein). This is also the field strength
at which the horizontal field is first expected to become unstable to the development of bends
in the field lines, creating loops rising to the surface (Schüssler et al., 1994).

However, the picture presented by rising flux-tube simulations is somewhat incomplete,
since the last stages of the flux-emergence process in the near-photospheric layers are typi-
cally excluded. It has been pointed out by Schüssler and Rempel (2005) that the typical size
of active regions corresponds to a wavenumber of m = 10 to 60, while buoyant flux tubes
typically prefer m = 1 or 2 instabilities. From this mismatch in scales one would expect an
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unrealistic drift of sunspots apart from each other much further than actually observed due
to magnetic tension forces. Possible solutions could include a “dynamical disconnection” as
suggested by Schüssler and Rempel (2005) or a flux-emergence process that prefers larger
wave numbers from the beginning. Observational evidence for this process has recently been
provided by Svanda, Klvaňa, and Sobotka (2009).

Overall, the convergence of these lines of evidence supports the basic correctness of the
flux-emergence picture of active-region formation that has long been intuitively evident from
observations (Cowling, 1953). It has the important implication that the energy density of the
magnetic field at its source is more than two orders of magnitude larger than energy density
in convective flows; at such a strength the field is nearly unaffected by convective flows.
The same is the case at the surface of a sunspot. This is incompatible with the cornerstone
of traditional mean-field dynamo models based on the effect of convective turbulence act-
ing on magnetic fields. The picture sketched above and the mean-field convective dynamo
model thus cannot both be correct. This fact is remarkably politely ignored in discussions
on theories of the solar cycle.

3.3. Anchoring Where?

Some details of the evolution of an active region give additional clues about the anchoring of
sunspots. After their formation, long-lived spots wander about a bit in longitude and latitude
(e.g. like AR 9787, Gizon et al., 2009a, 2009b), settling to their final position over the course
of a few days (e.g. Mazzucconi, Coveri, and Godoli, 1990). This is similar to the inferred
Alfvén travel time from the base of the convection zone and the surface. The observed
settling process thus agrees with the notion of anchoring in deep layers. The “settling time
scale”, the Alfvén travel time from the anchor to the surface, agrees with the field strength at
the base of the convection zone inferred from the other properties of the emergence process
mentioned above.

While anchoring at the base of the convection zone thus agrees with a range of obser-
vational indications, this does not in itself prove that other locations within the convection
zone are excluded. Such locations are, however, somewhat unlikely. Apart from the bound-
ary with the stably stratified interior, it is hard to find a plausible location for anchoring a
magnetic field in a convecting stellar envelope, which is itself unstable to fluid displace-
ments. The anchor of a long-lived spot needs to act over a time longer than the convective
turnover time of the envelope as a whole (which would be on the order of a month, in the
classical mixing length view).

4. Sunspot Models

4.1. Semi-Empirical Models of the Sunspot Atmosphere

Semi-empirical models of umbral or penumbral atmospheres give the variation of thermo-
dynamic variables and magnetic-field vector with optical depth based on empirical data and
theoretical considerations of mechanical equilibrium and radiative transfer. Semi-empirical
models can be divided into two groups, based on the observational material and methods
used for their derivation.

One group consists of spatially unresolved, one-dimensional models based on multi-
wavelength observations of the continuum, weak and strong spectral lines. The general pro-
cedure in constructing a model atmosphere usually involves first determining a temperature –
optical depth relation, as a best fit to the empirical data, and then determining the gas and
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electron pressures by integrating the equation of hydrostatic equilibrium. In general, a num-
ber of assumptions/generalizations are made when calculating this type of semi-empirical
models:

i) For the lower photospheric layers, measurements of the center-to-limb variation of con-
tinuum intensity at several spectral intervals and the profiles of the weak spectral lines
(or the wings of strong lines) are used together with the LTE assumption. For the high
chromospheric layers, strong spectral lines are used such as Ca II H and K and IR lines,
Hα, Na I D, etc. and the analysis is carried out in NLTE.

ii) Hydrostatic equilibrium is assumed. The question of the magnetic-field distribution is
not addressed.

Most models consist of a single component, meant to represent a horizontal average over
the umbra or penumbra, while a number of models consist of two components, designed
to treat bright and dark regions separately in observations that do not fully resolve them
spatially.

Another group of models uses a relatively new strategy based on the inversion of the
polarized light radiative-transfer equation (e.g. Ruiz Cobo and del Toro Iniesta, 1992). The
input data for these models are spectro-polarimetric or spectral observations (typically of
high resolution). Formal mathematical methods are used to find the best fit to the spectral-
line profiles and only a few spectral lines are required to produce a model atmosphere. This
method provides sunspots models (umbra, penumbra, and the surrounding plage) spatially
resolved to the extent allowed by the observations. The following assumptions are typical:

i) The inversion of the radiative transfer equation is done under LTE conditions for pho-
tospheric lines. NLTE inversion results have been reported for the chromospheric Ca II

infrared triplet (Socas-Navarro, 2005). All variables are derived as a function of optical
depth.

ii) The gas stratification is obtained at heights of formation of spectral lines, at most
≈ 120 km below, and up to ≈ 300 – 400 km above the continuum level. The data about
the chromospheric layers are less frequent (e.g. Socas-Navarro, 2007).

iii) The models include magnetic-field vector and line-of-sight velocity component with or
without gradients.

iv) For practical reasons, the atmosphere is assumed to be in MHS equilibrium at each
spatial location.

v) The Wilson depression is not an inherent part of the models, but instead must be deter-
mined from additional considerations (e.g. lateral pressure balance).

Such semi-empirical models can include one, two, or more magnetic components describing
the variations of thermodynamic parameters, velocities, and magnetic-field vector at each
individual spatial location, supposing these variations are not completely resolved by obser-
vations. The shapes of the polarization profiles in the penumbra suggest that they result from
at least two different magnetic components, one of them carrying the Evershed flow (Bel-
lot Rubio, 2003). Note that the magnetic-field strength and its inclination in the penumbra
are correlated with the brightness of the penumbral filaments (Beckers and Schröter, 1969;
Schmidt et al., 1992; Title et al., 1992; Bellot Rubio, 2003; Solanki, 2003), thus the compo-
nents with different field strengths also typically have different temperatures.

All of these models are useful in constraining certain physical processes that determine
the structure of a real sunspot atmosphere, and also in providing a background model for
studies of element abundances, wave propagation, and other behavior in a sunspot.
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4.1.1. Umbral Models

Below is a summary of some of the more often used umbral models. The first three belong to
the first group of models described above and only provide variations of thermodynamical
quantities.

• Avrett (1981): Provided a combined model of the umbral photosphere, chromosphere,
and transition zone, by combining the low photospheric model of Albregtsen and Maltby
(1981) with the upper photospheric and chromospheric parts of the Lites and Skumanich
(1982) model and the transition-region model of Nicolas et al. (1981).

• Staude et al. (1983): Derived a comprehensive umbral model covering the full height
range from the photosphere to the corona. Their model was based on a large set of obser-
vations (radio, optical, EUV, X-ray). The photospheric structure was taken largely from
Stellmacher and Wiehr (1975), while its lower chromospheric stratification is similar to
that of Teplitskaya, Grigor’eva, and Skochilov (1977). They also introduced two compo-
nents (hot and cold) in higher layers.

• Maltby et al. (1986): Came up with an improvement of the Avrett (1981) model in the
deep layers. These consist of a set of three models (each for a different phase of the solar
cycle). Modifications of the models due to Maltby et al. (1986) have been proposed by
Caccin, Gomez, and Severino (1993), Severino, Gomez, and Caccin (1994), and Ayres
(1996), including constraints from more spectral lines.

• Collados et al. (1994): Presented models of the umbra of large and small spots from the
inversions of Stokes I and V spectra from the darkest cores of three different sunspots.
The variation with optical depth of temperature, magnetic-field vector, and velocity along
the line of sight were obtained. Their observations confirmed that there are noticeable
differences in the temperature and field strength between the umbra of large and small
spots.

The temperature stratifications of all of the above-mentioned umbral models reveal an
umbra that is cooler than the surrounding field-free regions in the photospheric layers, but
slightly hotter in the chromosphere, while the transition to coronal temperatures takes place
at a lower height in the umbra (Staude, 1986; Solanki, 1990; Collados et al., 1994).

4.1.2. Penumbral Models and Spatially Resolved Models

Below is a brief summary of some semi-empirical, average penumbral models and mod-
els obtained from the inversion of high-resolution polarized spectra including complete
sunspots or their parts.

• Makita and Morimoto (1960), Kjeldseth Moe and Maltby (1969), Yun, Beebe, and
Baggett (1984), and Ding and Fang (1989): Produced one-component models, with the
latter two being primarily aimed at modeling the average penumbral chromosphere.
Kjeldseth Moe and Maltby (1974) produced a two-component model of a similar kind
that provided temperature as a function of optical depth in dark and bright penumbral
filaments.

• del Toro Iniesta, Tarbell, and Ruiz Cobo (1994): Applied an inversion technique to a series
of high-resolution filtergrams, scanning a magnetically insensitive Fe I line to study the
vertical temperature and velocity structure over a small penumbral region. They provided
a mean penumbral model atmosphere as a function of optical depth.
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• Westendorp Plaza et al. (2001): Besides deriving the velocity and temperature profiles,
they also derived the magnetic-field stratification of a sunspot from inversions of obser-
vations of magnetically sensitive Fe I lines at 630 nm with a spatial resolution of approx-
imately 1′′ and one magnetic component together with a stray-light component in each
observed pixel. Similar models were provided by Mathew et al. (2003, 2004) from the
inversion of infrared Fe I spectral lines at 1.56 µm. Mathew et al. (2004) also calculated
maps of the Wilson depression and plasma parameter β .

• Rouppe van der Voort (2002): The observed radiation temperatures in the Ca II K wing
were used to derive the temperature stratification of fine-structure elements in the penum-
bra. Three atmospheric models were constructed to represent cool, intermediate, and hot
features within the penumbra, with temperature differences of order 300 K between them.

• Bellot Rubio (2003) and Borrero et al. (2004, 2005, 2006): Inverted the polarization pro-
files from the penumbra and considered the uncombed penumbral model with two mag-
netic components, where the component with a more horizontal and weaker field harbors
the Evershed flow.

• Socas-Navarro (2005): Produced a 3D sunspot model, up to chromospheric heights, from
NLTE inversion of the Ca II infrared triplet polarized spectra.

• Puschmann, Ruiz Cobo, and Martínez Pillet (2008): By assuming that the fine structure
of the penumbra is spatially resolved in high-resolution Hinode/SOT data, they invert the
data with a single-component model. The advantage of their modeling is a very detailed
and self-consistent translation from optical depth to geometrical height scale taking into
account terms of the Lorentz force and using a generic algorithm. The Wilson depression
was derived this way and the model was checked to be divergence-free and in equilibrium
in the horizontal and vertical directions.

Unlike quiet-Sun models, sunspot models should not be used indiscriminately in all cases
and can only be taken as representative examples. As was discussed in Section 2.3, a number
of observations have shown that the thermal stratification of sunspots depends sensitively on
its magnetic-field strength, sunspot size, and (possibly) on the solar cycle as well.

4.2. Magneto-Hydrostatic (MHS) Models

The simplest static models of a pore or a sunspot ignore azimuthal variations and treat it
as an axisymmetric, poloidal magnetic field (with no azimuthal component) confined to a
homogeneous flux tube of circular cross-section. The equation (in cgs units) describing the
MHS equilibrium of the flux tube is

−∇p + ρg +
1

c
(J × B) = 0, (1)

where p is the gas pressure, ρ is the gas density, g is the acceleration due to gravity, c is the
speed of light, and B is the magnetic-field vector. The electric current density is given by
Ampère’s Law:

J =
c

4π
(∇ × B). (2)

In reality, magnetic-flux concentrations lack symmetry (like most sunspots). However,
occasional long-lived spots, sufficiently separated from other large flux concentrations, tend
to be round and to have regular, ring-like penumbras. Therefore, an isolated, axially sym-
metric spot with a unipolar magnetic field is somewhat justified. Furthermore, the lifetime
of sunspots is much longer than any dynamical timescale in the solar photosphere. Some
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sunspots persist for several solar rotations, essentially unchanged, whereas perturbations
that propagate with the Alfvén speed would need about an hour to cross a large sunspot at
its photosphere.

There are also a number of other assumptions/generalizations to keep in mind when
considering MHS models: i) the MHS models are generally limited to two dimensions,
the vertical and radial directions; ii) dynamic phenomena (important for shaping small-scale
magnetic and thermal structure) and all fluctuations related to convective motions are usually
ignored; iii) most MHS models (unrealistically) tend to treat the force-balance in isolation
of the energy balance; iv) unless the energy equation is solved together with the force-
balance equation, either the magnetic field, temperature, or gas pressure must be specified,
as well as an equation of state; and finally v) for models in which the force balance and
energy equations are consistently solved throughout the sunspot, the convective transport is
treated by applying the mixing-length formalism and the radiative transport by the diffusion
approximation (see e.g. Chitre, 1963; Deinzer, 1965; Chitre and Shaviv, 1967; Yun, 1970;
Jahn, 1989).

4.2.1. Force-Free and Potential Field Models

These are the simplest static models where the magnetic field within the sunspot flux tube
is assumed to be force free, resulting in the atmosphere being horizontally stratified with
variations only in the vertical direction. A number of conditions must be satisfied in order to
create such a model: i) the force-free field must satisfy the condition:

(∇ × B) × B = 0, (3)

and ii) the assumed axial-symmetry also requires that the field satisfy the current-free con-
dition, ∇ × B = 0, and hence B is a potential field B = −∇φ (where φ satisfies Laplace’s
equation, ∇2φ = 0).

Potential-field models can thus be effortlessly derived by taking solutions of Laplace’s
equations (e.g. using dipole or Bessel function potentials). Simple models of pores were
constructed Simon and Weiss (1970), using Bessel-function solutions of Laplace’s equa-
tion. Subsequent advances of this model were made by Spruit (1976) and by Simon, Weiss,
and Nye (1983), who represented the field in a pore by a potential field such that, at the
photosphere, Bz was uniform over a disc with a prescribed radius and zero outside it.

One obvious advantage of this method is that direct solution of Equation (1) is avoided,
however the solution now involves the solution of a non-linear boundary-value and free-
surface problem (i.e., determining the location of the current sheet, as potential fields fill the
whole atmosphere unless bounded by a current sheet), which is nontrivial.

4.2.2. Current-Sheet Models

A more satisfactory potential-field model can be derived by constructing a field contained
within a flux tube such that the difference between the internal [pi] and external [pe] gas
pressures is balanced by the Lorentz force in a thin current sheet bounding the flux tube,
such that

pi +
B2

8π
= pe. (4)

This bounding current sheet is referred to as the “magnetopause”.
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Approximate solutions have been found and applied to sunspots and pores by Simon and
Weiss (1970) and Simon, Weiss, and Nye (1983). Wegmann (1981) produced the first gen-
eral solution to the free-boundary problem and Schmidt and Wegmann (1983) were the first
to apply this technique to sunspots, successfully modeling pores. More advanced current-
sheet models have succeeded in producing relatively realistic sunspot models, including the
penumbra. These models are briefly summarized below.

• Jahn (1989): Provided an extension of the Schmidt and Wegmann (1983) model by in-
troducing body/volume currents (distributed in the outer parts of a flux tube, below the
photosphere of the penumbra), in addition to a current sheet at the sunspot – quiet-Sun
boundary. The body currents contribute to the lateral force balance and affect the pressure
stratification, so that the gas in the penumbra is hotter, thus layers of equal gas pressure
assume higher levels than in an umbra where the field is current free. A fit to the magnetic
and photometric profiles (taken from Beckers and Schröter, 1969) provided a distribution
of the electric currents in their model.

• Jahn and Schmidt (1994): Introduced two current sheets, one at the outer boundary of
the flux tube (the magnetopause) and the other at the interface between the penumbra
and the umbra. They did this in order to obtain a more realistic thermal structure of the
sunspot with distinctively different umbral and penumbral thermal mechanisms. They
also assumed that the umbra is thermally insulated from the penumbra, while some of the
energy radiated from the penumbra itself is supplied by convective processes that transfer
energy across the magnetopause.

• Pizzo (1990): Extended the earlier work of Pizzo (1986) (see Section 4.2.4), using multi-
grid techniques to calculate the magnetic structure of a sunspot bounded by a current
sheet.

In general, current-sheet models are consistent with the concept that sunspots represent
discrete, erupted, magnetic entities (Solanki, 2003). Observational support for the current-
sheet description of spots is taken from the sharp transition between the umbra and quiet
photosphere in pores and from the relatively uniform photometric appearance of most um-
brae (Gokhale and Zwaan, 1972). The fact that the magnetic field is so large at the white-
light boundary of the sunspot also strongly suggests that sunspots are bounded by a current
sheet (Solanki and Schmidt, 1993). However, as Solanki (2003) points out, the rugged na-
ture of the sunspot boundary in white-light images means that the current sheet is not as well
defined as one might picture on the basis of simple flux-tube models. Further evidence for
a current sheet surrounding sunspots comes from observations suggesting that the field in-
side sunspots is close to potential. This suggests that the currents bounding the strong field
must be mainly located in a relatively thin sheet at the magnetopause (see e.g. Lites and
Skumanich, 1990).

4.2.3. Self-Similar Fields

There is considerable arbitrariness in assigning the distribution of the volume current and
the corresponding radial structure in the sunspot atmosphere. As first shown by Schlüter
and Temesváry (1958) (and later extended by others, e.g. Chitre, 1963; Jakimiec, 1965;
Jakimiec and Zabża, 1966; Chitre and Shaviv, 1967), the problem can be greatly simplified
by assuming a self-similar profile for the magnetic field.

In cylindrical coordinates, the (untwisted) Bz and Br components of the magnetic field
take the form

Bz(r, z) = f (ζ )B0(z), (5)
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Br(r, z) = −
r

2
f (ζ )

dB0(z)

dz
, (6)

where r and z refer to the radial and vertical coordinates respectively, B0(z) is the field
strength at the flux-tube axis, and ζ = r

√
B0(z). The shape of the function f (ζ ) may be

freely chosen (usually a Gaussian). For a non-constant f (ζ ), inserting Equations (5) and (6)
into (1) reduces the equation of MHS equilibrium to the following equations:

0 = −
∂p

∂r
+

Bz

4π

(

∂Br

∂z
−

∂Bz

∂r

)

, (7)

0 = −
∂p

∂z
−

Br

4π

(

∂Br

∂z
−

∂Bz

∂r

)

− ρg. (8)

Integrating Equation (7) over r from 0 to infinity for constant z leads to the following ex-
pression for p(z) = pe(z) − pi(z), the difference in gas pressure between the external
[p(∞, z)] and internal [p(0, z)] regions:

p(z) = −
1

8π

(

�

2π
y

d2y

dz2
− y4

)

, (9)

where � denotes the total magnetic flux and y =
√

B0(z). Thus this method has the ad-
vantage that it simplifies the mathematical treatment of MHS equilibrium by reducing the
partial differential equation to a second-order, ordinary differential equation for the field
strength at the axis of the spot by specifying the cross-sectional shape of the magnetic-field
distribution within an axisymmetric flux tube.

A general assumption made is that the distribution of magnetic flux on horizontal planes
is geometrically similar at each depth. Furthermore, in contrast to current-sheet models,
self-similarity allows for a continuous variation of field strength and gas pressure across
the spot. The field falls off smoothly from the central axis value to zero at large radial dis-
tances (hence, there is no clear definable “inside” or “outside” of the spot in this description,
therefore essentially ignoring the fact that sunspots have sharp edges). Thus, there is the
computational convenience as treatment of the discontinuity associated with a current sheet
is avoided. However, the similarity law enforces a somewhat arbitrary distribution of electric
current, resulting in the appearance of a bright ring in the emergent intensity. Those currents
determine (to some extent) the horizontal temperature variations, which in general need not
comply with the observed photometric profile (Jahn, 1992).

A further disadvantage of a purely self-similar sunspot model is that negative pressures
and densities are often obtained in the photospheric and upper atmospheric layers of the flux
tube, due to the fact that the hydrodynamic pressure and density are decreasing exponen-
tially with height, while the magnetic field does not quite decrease at the same rate. There
have been some proposed work-arounds to this problem (e.g. Hanasoge, 2008), however,
such methods are not ideal as they tend to substantially alter the governing differential equa-
tions because they require the inclusion of terms in the ideal MHD equations which are not
physical.

Furthermore, since the Lorentz force also drops with height, the magnetic field essen-
tially becomes an unbounded, force-free field within a few pressure scale heights above the
photosphere, resulting in a field configuration not too different from a potential field. This
fact implies that self-similar models are essentially not force free in the regions where they
should be. Since the shape of the magnetic field at the surface is sensitive to this, one has
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here a model that breaks down in an essential way in just those regions where diagnostics
are best.

Nonetheless, due to their simplicity, similarity expansions have been utilized to generate
the field configuration for a number of studies, some of which are summarized below.

• Deinzer (1965): Generalized the Schlüter and Temesváry (1958) model, where the sim-
ilarity law for the magnetic field is coupled with the thermodynamic structure along the
axis of a spot, as described by mixing-length theory.

• Yun (1970): Improved the Deinzer (1965) model by the introduction of an “effective
surface monopole”, which controlled the inclination of the particular field lines identified
with the outer edge a spot at the surface. Hence, the upper boundary condition takes into
account the fact that the gas pressure difference at the photospheric level is not negligible
(as assumed by Deinzer, 1965). Lower boundary conditions were also modified, as the
effects of partial ionization on the relation between the internal and external pressures
and temperatures were included.

• Yun (1971) and Osherovich and Flaa (1983): Demonstrated that the introduction of a mod-
erately twisted field (≈ 17° near the surface, compatible with observations) contributes
little to the force balance in spots and changes only slightly the main characteristics of the
model (as already mentioned in Section 2.2.2).

• Landman and Finn (1979): Imposed an Evershed-type radial velocity distribution in the
upper region of the spot atmosphere, in order to get a satisfactory continuum-intensity
profile across the sunspot. However, relatively large values of the Evershed flow (i.e.,
close to 10 km s−1) were required to obtain a satisfactory temperature profile.

• Low (1980): Prescribed a method for generating exact solutions of MHS equilibrium de-
scribing a cylindrically symmetric magnetic flux tube oriented vertically in a stratified
medium. Given the geometric shape of the field lines, compact formulae were presented
for the direct calculation of all the possible distributions of pressure, density, tempera-
ture, and magnetic-field strength compatible with these field lines under the condition of
static equilibrium. A particular solution was obtained by this method for a medium-sized
sunspot whose magnetic field obeys the similarity law of Schlüter and Temesváry (1958).

• Osherovich (1982): Extended self-similar models to include field lines in the outer part
of the sunspot that return to the solar surface just outside the visible sunspot (return flux).
The emerging flux constitutes the penumbra. The predicted continuum intensity of return-
flux models was not much closer to the observations than the standard self-similar models.

• Fla, Skumanich, and Osherovich (1982): Applied the return-flux model to a spot with the
observational data of Lites and Skumanich (1982) for pressure, maximum-field strength,
and size. The force-balance equation was solved to obtain self-consistent magnetic field,
pressure, and temperature distributions. The resulting distributions appeared to yield im-
proved representations of umbral – penumbra and penumbra – quiet-Sun boundaries com-
pared to regular (e.g. Schlüter and Temesváry, 1958) self-similar models. However, it
appears that one needs to introduce an Evershed flow to eliminate the apparent umbral
bright ring in the continuum. Similar work on return-flux sunspot models was undertaken
by Osherovich and Lawrence (1983), Osherovich and Garcia (1989), and Liu and Song
(1996).

• Solov’ev (1997): Extended the self-similar sunspot models by introducing a current sheet
at the sunspot boundary.

• Moon, Yun, and Park (1998): Included a description of the energy balance and the ob-
served horizontal variation of the Wilson depression when determining the shape function
from the observed radial dependence of the magnetic field.
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• Cameron, Gizon, and Duvall (2008), Hanasoge (2008), Moradi, Hanasoge, and Cally
(2009), and Shelyag et al. (2009): All employed simple self-similar toy sunspot models in
conducting numerical simulations of helioseismic wave propagation through magnetized
plasmas.

As we shall see in the following sections however, constructing more physically realistic
sunspot models is practical, especially with the MHD codes (Section 6) that are currently
used for the wave-propagation problem.

4.2.4. Solution of Full MHS Force Balance

These methods involve solving for the magnetic field on the basis of full MHD equilibrium,
with and without a current sheet. Pressure is specified throughout the numerical domain
(usually as a function of depth and taken from semi-empirical models), partly depending on
the distribution of field lines (hydrostatic equilibrium acts along each field line).

Pizzo (1986) utilizes the description of Low (1975), who proposed transforming the ther-
modynamic parameters (the pressure and temperature of the gas) into functions of the mag-
netic vector potential and depth. In this form, a functional form is prescribed for the gas
pressure, but not for the magnetic field as in the similarity models, and the equilibrium is
solved as a classical non-linear boundary-value problem.

By transforming the pressure and density into functions of the field-line constant u (used
by both Low, 1980 and Pizzo, 1986, it essentially determines the shape of the field lines)
and height z, and requiring hydrostatic equilibrium along the field lines, Equation (1) can be
reduced to a single scalar equation describing the magnetostatic equilibrium of an axisym-
metric, poloidal field:

∂2u

∂r2
−

1

r

∂u

∂r
+

∂2u

∂z2
= −4πr2 ∂P (u, z)

∂u
, (10)

where P is a function related to the gas-pressure distribution. Low (1975) provides an ap-
proximation for the distribution of gas pressure along the magnetic-field lines in a vertical,
axisymmetric flux tube in magnetostatic equilibrium,

P (u, z) = P0(u) exp

[

−
∫ z

0

dz′

h(u, z′)

]

, (11)

where P0(u) is the gas pressure along the lower boundary, h(u, z) is the isothermal scale
height [h = RT/μg, where R denotes the ideal gas constant, T the temperature, μ the
mean molecular weight, and g is the acceleration due to gravity] for a plasma obeying the
ideal gas law [p = ρRT/μ]. The u = constant curves describe the field lines of the system.
The vertical and radial field components may then be expressed in terms of u:

Bz =
1

r

∂u

∂r
(12)

and

Br = −
1

r

∂u

∂z
. (13)

The range of validity is determined by the representative pressure distributions along the
axis and in the field-free atmosphere.
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The gas-pressure difference between the quiet photosphere and the axis of the spot is
needed for the computation. Pizzo (1986) takes these values from the semi-empirical models
of the umbral photosphere derived by Avrett (1981). Pizzo (1986) then develops a method
for the iterative numerical solution of Equation (10), essentially a second-order, non-linear,
elliptic, partial differential equation, which can be easily solved using standard numerical
techniques in the case of fixed boundary conditions.

An advantage of this model is that the Wilson depression and net internal – external pres-
sure difference can be adjusted by vertical translation of the absolute height scales of the two
reference atmospheres. However, the configuration considered by Pizzo (1986) has its base
placed 120 km below the visible surface of the umbra, which corresponds to z = 0 in the
Avrett (1981) model, hence his models do not address the question of the spot structure
in deeper layers. The model also assumes a Gaussian profile of the magnetic field across
the base (i.e. self-similar), thus ignoring the existence of a discontinuous transition from
the magnetized to field-free plasma (i.e., a current sheet). However, Pizzo (1990) later ex-
tends his method by incorporating the free-surface problem in the solution of the equation of
magnetostatic equilibrium for a flux tube surrounded by an infinitely thin current sheet, uti-
lizing a body-fitted mesh generation and multi-grid relaxation techniques for solving Equa-
tion (10).

Steiner, Pneuman, and Stenflo (1986) also developed a method for the iterative numeri-
cal solution of Equation (10), including a boundary current sheet and also field twist in their
treatment, while Cally (1991) adopted a full multi-grid method to tackle the free-boundary
problem by formulating it in terms of inverse or flux coordinates, in which the magnetic-
field lines become coordinate lines. This results in the energy equation reducing to ordinary
differential equations along field lines when the radiation is optically thin. Also, if steady
plasma flow is allowed, Alfvén’s theorem guarantees that there can be no cross-field com-
ponent of velocity, i.e. that the fluid flows along field lines.

Khomenko and Collados (2006) used the Pizzo (1986) sunspot model in numerical sim-
ulations of magnetoacoustic wave propagation, and more recently Khomenko and Collados
(2008) produced a new set of models consisting of concatenation of self-similar models
in the deep layers, where the gas pressure dominates over magnetic pressure, with models
in which the pressure distribution is prescribed on the axis. In the deep photospheric lay-
ers, a self-similar solution for the magnetic field is calculated following the method of Low
(1980), while the pressure and density distributions with height and radius are found from
analytical expressions. A potential solution is then generated above some arbitrary height
using the method of Pizzo (1986) – the bottom boundary of this model coincides with the
top boundary of the deep photospheric/self-similar model (approximately z = −1 Mm; it
can be adjusted, however, to limit the upper boundary of the self-similar model). This solu-
tion is then used as an initial guess in the integration of the complete force balance equation
along the magnetic-field lines, i.e. Equation (10).

The analytical description of the pressure distribution along magnetic-field lines is taken
from Pizzo (1986) and Low (1975). The Model S (Christensen-Dalsgaard et al., 1996) pres-
sure distribution for the field-free atmosphere is smoothly joined to the VAL-C (Vernazza,
Avrett, and Loeser, 1981) model of the solar chromosphere. On the axis, the Avrett (1981)
umbral-core model is used in the upper layers, while the linear inversion model of Koso-
vichev, Duvall, and Scherrer (2000) is used for deeper layers (down to a depth of 1 Mm,
thus ignoring the “hot” layer), which takes the Wilson depression to be at 450 km. A smooth
transition between the models is then calculated for the gas pressure and scale-height distrib-
utions, in the same manner as Pizzo (1986), and by changing the parameters of the solution,
a set of models with the desired properties can be produced. However, as with the Pizzo
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(1986) and all other pressure-distributed sunspot models, the vertical extent of these models
is severely limited by available semi-empirical data on the sunspot axis.

4.2.5. Extrapolated Field Models

Martens et al. (1996) present a force-free, constant-α model for the magnetic field in and
above a fluted sunspot. They demonstrate that magnetograms for round sunspots can es-
sentially be matched by a series of Bessel functions. Their model parameters are chosen to
reproduce the high-resolution observations (magnetograms) of Title et al. (1993) at the 1-m
Swedish Solar Observatory at La Palma, and an analytical expression is obtained for the 3D
magnetic field emanating from the sunspot’s umbra and penumbra. The model accurately
reproduces the azimuthal variation in inclination angle, as well as the mean constancy of the
magnetic-field strength, and the appearance of a highly corrugated neutral line on the limb
side of off-center sunspots.

Another model based on matching magnetograms with analytical expressions is the ax-
isymmetric sunspot model of Moradi and Cally (2008), which consists of a non-potential,
untwisted, 3D MHS sunspot model constrained to fit observed surface magnetic-field pro-
files. The preferred surface-field configuration of the sunspot model was derived from con-
strained polynomial fits to the observed scatter plots of the radial [Br ] and vertical [Bz] sur-
face magnetic-field profiles of AR 9026 on 5 June 2000 – a fairly symmetrical sunspot near
disk center, ideal for helioseismic analysis – obtained from IVM (Imaging Vector Magneto-
graph) vector magnetograms. The surface field is therefore quite realistic, which is important
because there is evidence (e.g. Schunker and Cally, 2006) that magnetic effects in helioseis-
mology are dominated by the top few hundred kilometers. The fits of Br and Bz are then
used to derive an analytical form for the flux function. Instead of a current sheet along the
boundary, the authors formulate an analytical form for the outermost field line to allow field
strength to smoothly drop to zero. However, in a similar vein to other sunspot models that
derive their thermodynamic properties solely from a prescribed magnetic-field configura-
tion (e.g. self-similar models, Section 4.2.3), the axial pressure and density of these models
posses a high degree of sensitivity near the upper boundary, with a tendency to become
negative in the photospheric layers and beyond.

4.3. Non-MHS Models

4.3.1. Semi-Empirical Sunspot Models

Very close to the solar surface, the properties of sunspots can be inferred from spectro-
polarimetric measurements. These layers are the most important to model since it is exactly
in this region that the effects on the wave cannot be treated assuming only weak pertur-
bations. Cameron et al. (2010) have emphasized the desirability of incorporating this in-
formation into helioseismic wave-propagation simulations by constructing simplified, ax-
isymmetric sunspot models that are designed to capture the effects of the first few hundred
km.

Since full spectro-polarimetric inversions are available for very few spots (e.g. Mathew
et al., 2004), Cameron et al. (2010) utilize a combination of existing semi-empirical mod-
els: the umbral model of Maltby et al. (1986) and the penumbral model of Ding and
Fang (1989), which cover the range of heights from about 500 km below the quiet-
Sun τ = 1 level to the lower chromosphere. The OPAL equation of state tables are
used to infer sound speed, temperature, pressure, and density profiles. Since the aim is
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Figure 3 Thermodynamic, sound and fast mode speed profiles of the sunspot model of AR 9787 produced
by Cameron et al. (2010). Left panel: Vertical temperature profile of reference stratification (solid) and near
the center of the umbra (dashed). Right panel: Vertical sound-speed profile of reference stratification (solid)
and near the center of the umbra (dashed). The dotted line shows the fast-mode speed in the center of the
umbra.

only to model the near-surface region, the atmospheric models are smoothly matched to
the Model S (Christensen-Dalsgaard et al., 1996) quiet-Sun atmosphere below τ5000 = 0
and 400 km above. Cameron et al. (2010) combine these 1D models to form a 3D,
axisymmetric model of the sunspot in AR 9787, with the umbral and penumbral radii
chosen to match those of the observed sunspot (10 and 20 Mm, respectively). The
model is then stabilized with respect to convection by calculating the relative pertur-
bations with respect to the quiet-Sun atmosphere and imposing these on the stabilized
model (see Section 6.2 for details). As good measurements of the magnetic field are
unavailable for the sunspot in AR 9787, the model assumes that Bz is described by a
Gaussian horizontal profile and the vertical profile is tuned so the field inclination at
the umbra – penumbra border is approximately 45°. Figure 3 shows the vertical temper-
ature, sound and fast mode speed profiles in the center of the umbra of the sunspot
model.

4.3.2. Dynamical Models

Kitchatinov and Rüdiger (2007) propose a theoretical sunspot model, with complete dynam-
ics of both magnetic field and flow, which can reproduce the observed bright rings around
sunspots (e.g. Rast et al., 1999, 2001). A simplified model was initially used to probe the
possibility of reproducing bright rings by heat transport alone. In this model the mean flow
velocity is put to zero, the spot-like structure of the magnetic field is prescribed and station-
ary, and the diffusion equation for the entropy is solved. The authors find that the bright-
ness of the region occupied by magnetic field decreases due to magnetic quenching of the
thermal diffusivity; however, the resulting surface brightness profile did not show a bright
ring.

A more consistent MHD model of a sunspot was then considered using the complete
momentum equation together with the induction equation. Amplitudes of the initial uniform
field of several hundred Gauss were considered. The surface flow generated is convergent
near the spot but divergent at larger distances. The amplitude of the flow modeled was ap-
proximately 800 m s−1. Both brightness and field strength (central value of about 2700 G)
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were modeled to be almost uniform in the central parts of the sunspot and changing rapidly
with radius beyond. The radial heat-flux profiles from their simulations show consistent
bright rings around the spots, appearing to be somewhat brighter than the observed rings.
To probe the contribution of the flow to the bright rings, the field is switched off. The bright
rings do not disappear, which leads the authors to conclude that both the flow and the re-
duced diffusivity quenching contribute to the resulting bright rings.

Another set of dynamical MHD sunspot models, consisting of idealized axisymmetric
flux tubes (where the magnetic field is matched to a potential field at the upper boundary) in
a compressible convecting atmosphere, were presented by Hurlburt and Rucklidge (2000).
In their models, they find the magnetic flux to be confined by an inward “collar” flow at the
surface. Further outside, the flow direction appears to reverse and a moat cell appears. The
authors suggest that the collar cell holding sunspots together is hidden beneath their penum-
brae, so that only the outflow in the moat cell is visible at the surface. Although this par-
ticular flow pattern (i.e., inflows and downflows around sunspots, first proposed by Parker,
1979), can in theory help to explain the question of the stability of long-lived sunspots, there
are a number of theoretical concerns with this conjecture (already discussed in Section 3).
Furthermore, the existence of such a flow structure around sunspots is absent from both
observations and recent helioseismic inferences (e.g. Section 7.6.2), as well as realistic ra-
diative MHD simulations of sunspot structure (Heinemann et al., 2007; Rempel, Schüssler,
and Knölker, 2009a; Rempel et al., 2009b; see below for details).

4.4. Numerical Simulations of Radiative Magnetoconvection

Significant progress in our ability to simulate sunspots using realistic MHD simulations (i.e.

MHD simulations that include the solar equation of state and multi-dimensional radiative
transfer) was only possible during the past couple of years. This is primarily due to the fact
that pursuing radiative MHD simulations on the scale of sunspots with sufficient resolu-
tion for capturing the essential scales of magneto-convective energy transport requires fairly
large computational domains and accordingly computing power. In addition to the compu-
tational domain size the physical parameters encountered in and above the umbral region
of a sunspot pose significant numerical challenges. The combination of several kG for the
magnetic field with the rather small density scale height leads to a steep increase of the
Alfvén velocity above the sunspot umbra, reaching values in excess of a few 1000 km s−1.
Such high velocities lead to severe time-step constraints for explicit codes that make such
a simulation almost impractical, unless this constraint is relaxed by artificially limiting the
Lorentz force in low β regions.

3D models with a slender, rectangular, slab geometry have been used to study the inner
penumbra (Heinemann et al., 2007; Rempel, Schüssler, and Knölker, 2009a). The results
from the MHD simulations show the formation of filamentary structures resembling those
in the inner penumbra of a real sunspot, including bright filaments containing central dark
cores. More recent 3D calculations of round sunspots, and even pairs of opposite polarity
spots (e.g. Rempel et al., 2009b), also show extended outer penumbrae with realistic Ever-
shed flows, having mean flow velocities of up to 6 km s−1.

Most of these simulations are focused around the sunspot fine structure (umbral dots
and penumbral filaments) and cover only a temporal evolution of a few hours. Simulations
addressing the long-term evolution of sunspots (on a time scale of days) are currently only
feasible if the resolution is decreased, therefore not resolving details of the fine structure
as well as penumbral regions. Figure 4 displays the bolometric intensity and subsurface
magnetic-field strength for a sunspot evolved over a total of 15 hours. Figure 5 compares
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Figure 4 Simulated sunspot in a
50 × 50 × 8 Mm domain. The top
panel displays the bolometric
intensity, the bottom panel field
strength on a cut through the
center of the spot.

Figure 5 Left panel: Vertical temperature profile of the reference stratification (solid) and near the center
of the umbra (dashed) of the sunspot model in Figure 4. The large temperature perturbation corresponds to
a Wilson depression of about 600 km. Right panel: Vertical sound-speed profile of reference stratification
(solid) and near the center of the umbra (dashed). The dotted line shows the fast-mode speed in the center of
the umbra.

the profiles of temperature, sound speed, and fast mode speed in the center of the spot to
those of the reference stratification near the edges of the domain. The temperature profile
(left panel) shows a Wilson depression of about 600 km which forms rather quickly during
the first few hours of the simulation, and deeper down a slowly progressing cooling front
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leads to a moderate adjustment of temperature in layers 1 – 2 Mm beneath the τ = 1 level
in the umbra corresponding to changes of the speed of sound (right panel) on the order of
a few 100 m s−1 to about 1 km s−1. The fast-mode speed shows a steep increase above the
τ = 1 level in the umbra, the maximum speed is here artificially limited to about 60 km s−1

to relax the stringent Alfvénic time-step constraint.
While these simulations provide a realistic description of the thermal and magnetic struc-

ture in the uppermost few Mm of a sunspot, they cannot address fundamental questions re-
garding the subsurface structure and origin of sunspots. Currently the domains are with 8
Mm still rather shallow (deeper domains up to 16 Mm are in preparation) and the initial
field structure is based on a monolithic model. Furthermore the magnetic field is fixed at the
bottom boundary. Nevertheless these models provide very useful artificial oscillation data
that can be used to test helioseismic inversion methods, since the latter requires primarily a
consistent, rather than a fully realistic model.

5. Diagnostics Potential of Helioseismology

In the previous section we reviewed models of sunspots; each of these provides a prescrip-
tion for computing the subsurface structure (i.e. the 3D forms of the sound speed, density,
and magnetic field) of a model sunspot over some range of depths. These prescriptions are
based on a wide variety of physical assumptions. In general, it is not known which of these
assumptions are good approximations (in the sense of accurately describing solar condi-
tions). Helioseismology promises the ability to infer the subsurface structure of sunspots
and active regions, and thus to test the physical approximations that are used in building
models of these regions.

Helioseismology has shown (see Gizon and Birch, 2005 for a review) that wave prop-
agation is different in sunspots in the quiet Sun. For example, single-bounce wave travel
times are altered by (order of magnitude) about thirty seconds; the details depend strongly
on the data-analysis filters, the first-bounce distance, and the wave frequency (e.g. Braun
and Birch, 2008). In Section 7 we provide a follow-up to the detailed helioseismic study un-
dertaken by Gizon et al. (2009a, 2009b) of the active region AR 9787. These measurements
clearly demonstrate that helioseismology can measure the changes in wave propagation that
are associated with sunspots and active regions.

Many conclutions have been drawn about sunspot and active-region structure from lo-
cal helioseismology (e.g. Fan, Braun, and Chou, 1995; Kosovichev, 1996; Jensen, Jacob-
sen, and Christensen-Dalsgaard, 1998; Chou, Sun, and Chang, 2000; Kosovichev, Duvall,
and Scherrer, 2000; Zhao and Kosovichev, 2003; Couvidat et al., 2004; Basu, Antia, and
Bogart, 2004; Crouch et al., 2005; Bogart et al., 2008). Despite the long history of work
on this topic, there is no general agreement on the subsurface structure of active regions.
Here we will investigate some of the possible causes of the disagreement shown by Gizon
et al. (2009a, 2009b): the frequency dependence of travel times (Section 7.2), the effects
of phase-speed filters on measurements (Section 7.3), and the effects of inversion para-
meter choices and inclusion of surface terms on ring-diagram structure inversions (Sec-
tion 7.4).

Another approach to using helioseismology to constrain sunspot models is the direct
simulation of wave propagation through model sunspots and comparison of the resulting
wave field with the helioseismic measurements (e.g. Cameron, Gizon, and Daiffallah, 2007;
Cameron, Gizon, and Duvall, 2008; Moradi, Hanasoge, and Cally, 2009). This approach by-
passes the need for linear forward models (i.e. models for the linear sensitivity of travel-time
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shifts or ring-diagram frequency shifts to changes in subsurface structure). The approxima-
tions made in the process of formulating linear forward models may be one source of the
disagreement shown by Gizon et al. (2009a, 2009b). A limitation of the direct simulation ap-
proach is that it is extremely computationally intensive. The examples shown in Section 7.8
demonstrate that numerical simulations are capable of reproducing many features of the
helioseismic measurements (see also Cameron, Gizon, and Duvall, 2008). In addition, sim-
ulations promise to provide a powerful tool for determining the sensitivity of helioseismic
measurements to small changes in the subsurface structure of sunspot models. This type
of study is required to be able to make meaningful estimates of the signal-to-noise ratios
required for the helioseismic measurements to constrain any particular aspect of sunspot
models.

6. Numerical Forward Modeling of Waves Through Model Sunspots

6.1. Numerical Methods

Our best chance at constraining the interior structure of sunspots comes with constructing
accurate, numerical, forward models. There are two major reasons for claiming this:

i) The departure from the quiet-Sun wave-propagation physics being so dramatic in a
sunspot, it is quite likely that the single-scattering Born approximation (e.g. Birch, Koso-
vichev, and Duvall, 2004) fails entirely (e.g. Gizon, Hanasoge, and Birch, 2006). It is
therefore imperative to solve the wave-propagation equations in a fully 3D, highly mag-
netized environment. However, the basis of semi-analytical sunspot formalisms is sig-
nificantly undermined by the sheer mathematical complexity of dealing with the MHD
equations (not for the want of trying; e.g. Bogdan, 1999), and hence the necessity of
using purely numerical techniques.

ii) Computational solvers are flexible and can be rather easily extended to include more
effects, such as flows, changes on wave sources, etc.

The difficulties in creating an MHD solver that produces sufficiently accurate results are
not to be underestimated. A number of groups are working on this problem (Khomenko and
Collados, 2006; Cameron, Gizon, and Daiffallah, 2007; Parchevsky and Kosovichev, 2007;
Hanasoge, 2008; Shelyag et al., 2009). The numerical techniques, and validation and ver-
ification procedures vary significantly from one code to another. A further complexity is
introduced by an Alfvén speed that increases exponentially with height, approaching values
of several hundred km s−1 near the computational upper boundary. Simulating wave prop-
agation in a plasma so highly magnetically dominated is remarkably expensive, especially
in 3D. A number of simulations (e.g. Cameron, Gizon, and Daiffallah, 2007; Cameron,
Gizon, and Duvall, 2008; Hanasoge, 2008; Moradi, Hanasoge, and Cally, 2009; Rempel,
Schüssler, and Knölker, 2009a) apply an Alfvén wave-speed limiter to moderate the ac-
tion of the Lorentz forces, thereby indirectly controlling the plasma-β . Having described
this context, three rather serious issues remain as yet outstanding: i) What are the spatio-
temporal resolution requirements for simulating waves in an MHD environment? ii) How
do we treat the upper magnetic boundary? and iii) What harm does the Alfvén-speed limit-
ing term do to the near and far scattered wave field?

As yet, only parts of these questions have been answered. This may be attributed
to a systemic shortsighted forward modeling approach in our intensely observationally
driven field: simulate and obtain results as quickly as possible. Evidently, we must at-
tempt to overturn this trend by i) ensuring that the numerical methods are high order
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and highly precise, ii) validating and verifying that the equations are being solved accu-
rately (i.e. testing against a number of known solutions), iii) determining and matching
the spatio-temporal resolution requirements, iv) using stable, physically-motivated, well-
tested boundary conditions, and finally v) testing that the approximations used in the cal-
culations do not directly affect the quality of the solution. Of course, attendant questions
of computational efficiency must also be addressed, because the forward-modeling ap-
proach requires exhaustive testing of sunspot models, requiring a large number of calcu-
lations.

6.2. Background Models Stabilized Against Convective Instability

Numerical simulations of seismic wave propagation through random media must begin with
an initial background model of the Sun. In helioseismology, it is common practice to be-
gin with Model S (e.g. Cameron, Gizon, and Daiffallah, 2007; Parchevsky and Kosovichev,
2007; Khomenko et al., 2009). However, most background models include convection and
numerical forward models which simulate linear wave propagation are sensitive to this.
Therefore, it is essential to remove such convective instabilities from the background in or-
der to be able to successfully simulate linear wave propagation on the time scalesk (≈ eight
hours) required for computational helioseismology, as well as to ensure that convective
modes do not swamp the signatures one is interested in analyzing.

There are a number of ways to stabilize background models against convection (e.g.

Hanasoge et al., 2006; Cameron, Gizon, and Daiffallah, 2007; Parchevsky and Kosovichev,
2007; Shelyag, Fedun, and Erdélyi, 2008), all requiring zero buoyancy so that a vertically
displaced packet of gas in adiabatic equilibrium will not continue to rise, i.e. ensuring that
the Brunt–Väisälä frequency always remains positive, specifically N2/g > 0 where g is the
gravitational acceleration. There are a number of ways to go about this; for example, the
method employed by Parchevsky and Kosovichev (2007) ensures that, when this condition
is not met, the value is replaced with zero, or very small values (e.g. 3 × 10−5 Mm−1).
Shelyag, Fedun, and Erdélyi (2008) and Shelyag et al. (2009) have a slightly different ap-
proach, whereby they adjust the pressure and density of Model S using the equation of state
for an ideal gas to retain a constant Ŵ1 = 5/3, with the additional constraint that the mod-
ified sound-speed profile does not differ substantially from the original. Both Parchevsky
and Kosovichev (2007) and Shelyag et al. (2009) have shown relatively solar-like power
spectrums.

Another method has been employed by Cameron, Gizon, and Daiffallah (2007) and
Cameron, Gizon, and Duvall (2008), and it has undergone detailed development and testing
by Schunker, Cameron, and Gizon (2010), whereby the Model S background is stabilized
against convective instability by ensuring ∂zp = max(c2∂zρ0 − ǫ, ∂zp0), where ∂z specifies
the partial derivative with respect to height, the subscript “0” indicates unperturbed Model S
values, and ǫ = 10−5 g s−2 near the surface and zero everywhere else. These changes to
the background model alter the eigenmodes of the problem, and this must be taken into ac-
count. Schunker, Cameron, and Gizon (2010) have attempted to do this by examining the
eigenmodes and ensuring that they are solar-like and have successfully demonstrated quite
solar-like power spectra. Other ways to remove the convective instability have not been ex-
plored however, and it is not clear which form of stabilization least affects the eigenmodes.

6.3. Numerical Codes

In this section we provide a brief summary of the four numerical simulation codes that were
discussed and used during the two HELAS workshops on sunspot seismology held in 2007
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and 2009. These codes compute the propagation of solar waves through prescribed back-
ground models. We note that other numerical simulation codes also exist (e.g. Parchevsky
and Kosovichev, 2007; Hartlep, Miesch, and Mansour, 2008).

6.3.1. The IAC MHD Code

The IAC MHD code, described by Khomenko and Collados (2006) and Khomenko, Col-
lados, and Felipe (2008), solves the non-linear MHD equations for perturbations, written
in the conservative form, using a fourth-order central difference scheme and advanced in
time by a fourth-order Runge – Kutta method. In a similar manner to Stein and Nordlund
(1998) and Caunt and Korpi (2001), in order to damp high-frequency numerical noise on
subgrid scales, the physical diffusive terms in the equations of momentum and energy are
replaced by artificial equivalents. In the induction equation, the magnetic-diffusion term is
retained, with η being replaced by an artificial value. Depending on the simulation, Perfectly
Matched Layers (PML: e.g. Berenger, 1994) are also placed at the boundaries that absorb
the incoming waves and prevent their spurious reflection and return back to the physical
domain. For the best results, 10 to 15 grid points are allocated to the PML layer. This code
has been used to study the wave propagation and refraction in a small sunspot (Khomenko
and Collados, 2006); non-linear wave propagation, shock formation, mode conversion, and
energy transport in small-scale flux tubes with internal structure (Khomenko, Collados, and
Felipe, 2008).

Recently, the code was also used to model the propagation of helioseismic waves below
the subphotospheric structure of sunspots (Khomenko et al., 2009; Khomenko and Colla-
dos, 2009). The most important results obtained for helioseismic wave propagation below
sunspots are the following: i) the fast magnetoacoustic mode represents an analog of quiet-
Sun p modes modified by the presence of magnetic field, ii) helioseismic waves below
sunspots are sped up by the magnetic field by 20 – 40 seconds compared to the quiet Sun,
iii) the magnetic field produces a strong frequency dependence of the travel times, iv) the
eikonal solution gives a qualitatively good approximation for the numerical solution, and
finally, v) the high-frequency fast-mode waves are refracted in the magnetically dominated
layers and inject additional energy, possibly causing the power increase observed in acoustic
halos surrounding active regions.

6.3.2. The SLiM Code

The Semispectral Linear MHD (SLiM) code solves the ideal linearized MHD equations us-
ing a spectral expansion in the horizontal directions and a two-step Lax – Wendroff treatment
in the vertical. The code includes two absorbing layers at the top and the bottom of the box.
In the top layer the waves are heavily damped and the effect of the Lorentz force is system-
atically reduced. Likewise the bottom layer damps the waves that propagate downward. The
code has been tested against analytic solutions, which are described in detail in Cameron,
Gizon, and Daiffallah (2007).

In Cameron, Gizon, and Duvall (2008) and Gizon et al. (2009a, 2009b), SLiM was used to
study wave propagation through a simplified monolithic model sunspot embedded in a sta-
bilized quiet-Sun model atmosphere (see Section 6.2). The corresponding wave field com-
puted with SLiM was then compared with MDI observations of f - and p-mode scattering
by the sunspot in AR 9787. The comparisons were quite encouraging as the numerical sim-
ulations from SLiM were able to reproduce wave absorption and scattering phase shifts. The
code has also recently been used on the sunspot model described in Section 4.3.1, as well as
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in simulations where the magnetic field of the sunspot is essentially “switched off”, while
maintaining the sound speed, pressure, and density perturbations of the sunspot model. This
type of simulation is made possible by the fact that the background does not need to be
in pressure balance. This type of experiment allows one to disentangle the contributions of
the Wilson depression and sound-speed/thermal changes from mode conversion and other
magnetic-field effects.

6.3.3. The SPARC Code

The Seismic Propagation through Active Regions and Convection (SPARC: Hanasoge,
2010) code uses techniques developed by Hanasoge et al. (2006) and Hanasoge, Duvall,
and Couvidat (2007) to simulate helioseismic wave propagation in the near-surface layers
of the Sun. Waves are stochastically excited by introducing a forcing term in the vertical
momentum equation; the forcing function is prescribed such that a solar-like power spec-
tral distribution is obtained. The solution is temporally evolved using a second-order opti-
mized Runge – Kutta integrator (Hu, 1996). The vertical derivative is resolved using sixth-
order, compact, finite differences with fifth-order accurate boundary conditions (Hurlburt
and Rucklidge, 2000). The derivatives in the horizontal directions are computed using FFTs
(periodic horizontal boundaries). The upper and lower boundaries are lined with damping
sponges in order to enhance wave absorption. The SPARC code has been utilized to study
wave propagation through model sunspots (e.g. Hanasoge, 2008; Moradi, Hanasoge, and
Cally, 2009; Moradi and Hanasoge, 2010), as well as solar convection (Hanasoge, Duvall,
and DeRosa, 2010a).

A recent bit of progress with regards to the choice of boundary conditions has been the
development of a stable, unsplit PML formulation for the stratified linearized ideal MHD
equations. Some related formulations have been developed by Parchevsky and Kosovichev
(2007) and Khomenko and Collados (2006). However, instabilities caused by waves at graz-
ing incidence to the boundary prevent long time integrations. By extending the technique
of Convolutional Perfectly Matched Layers (C-PML; e.g. Roden and Gedney, 2000), Hana-
soge, Komatitsch, and Gizon (2010b) have succeeded in devising a stable C-PML formula-
tion.

6.3.4. The SAC Code

In Shelyag et al. (2009), the propagation and dispersion of acoustic waves in a solar-like 2D
subphotosphere with localized, non-uniform magnetic-field concentrations was investigated
using the Sheffield Advanced Code (SAC) developed by Shelyag, Fedun, and Erdélyi (2008).
The numerical code is based on a modified version of the Versatile Advection Code (VAC:
Toth, Keppens, and Botchev, 1998), and employs artificial diffusivity and resistivity in or-
der to stabilize the numerical solutions and relies on variable separation to background and
perturbed components to treat gravitationally stratified plasma. The complete MHD equa-
tions are solved using a fourth-order central difference scheme for the spatial derivatives,
and they are advanced in time by implementing a fourth-order Runge – Kutta numerical
method.

The standard Model S (Christensen-Dalsgaard et al., 1996) atmosphere is employed as
an initial background model, modified so that Ŵ1 is kept constant in such a way as to have
the adiabatic sound-speed profile closely match the sound speed in Model S. Three different
self-similar, non-potential, magnetic-field configurations are employed for the simulations.
As the curvature of the magnetic field changes the temperature stratification in the domain,
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the magnetic configurations chosen differ by their field strengths and inclination at the vis-
ible solar surface. The acoustic source generates a temporarily localized wave packet with
the duration of about 600 seconds, which has a peak frequency of approximately 3.33 mHz.
The amplitude of the source is of the order of a few centimeters per second. Such a low
amplitude makes sure that convective processes will not be initiated in the otherwise con-
vectively unstable equilibrium, and that the perturbations are kept linear, i.e. they do not
change the background strongly.

Three cases, a weak strongly-curved magnetic field with Bz = 120 G at the surface, a
strong weakly curved magnetic field with Bz = 3.5 kG, and a strongly curved strong mag-
netic field with Bz = 3.5 kG were analyzed by means of time – distance helioseismology.
The travel-time dependencies show that for the first bounce the main part of the effect of
the magnetic field on the acoustic wave is due to the change of the temperature structure
in the sunspot. Nevertheless, the wave-mode conversion from purely acoustic to the slow-
magneto-acoustic wave motion, characterized by an energy leak downward, is also observed
in the cases with a strong surface magnetic field.

6.4. Eikonal Methods

While numerical simulations of wave propagation have significantly aided our level of un-
derstanding of helioseismology, further guidance is still needed in setting up the correct
numerical experiments and understanding wave propagation in magnetized plasmas. MHD
ray theory (Weinberg, 1962) has traditionally provided a very useful conceptual framework
in which to understand wave propagation, even though this is questionable at the surface
where the pressure and density scales vary rapidly, since the assumption of slowly varying
coefficients may not be justified.

Regardless of these shortcomings, however, ray theory has been used in helioseismology
for some time, being one of the several methods that have been applied to asymptotic inver-
sions of helioseismic frequency measurements in the past (e.g. Gough, 1984). In general, it
has performed well beyond its formal domain of applicability, a prime example being the
agreement between the wave-mechanical analysis of Cally (2005), the ray-theory modeling
of Cally (2006), and the recent results of Hansen and Cally (2009), who find very good
agreement between generalized ray theory and previously published exact solutions (Cally,
2001, 2009b).

Moradi and Cally (2008) recently combined eikonal methods and observational data
by constructing a 3D sunspot model based on observed surface magnetic-field profiles to
propagate magneto-acoustic rays across the sunspot model for a range of depths to repro-
duce a skip-distance geometry similar to center-to-annulus cross-correlations used in time –
distance helioseismology. In another recently completed work, Moradi, Hanasoge, and Cally
(2009) compared the results of forward modeling via MHD ray theory and a 3D ideal MHD
solver, concluding that the simulated travel-time shifts were strongly determined by MHD
physics and confirmed their strong dependence on the frequency and phase-speed filter pa-
rameters used. Khomenko et al. (2009) have similarly applied MHD ray theory to validate
and analyse the results of their numerical simulations. In another series of recently pub-
lished works, Cally (2009a) investigates the direct (magnetic) and indirect (thermal) effects
of the magnetic field on vertically propagating waves, suggesting that, overall, travel-time
perturbations in umbrae appear to be predominantly thermal, while in penumbrae they are
mostly magnetic. Cally (2009b) provides strong evidence for significant phase jumps (or
discontinuities) associated with fast magneto-acoustic rays that penetrate the a = c level in
sunspots. This effect appears to be more pronounced in highly inclined field characteristic
of penumbrae.
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Most of the above work has centered on the study of properties of individual rays prop-
agating through magnetized atmosphere by solving the ray equations for a point source in
non-magnetic solar model. In a recent study, Shelyag et al. (2009) have shown the impor-
tance of considering the full family of rays corresponding to a particular problem’s initial
conditions, as these define important geometric properties of the excited wave field such as
the wave front, caustics, and phase surfaces.

7. Update on the Analysis of AR 9787

7.1. Travel-Times Comparison: Time – Distance and Helioseismic Holography

It has been thought by some that travel times computed from time – distance helioseismology
(Duvall et al., 1997) should be very similar (or maybe identical) to those measured using
helioseismic holography (Braun and Lindsey, 2000). However, a detailed comparison of
measured travel times has not been done. We have done such a comparison for an eigh-hour
interval for AR 9787. For the time – distance case, correlations are calculated between the
central point and the quadrants. For the holography, egression and ingression signals are
constructed in a quadrant geometry and correlations are done with the central point. Normal
phase-speed filters were used (Couvidat et al., 2005).

Cuts across the travel-time maps for the sunspot are shown in Figure 6 for two dis-
tances. Frames (a) and (b) show the distance 24.35 Mm and (c) and (d) show the short-
est distance 6.20 Mm. The agreement is excellent for the distance of 24.35 Mm. How-
ever, there are still disagreements for the shortest distances, which we hope to understand
soon.

7.2. Frequency Dependence of One-Way Travel Times

The dependence of mean and difference travel times on the central frequency of the
wave packets measured over a sunspot region was shown and interpreted by Braun and
Birch (2006, 2008) as an indication of perturbations largely confined to a region not deeper
than a few Mm. The largest frequency variations in travel times were seen for the small
travel distances [] which are of the size (diameter) of the spot or smaller. In this sec-
tion, we conduct a similar study for the sunspot in AR 9787. This type of study is impor-
tant as, in principle, it should help us to constrain models of the subsurface structure of
sunspots.

Apart from a phase-speed filter centered around a phase speed vph = 54 km s−1 with
a width (FWHM) of about 40% of vph, we also use Gaussian frequency filters, of 1-mHz
width, centered at every 0.25-mHz interval between 2.5 and 5.0 mHz to study the frequency
dependencies of the travel times. In Figure 7 we show the umbral averages of perturba-
tions associated with in-going and out-going wave travel times (measured using center-to-
annulus surface-focus geometry), δτin and δτout, as well as mean travel-time perturbations,
δτmean, against frequency for  = 50 Mm. There appears to be a strong frequency depen-
dence associated with both δτin and δτout measured across the umbra of the sunspot in AR
9787. This result appears to be in good qualitative agreement with the measurements of
Braun and Birch (2008), who look at frequency dependence of the travel-time difference,
albeit for another sunspot. In particular, see the top right panel of Figure 5 in Braun and
Birch (2008), which contains the travel-time difference results for Filter I (distances of 48 –
55 Mm).
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Figure 6 Comparison of travel times computed from helioseismic holography (red) with time – distance
helioseismology (blue). Cuts through the center of the sunspot in the East – West direction are shown. (a) In-
ward-going times, distance of 24.35 Mm. (b) Outward-going times, distance of 24.35 Mm. (c) Inward-going
times, distance of 6.20 Mm. (d) Outward-going times, distance of 6.20 Mm.

Figure 7 Frequency dependence
of surface-focus travel times
(shown as one-way and mean
umbral averages of perturbations)
for  = 50 Mm, for the sunspot
in AR 9787. For clarity, only
error bars for mean travel times
are shown. The error bars
represent standard deviations of
travel-time perturbations over the
umbral pixels.

The underlying reason for such a strong frequency dependence of travel times at large
distances is not entirely clear, however. The interaction of helioseismic waves with sunspots
can be influenced by a number of effects: the vertical extent of the sunspot and the Wil-
son depression, p-mode absorption (e.g., Braun, Duvall, and Labonte, 1987; Braun, 1995;
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Cally, Crouch, and Braun, 2003), the contribution from subsurface flows, radiative-transfer
effects (Rajaguru et al., 2006), and the impact of power reduction and source suppression
in sunspots (Rajaguru et al., 2007; Hanasoge et al., 2008; Chou et al., 2009). More detailed
analyses and modeling of the sunspot in AR 9787 (e.g. Section 7.8) will be required to iso-
late these effects and identify the cause(s) of the observed frequency dependence of travel
times.

7.3. Effects of Filtering on Travel Times

In this section we show a simple toy model for the sensitivity of time – distance travel times
to changes in the power spectrum of solar oscillations. We will use this simple model to
develop a qualitative understanding of the ridge and inter-ridge measurements (Thompson
and Zharkov, 2008) of AR 9787 (Gizon et al., 2009a).

7.3.1. A Model Power Spectrum

Before studying the impact of data analysis filters on time – distance measurements, it is
necessary to have a model for the power spectrum of solar oscillations. Here we describe a
simple model obtained from fitting the azimuthal average (over the angle of the wavevec-
tor k) of a 24 hour power spectrum from full-disk MDI data from a quiet-Sun region. We
then carry out a least-squares fit to the azimuthally averaged power spectrum with a model
spectrum of the form

P (k,ω) =
∣

∣G(k,ω)
∣

∣

2 + B(k,ω), (14)

where k = ‖k‖ is the horizontal wavenumber, ω is the temporal frequency, B is the back-
ground power, and the function G is given by
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This form of G is motivated by Equations (47) and (48) of Birch, Kosovichev, and Duvall
(2004) in the case where the imaginary parts of the mode eigenfunctions are small. The
free parameters in the fit are the complex mode frequencies [ωn(k)] the mode amplitudes
[an(k)] and the parameters describing a background power spectrum [B] that is linear in ω

at each value of k. Here n is the radial order and nmax is the maximum radial order used in
the normal-mode summation. In the examples shown here, nmax = 2. Throughout this toy
model we will work in plane-parallel geometry; this is appropriate as we will be considering
distances and wavelengths that are small compared to the solar radius.

7.3.2. Sensitivity of Travel-Time Shifts to Change in Mode Frequencies

For problems where the statistics of the wave field are horizontally translation invariant and
the expected (limit) power spectrum is azimuthally symmetric, the expectation value of the
time – distance cross-covariance [C(, t)] can be obtained from the limit power spectrum
[P (k,ω)] as

C(, t) = 2π

∫ ∞

−∞
dω

∫ ∞

0
k dk J0(k)F

2(k,ω)P (k,ω)e−iωt , (16)



38 H. Moradi et al.

Figure 8 Travel-time shifts for the case of the ridge filter (thin lines) and inter-ridge filter (heavy lines) as
functions of the change [δω] in the real part of the resonance frequency of n = 1 mode. The solid lines show
travel-time shifts obtained from the one-parameter method of Gizon and Birch (2002) and the dashed line
show those from the linear definition of Gizon and Birch (2002). In both cases, the fitting window is chosen
to be 20 minutes wide and centered at 28 minutes time lag. The travel distance in all cases is  = 16 Mm.
Notice that for the case of the ridge filter, the two definitions of travel-time shift give very similar results. For
the case of the inter-ridge filter, the difference between the two definitions increases with the amplitude of the
frequency shift.

where J0 is the zeroth-order Bessel function, and F is the data-analysis filter (e.g. Gizon
and Birch, 2002). Using Equation (16), we can compute the cross-covariance that we would
expect for any model of the power spectrum.

Travel-time shifts can be obtained from the cross-covariance function using a wide va-
riety of techniques (e.g. Duvall et al., 1997; Gizon and Birch, 2002, 2004). For the ex-
amples shown here we use the linear definition of Gizon and Birch (2004) and also the
one-parameter fitting method from Gizon and Birch (2002).

Thompson and Zharkov (2008) showed that in sunspots, travel-time shifts measured with
ridge filters (filters that isolate power along ridges) and inter-ridge filters (filters that isolate
the part of the k −ω diagram between the ridges) give travel-time shifts (relative to the quiet
Sun) of opposite sign. They found that the ridge filters yielded decreased phase-travel times.
This would seem to imply that the waves in sunspots have increased phase speed. The same
behavior was observed in the case of AR 9787 by Gizon et al. (2009a, 2009b).

As a very highly simplified toy model of this situation, we investigate the travel-time
shifts caused by increasing the resonant frequencies in the power spectrum. The reason for
choosing increased mode frequencies is to mimic the situation of increased phase speeds
(i.e. increased mode frequency at fixed k). The procedure is as follows: i) use Equation (16)
to compute a reference cross-correlation from the model power spectrum described above,
ii) compute a perturbed power spectrum by increasing the model resonance frequencies by
a constant value δω, iii) compute a perturbed cross-covariance from this perturbed power
spectrum, and iv) fit the perturbed and reference cross-covariances to obtained the shift in
the travel time caused by the change in resonance frequencies.

Figure 8 shows the results of this procedure for two different choices of the filter F : the
p1-ridge filter and the inter-ridge filter isolating the region between the f and p1 of Thomp-
son and Zharkov (2008). In both cases a 1-mHz bandpass filter centered at 3.5 mHz has also
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Figure 9 Slices through the filtered and unfiltered power spectra for the ridge filter (left) and inter-ridge
filter (right). For the ridge filter case the slice is at k = 1.1 rad Mm−1 and for the inter-ridge case the slice
is at k = 0.94 rad Mm−1 (in both cases the slice is near the k of maximum power). In both panels, the red
(black) dotted lines show the unfiltered power spectra with (or without) the frequency shift. The green lines
show the filter. The solid red (black) lines show the filtered power spectra with (or without) the frequency
shift. In the ridge-filter case, the consequence of increasing the mode frequency is that the mean power moves
to higher frequency (thus higher phase speed). In the inter-ridge filter case, the mean power moves to lower
frequency (lower phase speed).

been applied (Thompson and Zharkov, 2008). In the results shown here we have only con-
sidered the impact of changes in the frequency of the p1 ridge. For the case of the ridge filter,
increases in the mode frequencies (i.e. increased phase speeds for all waves) yield decreased
phase times. This is the expected result. For the case of the inter-ridge filter, however, we
find that increases in wave speeds yield increased travel times. This is an unintuitive result
and in this toy model is due to interaction of the inter-ridge filter with the power between
the ridges.

Figure 9 shows slices through power spectra for the two cases. The main effect of the
perturbations to the mode frequencies is to move the ridges in the unfiltered power spectra.
For the inter-ridge-filtered case, the effect is more subtle as this filter isolates the part of
the spectrum that lies between the ridges. The net result of moving the p1 ridge to higher
frequency and applying the inter-ridge filter is to move power to lower frequency (hence
lower phase speed) at fixed k.

7.4. Ring-Diagram Structure Inversions

The mode frequencies from ring-diagram analysis can be used to determine the thermody-
namic structure of the gas under the tracked region. The mode parameters themselves are
obtained by fitting a function [Pn(ω, kx, ky)] to the 3D power spectrum.

In this work, we use a fourteen-parameter function defined by Basu, Antia, and Bogart
(2004). The fit ridges can be interpolated to wavenumber k, and the resulting frequencies
[ωn(k)] can be treated as normal modes using the techniques of global-mode analysis. Typi-
cally, inversions for solar structure are performed by linearizing the stellar oscillation equa-
tions around a reference model. Then, the differences in the frequency [ωi ] of the ith mode
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Figure 10 The effects of inversion-parameter choices on inversion results. Three of the four inversion
parameters are varied in these inversions – these inversions were performed with a fixed target width of
W = 0.0055. The top panel shows inversions with a surface term removed, and the bottom panel shows in-
versions without a surface term. In each case, three different inversions are shown with different values of the
error-suppression term [μ] and the cross-term suppression term [β].

between the data and reference model, with i representing the pair (n, k), are related to the
changes in structure by:

δωi

ωi

=
∫

K i

c2(z)
δc2

c2
(z) dz +

∫

K i
ρ(z)

δρ

ρ
(z) dz +

Fsurf(ωi)

Qi

+ ǫi . (17)

The surface term [Fsurf(ωi)] is a smoothly varying function of frequency that accounts for
non-adiabatic effects confined to the surface layers of the Sun and is normalized by the
mode inertia Qi . The observational errors are given by ǫi . The inversion kernels [K i

c2(z)

and K i
ρ(z)] are known functions of the reference model, and they give the sensitivity of a

mode to changes at a given depth. In a ring-diagram analysis, however, we generally invert
relative to mode frequencies measured in a nearby inactive region of the Sun.

The inversion technique used is called Subtractive Optimally Localized Averages
(SOLA), a technique pioneered in terrestrial seismology (Backus and Gilbert, 1967). The
SOLA method takes a specified target averaging kernel [T (z0, z)] which is localized around
a target height [z0] and minimizes the difference between that target and the actual aver-
aging kernel, along with the contributions from the cross-term kernel and from the errors
(e.g. Rabello-Soares, Basu, and Christensen-Dalsgaard, 1999). There are two trade-off pa-
rameters: μ, which acts to suppress errors, and β , which suppresses the cross-term kernel.
There are also four free parameters to be chosen in this inversion method: the cross-term
suppression term β , the error suppression term μ, the characteristic width of the target ker-
nel W , and �, the number of polynomials used to expand Fsurf. Structure inversions using
ring-diagram modes are quite unstable, and very sensitive to the choice of these parameters.
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Figure 11 Ring-diagram inversions for the structure beneath AR 9787. Inversions are performed for both
sound speed squared [c2] (top panel) and adiabatic index [Ŵ1] (middle panel). The inversions are performed
relative to a nearby quiet region – the sense of the inversions is active minus quiet. The results for c2 and Ŵ1
are used to infer a profile for the density [ρ] (bottom panel).

Figure 10 shows sound-speed inversions with a variety of different choices of inversion pa-
rameters. The most dramatic choice to be made is whether or not to include a surface term
in the inversions, and inversions are shown both with and without a surface term. A good
inversion should have a well-localized averaging kernel [K(z0, z)] around a target height
[z0] as well as reasonably small cross-term kernels.

In Gizon et al. (2009a, 2009b), we presented an inversion of the region AR 9787 for the
sound speed. In Figure 11, we show an inversion of the same region for sound speed [c2]
and for adiabatic index [Ŵ1]. The inverted quantities are fairly consistent with the results
from other active regions (e.g. Basu, Antia, and Bogart, 2004; Bogart et al., 2008). There is
a depression in sound speed between approximately 3 Mm and 10 Mm depth. Below that
depth, the perturbation becomes positive.

The adiabatic index is depressed below 3 Mm, with an enhancement below 12 Mm. If
c2 and Ŵ1 are determined, the other thermodynamic quantities are also, in principle, known.
In Figure 11, we also show an inferred density profile. The density between approximately
5 Mm and 11 Mm appears to be slightly depressed in the active region compared to the
quiet Sun, while the region below that has a lower density than the quiet Sun. There is
a depression in density at the shallow edge of the inversion, which might be a sign of a
Wilson depression of the optical surface. It should be noted here, however, that results in
the shallowest layers of the Sun are quite uncertain, due both to lack of resolution in the
inversions and to uncertainties in the physics.
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Figure 12 Power spectra for two inward (solid line) and outward (dotted line) propagating p modes. Left:
ℓ = 288, n = 3; right: ℓ = 452, n = 2. The peaks of the outward-propagating modes are shifted to higher
frequencies.

7.5. Moat Flow: Hankel Analysis

Fourier – Hankel decomposition is a useful analysis tool to study p modes in the vicinity of
sunspots. In particular, the method has been used to study the absorption of p-mode power
by active regions (Braun, Duvall, and Labonte, 1988; Bogdan et al., 1993; Braun, 1995;
Chen, Chou, and TON Team, 1996). In this procedure, the wave signal of the p modes is de-
composed into inward- and outward-propagating modes in an annular region surrounding a
sunspot. The annulus is chosen to be small enough to allow describing the spatial part of the
solar oscillations with Hankel functions. In the seismic study of AR 9787 undertaken by Gi-
zon et al. (2009a, 2009b), the power absorption of this particular sunspot was demonstrated
by Fourier – Hankel decomposition for the m = 0 p modes.

Fourier – Hankel decomposition also turns out to be useful for investigating the horizontal
outflow associated with active regions. An outflow directed horizontally (the moat flow)
would result in Doppler shifts of the p modes traveling into and out of the spot. A radial
flow therefore leaves its signature in the power spectra by shifting the p-mode ridges.

Here we extend the Fourier – Hankel analysis of AR 9787 using the procedure described
by Braun (1995). For this analysis, the annular region around AR 9787 is defined by an
inner radius of 30 Mm and an outer radius of 137 Mm measured from the spot center.
Power spectra for inward and outward propagating waves were obtained for modes with
azimuthal order m = −5,−4, . . . ,5. Figure 12 displays the resulting spectra for two modes.
It is immediately apparent by visual examination of the spectra that the outward-going p-
mode power is shifted to higher temporal frequencies relative to the inward-going p modes.
We note that the power spectra displayed were normalized in order to correct for the power
absorption due to the presence of the sunspot. The observed frequency shift is of the order
of 10 µHz.

7.6. Ring-Diagram Analysis of Flows

7.6.1. Large-Scale Flows Around Active Regions

Dense-pack ring-diagram analyses of MDI and GONG++ data have shown that subsurface
flows associated with active regions have the following characteristics:

• Active regions are surrounded by extended inflows and outflows, depending on depth.
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• Subsurface flows of active regions are twisted.
• Active regions rotate faster than quiet regions.
• Flux emergence correlates with the flow-divergence signal.

The horizontal components of solar subsurface flows are determined over a range of depths
from the surface to about 16 Mm using the dense-pack ring-diagram analysis (Haber et al.,
2002). Daily flow maps are calculated for 189 dense-pack regions of 15° diameter with
centers spaced by 7.5° in latitude and central-meridian distance. The dense-pack technique
thus measures flows on horizontal scales comparable to the size of active regions.

Locations of strong active regions show, on average, extended, divergent horizontal flows
at depths greater than about 10 – 12 Mm and convergent horizontal flows closer to the surface
(both with an amplitude of about 50 m s−1). AR 9787 shows this pattern as well (Figure 13).
Using a mass-conservation constraint, ring analysis infers vertical flows associated with the
horizontal flows. The convergent and divergent flow pattern is one of the most consistent
characteristics of subsurface flows associated with active regions. It has been studied with
several helioseismic techniques (Gizon, Duvall, and Larsen, 2001; Braun, Birch, and Lind-
sey, 2004; Haber et al., 2002, 2004; Zhao and Kosovichev, 2004; Komm et al., 2005). These
extended flows, however, should not be confused with the much more localized moat flow
(divergent, 250 m s−1, see next section and Gizon et al., 2009a, 2009b), which cannot be
resolved with 15°-aperture ring analysis.

Active regions are locations of flows with larger vorticity values; they are locations of
strong vertical gradients of the horizontal flows. Strong active regions are identifiable by
a dipolar pattern in zonal and meridional vorticity (Mason et al., 2006) and AR 9787 ap-
pears to be no exception (Figure 13). The presence of active regions is barely noticeable in
vertical-vorticity maps of this spatial resolution. However, active regions are, on average,
characterized by cyclonic vorticity (counter-clockwise in the northern hemisphere), which
might be due to the Coriolis force acting on the flows (Spruit, 2003). This agrees with ob-
servations with higher spatial resolution (Duvall and Gizon, 2000; Gizon and Duvall, 2003;
Zhao and Kosovichev, 2004).

From direct surface measurements, it is well known that active regions rotate faster
than quiet ones. This has been confirmed with helioseismology (Gizon, 2004; Zhao and
Kosovichev, 2004). A ring-diagram analysis of about six years of GONG++ data shows
that the average zonal flow of active regions is about 4 m s−1 larger than that of quiet
regions from the surface to a depth of 16 Mm (Komm et al., 2009b). The difference is
about one order of magnitude smaller than that derived from surface measurements of ac-
tive and quiet regions, which is most likely a consequence of the rather large size of the
dense-pack patches and the resulting averaging over many different types of magnetic fea-
tures. Results from acoustic holography and time – distance analysis with higher horizon-
tal resolution support this interpretation (Braun, Birch, and Lindsey, 2004; Gizon, 2004;
Zhao, Kosovichev, and Duvall, 2004).

A survey of 788 active regions observed with GONG++ makes it possible to determine
a signature of emerging magnetic flux in subsurface flows associated with active regions
(Komm, Howe, and Hill, 2009a). At depths greater than about 10 Mm, upflows become
stronger with time when new flux emerges. At layers shallower than about 4 Mm, the flows
might start to change from downflows to upflows, when flux emerges, and then back to
downflows after the active regions are established. The flow response to emerging flux agrees
with numerical simulations of emerging flux tubes (Fan, 2001; Schüssler and Rempel, 2005)
where upflows indicate the beginning of flux emergence and surface cooling due to adiabatic
expansion leads to downflows along the emerged loops.
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Figure 13 Top: The unsigned magnetic flux (solid line) at 127.5° – 135.0° longitude as a function of latitude
and binned over 15° (dotted line). Bottom: The kinetic-helicity density at 127.5° – 135.0° longitude as a
function of latitude and depth. The kinetic-helicity density is the scalar product of the velocity and vorticity
vector. The arrows represent the meridional and vertical-velocity components with the vertical one increased
by a factor of ten for visibility. Average zonal and meridional flows have been subtracted. Active region 9787
is noticeable as the location of strong helicity values of opposite sign, which coincides with the peak of the
unsigned magnetic flux. The region shows upflows at depths greater than about 10 Mm and downflows at
shallower depths at grid points of –15° to −7.5° latitude.

7.6.2. Sunspot Flows from Small Rings

Subsurface horizontal flows determined by high-resolution ring analysis (HRRA) for the four
days when AR 9787 was closest to the center of the disk, show characteristic outflows from
the lone sunspot corresponding to moat flows (Figure 14).

The analysis was carried out on 2◦-diameter tiles whose centers were spaced 1◦ apart.
Each flow arrow represents a spatial average over an entire tile and is itself the result of
averaging the flows determined from all of the fitted f modes of the power spectrum for
that tile since there are not enough modes to perform a true inversion. This means that the
flows are characteristic of the gas from the surface down to a depth of 2 Mm, the region
where the f modes reside. The four-day panel (Figure 14) shows the evolution of large-
scale zones of divergence around the sunspot corresponding to large supergranules as well
as a seeming twist of the flows coming from the sunspot on 25 January. The flows are over-
plotted on averaged MDI magnetograms for the given day where the green and red colors
show magnetic fields of opposite polarity (the green area corresponding to the sunspot).

Similar subsurface flow signatures were obtained by Gizon et al. (2009a, 2009b), who
used f to p4 ridge-filtered time – distance travel times to produce linear inversions for flows
(see Jackiewicz, Gizon, and Birch, 2008) around the sunspot in AR 9787. Figure 15 shows
a summary plot of the subsurface horizontal flows around the sunspot, which appear very
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Figure 14 Subsurface flows using high-resolution ring analysis of full-disk MDI Dynamics Doppler data
from 22 – 25 January 2002. MDI magnetograms are underlaid with red and green specifying opposite polari-
ties of the magnetic field. The flows were determined from f -mode data and are thus representative of flows
within the top 2 Mm of the convection zone. The outflows from the sunspot (shown in green) correspond
to moat flows, while the cells of divergence seen in the vicinity of the active region correspond to larger
supergranular scales of about 50 – 60 Mm. The magnetic network often appears at the edges of these larger
cells.

consistent with the flows detected by HRAA, and direct observations of the moat flow (see
Section 2.2.5).

7.7. Acoustic Halos

7.7.1. Observations

The acoustic halo is an observed enhancement of high-frequency (i.e. above the acoustic
cut-off frequency at approximately 5.3 mHz) acoustic power surrounding regions of strong
magnetic field. Hindman and Brown (1998) demonstrate that this enhanced power at high
frequencies tends to be prominent in intermediate magnetic-field strengths of 50 – 250 G
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Figure 15 Map of horizontal
flows (arrows) at a depth of
1 Mm around the sunspot in AR
9787 using one day of MDI
full-disk data and time – distance
helioseismology on 24 January
(Gizon et al., 2009a). The spatial
resolution is determined by the
width of the averaging kernel
(FWHM 7 Mm) shown in the
top-left corner. The longest arrow
corresponds to a flow of
450 m s−1. The surface
line-of-sight magnetic field is
displayed in red and blue shades
(saturated at ± 350 G). This
inversion uses the f and p1
through p4 modes; it is discussed
by Jackiewicz, Gizon, and Birch
(2008).

and appears to be absent in the equivalent continuum intensity observations. In Gizon
et al. (2009a, 2009b) it was demonstrated that AR 9787 has an extensive plage region, with
the excess power at above 5.5 mHz being spatially correlated with these plage regions. It was
also noticed that the strongest regions of acoustic halo occur between regions of opposite
polarity.

For our analysis, we calculate the vector magnetic field at the surface from the MDI
magnetograms using a potential magnetic-field extrapolation. From this we define the in-
clination of the magnetic field from vertical [γ ]. Figure 16 shows the average normalized
power against total magnetic-field strength for γ < 45◦ (solid black) and γ > 45◦ (dashed
blue) for 1-mHz frequency band passes centered at 3, 4, 5, and 6 mHz as indicated. This
highlights the importance of the field inclination for the acoustic halo.

In another recent analysis, Schunker and Braun (2010) further demonstrate that the
acoustic halo is specifically confined to intermediate field strengths (between 100 G and
400 G) with 60◦ < γ < 120◦ from vertical. The power confined to this range of inclination
has a peak which increases in frequency from 5.5 mHz to 6.5 mHz as the magnetic-field
strength increases from 100 G to 400 G. In addition, they also find that the radial-order
ridges of the azimuthally summed power spectrum are shifted to higher wavenumbers than
the quiet Sun at constant frequency in the halo regions. The reason for this is, as yet, unex-
plained.

7.7.2. Theories

A growing number of theories attempt to explain the phenomenon of wave-velocity en-
hancements in the vicinity of active regions. The hypothesis of an altered wave excitation
mechanism due to the presence of magnetic fields was proposed by Brown et al. (1992) and
Braun et al. (1992) and revisited more recently by Jacoutot et al. (2008). Of course, it is
also equally likely that the substantial differences in the wave-propagation physics in active
regions could also be leading to these enhancements, a possibility noted by a number of
authors (e.g. Hindman and Brown, 1998; Donea, Braun, and Lindsey, 1999; Moretti et al.,
2007).

From analyses of simulations of waves propagation through a model sunspot, Hanasoge
(2008) demonstrated that it was possible to obtain these halos without the requirement of
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Figure 16 Average normalized power against total magnetic-field strength (in bins of 10 G) for inclination
γ < 45◦ (solid black) and γ > 45◦ (dashed blue) in frequency band passes as indicated. The importance of
more horizontal field where γ > 45◦ for the acoustic halo is evident.

enhanced sources. A wave-scattering theory based on pure hydrodynamics was also put forth
by Kuridze et al. (2008, 2009); their thesis was that bipolar canopies create a secondary
trapping region for the outward-propagating high-frequency waves. Alternately, Khomenko
and Collados (2009) have suggested that upward propagating high-frequency waves undergo
conversion to fast modes, refract off the large Alfvén-speed gradient in the atmosphere, and
return to the photosphere. This results in the same wave being observed twice, once while
going upward, and the second time on its way back down, thereby causing an enhancement.
Finally, Hanasoge (2009) has proposed that the presence of a large number of wave scatterers
in the vicinity of active regions may cause preferential scattering into low mode-mass waves,
i.e. waves whose energy is focused in the near-surface layers. Relative to the original (quiet-
Sun) set of modes, this scattered configuration contains stronger surface-velocity signatures
(i.e. lower net mode mass), thereby leading to the halos. Observationally, it can be confirmed
that the velocity enhancements are primarily present at high ℓ, in the region of the power
spectrum where the modes possess the lowest mode masses.

In reality, it may well be that there are multiple mechanisms at play, i.e. altered wave
excitation, reflection/refraction of waves by magnetic fields, and preferential scattering into
waves with low mode masses. Further studies are required before any solid conclusions can
be drawn.

7.8. Comparison of Observed Cross-Covariances with Simulations

Cameron, Gizon, and Duvall (2008) and Gizon et al. (2009a, 2009b) showed that the cross-
covariance of the MDI Doppler velocity is a very useful quantity to study the scattering of
solar waves by the sunspot in AR 9787. The cross-covariance between two points is closely
related to the Green’s function between these two points (e.g. Gizon, Birch, and Spruit, 2010,
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and references therein). By extension, the cross-covariance between the signal averaged over
a line and any other point can be used to study the interaction of plane-wave packets with
the sunspot.

The left panels in Figure 17 show such cross-covariances at particular values of the
correlation time lag, after the wave packets have traversed the sunspot. While Gizon
et al. (2009a, 2009b) had studied only f -mode wave packets, here we also show the ob-
served cross-covariances for p1 and p2 wave packets. The wave packets are constructed us-
ing standard ridge filters (wave power peaks near 3 mHz). The observed cross-covariances
show that, in all cases, solar waves speed up through the sunspot and that their amplitudes
are reduced relative to the quiet Sun. The stochastic noise in the observations is reduced by
exploiting all available symmetries, including the near-cylindrical symmetry of the sunspot.

The cross-covariances also provide very strong observational constraints to test the va-
lidity of sunspot models. Here we have used the SLiM code to test the semi-empirical model
of AR 9787 by Cameron et al. (2010) (see Section 4.3.1 and Figure 4) by propagating f , p1,
and p2 wave packets through the sunspot model. The initial conditions of the simulations are
chosen such that the vertical component of velocity in the simulation is directly comparable
with the cross-covariance function. As can be seen in Figure 17, the simulations reproduce
the basic features of the observations. This indicates that the sunspot model has a seismic
signature that is close to the real sunspot, which is very encouraging.

8. Discussion and Perspective

8.1. Sunspot Structure: A Critical Assessment of Existing Models

Recent years have seen an increased interest in questions relating to the structure of sunspots,
fueled by a fortunate coincidence of several factors. After decades of more gradual improve-
ments, classical (visible light) observations have quickly improved in quality over the past
few years. With the Swedish 1-m Solar Telescope, spatial resolution achieved has made a
jump (with a resolution of 0.1′′ achieved regularly in the blue), while temporal coverage has
vastly improved through the long time sequences from the Hinode satellite. Secondly, helio-
seismic observations have now approached the point where they can be turned into powerful
diagnostics of spot structure, as discussed elsewhere in this article. Finally, and perhaps most
dramatically, the realism achieved by 3D radiative MHD simulations has now opened the
perspective of a definitive physical interpretation of the phenomenology of sunspot struc-
ture, including umbral dots, light bridges, penumbral filaments, the Evershed flow, the moat
flow, and their relations to each other. It is likely that understanding will soon replace the
historically evolved patchwork of mutually inconsistent views and physically dubious ad-

hoc models. The following gives a brief perspective on these developments. For more detail,
see the reviews in Scharmer (2009) and Nordlund and Scharmer (2010).

As discussed in Section 3, the structure of a sunspot as observed at the surface is kept
together by forces deeper down. Assuming this anchoring at depth as given (but yet to be
explained), one can seek a physical interpretation of the surface structure observed in umbrae
and penumbrae. At the observed field strengths, 1 – 3 kG, the magnetic field is strong enough
to suppress convection. This explains why spots are dark but it does not explain the particular
time-dependent fine structure observed.

In early observational work (e.g. Mamadazimov, 1972) the mix of long dark and bright
filaments has been interpreted as showing a magnetic field (dark, as in the umbra) on top of
the normal photosphere (shining through in the bright filaments). This explained the general
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Figure 17 Left panels: Observed MDI cross-covariance functions between the Doppler velocity averaged
over the line x = −40 Mm and the Doppler velocity at any other point (x, y) in the map. The sunspot AR 9787
is located at the origin and the circles show the boundaries of the umbra and penumbra. The cross-covariance
is averaged over seven days. The top-left panel shows the cross-covariance for the f -mode ridge at time lag
t = 185 minutes, the middle-left panel for the p1-mode ridge at time lag t = 165 minutes, and bottom panel
for the p2-mode ridge at time lag t = 145 minutes. The right panels show SLiM simulations of the propagation
of f , p1, and p2 wave packets in the +x-direction through the semi-empirical sunspot model of Cameron
et al. (2010). The vertical velocity in the simulation is directly comparable to the observed cross-covariances.

appearance of the penumbra and the nearly photospheric brightness of the bright structures,
but required that the penumbral magnetic field only touches over the photosphere (a “thin
penumbra”, with optical depth only of order unity). The field would have to be essentially
horizontal in the penumbra, field lines crossing the solar surface only in the umbra. This does
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not agree with the observed inclination of the penumbral field. In fact, most of the magnetic
flux of a spot crosses the surface through the penumbra, not the umbra. The penumbral field,
on average, is therefore not horizontal, and the observed field must continue to some depth
below the surface.

This has led to interpretations in terms of convection in a magnetic field extending to a
substantial depth below the surface (a “thick penumbra”). An influential conceptual picture
was the Danielson (1961) model of convective “rolls”: an overturning flow in a plane per-
pendicular to a horizontal magnetic field. This idea has led to a “magnetoconvection” view
of the penumbra, which interprets the observed filamentary structures as turbulent fluctua-
tions in a mean magnetic field inclined at some angle to the solar surface (e.g. Tildesley and
Weiss, 2004 and references therein). It also plays a role as a conceptual picture underlying
global models of sunspot structure, such as the one due to Jahn and Schmidt (1994).

A key aspect of any realistic model of magnetic surface structure is the transition from
the gas-pressure dominated regime below the photosphere to the magnetically dominated
atmosphere. In the penumbra this takes place just at the photospheric level. The transition
takes place over a couple of pressure scale heights. This is no more than the horizontal res-
olution of most telescopes, and comparable to the smallest horizontal structures seen in the
penumbra. With photospheric observations one is thus looking at the thin interface between
two physically different regimes, rather than a slice through some quasi-uniform turbulent
medium. The consequences of this fact have not been realized in most of the currently pop-
ular views.

Observations of this interface show a mix of magnetic-field strengths and inclinations.
This has led to the idea of inclusions (“flux tubes”) embedded in a background field of
different direction (Solanki and Montavon, 1993). This has become the dominant theme in
interpretations of penumbral structure (e.g. Martínez Pillet, 2000; Bellot Rubio et al., 2003b;
Bellot Rubio, Balthasar, and Collados, 2004; Borrero, 2007).

In the atmosphere, however, where B2/8π ≫ P , forces other than magnetic are small.
The magnetic field in such a case is nearly force free. This provides strong restrictions
on the physically realizable field configurations. These constraints are actually violated in
most proposed ideas about penumbral structure, especially the floating flux tubes in the
embedding and uncombed type models. An exception is the proposal by Martens et al.

(1996), who propose a structure of magnetic sheets of different directions separated by force-
free currents.

Force-free, but not current-free, configurations also cause problems, however. The
strength of the magnetic field decreases away from the spot. A force-free field has the prop-
erty that a difference in field-line direction between neighboring magnetic surfaces increases
with decreasing field strength along the field (this is related to the magnetic torque being con-
served along field lines; see the discussion in Spruit and Scharmer, 2006). Force-free models
thus predict that differences in inclination should become more prominent with height above
the photosphere and distance from the umbra. Observations in the chromosphere (the “su-
perpenumbra”) do not support this. Instead, magnetic-field-line directions traced by chro-
mospheric indicators appear to become more uniform with height. This is not consistent
with force-free models like those of Martens et al. (1996). Instead, these observations indi-
cate that the field in the atmosphere is much closer to a potential (current-free) configuration.

The “gappy penumbra” model (Spruit and Scharmer, 2006; Scharmer and Spruit, 2006),
based on the cluster model of a sunspot, explains how the pattern of strong irregularities
decreasing with height above the surface comes about naturally in a potential field, as a re-
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sult of gaps between field lines created below the surface by overturning convection.1 At
the same time this model addresses the long-standing heat-flow problem: the question of
how the observed radiative energy flux is supplied to the penumbral surface. The low field
strength in the gaps allows convection to supply the heat flux emitted by the surface unim-
peded by magnetic forces. Convection in magnetic rolls, on the other hand, does not solve
this problem, since a roll with the diameter of a penumbral filament does not contain enough
thermal energy to maintain the radiative flux over the life of a filament. However, the gappy
model has problems explaining the structure in the outer penumbra, where observations
show a nearly horizontal field (also confirmed in the numerical simulations of Rempel et al.,
2009b), and the presence of returning magnetic flux (Section 2.2.1).

Apart from the gappy model, a number of other physical models for the penumbral cur-
rently exist. The model of Schlichenmaier, Jahn, and Schmidt (1998) (see also Schlichen-
maier, 2009 and references therein), which has the virtue of substantial physical detail, pre-
scribes that magnetic-flux tubes rising from below the surface carry heat as well as an out-
ward flow, interpreted as the Evershed flow. It has problems reproducing the observed heat
flux from the penumbra, however, and the postulated rising flux tubes have not been iden-
tified in the numerical simulations. In the numerical simulations, both the heat flux and the
Evershed flow are found to be driven by overturning convection, not in the form of magnetic
rolls or flux tubes, but in regions low field strength (Nordlund and Scharmer, 2010).

Another proposal appeals to the process of “turbulent flux-pumping” (Thomas et al.,
2002; Weiss et al., 2004). In this process asymmetry between upflows and downflows
in stratified convection effectively transports horizontal magnetic-field lines downward.
Penumbral structure is then ascribed to this process. The source of the penumbral structure is
said to be located outside the penumbra (Weiss et al., 2004). Alternatively, it has also been
implied to be located in the penumbra itself (Tildesley and Weiss, 2004). The turbulent-
pumping mechanism appears to offer a plausible mechanism for producing the returning
magnetic flux in the outer penumbra, as well as the apparent hysteresis observed in the tran-
sition between a pore and a sunspot (Weiss et al., 2004). However, there are also objections
to this model that are based on the fact that the action of convection on a magnetic field over-
lying it, as in the outer penumbra, would be expected to have the opposite effect of turbu-
lent pumping. Overturning convection would instead expel a magnetic field that is imposed
from above, through the well-known process of convective expulsion (Zel’dovich, 1956;
Weiss, 1966). The process is seen in action in numerical simulations of horizontal magnetic
fields overlying granulation by Steiner et al. (2008, 2009).

As the quality of observations continues to improve, realistic, 3D, radiative, numeri-
cal MHD simulations of sunspots (Schüssler and Vögler, 2006; Heinemann et al., 2007;
Scharmer, Nordlund, and Heinemann, 2008; Rempel, Schüssler, and Knölker, 2009a;
Rempel et al., 2009b) show a remarkable level of agreement with these observations. The
agreement includes the properties of umbral dots, the inward-propagating bright filaments,
the dark cores overlying them, the varying aspect of penumbral structure with viewing angle,
the varying field strengths and direction in penumbral filaments, the dependence of these on
height, the moat flow, and the Evershed flow. We expect that more advanced simulations

1By “overturning” we mean here the convective pattern also observed in realistic simulations of stellar surface
convection (see the review by Scharmer, 2009 for more detail). As opposed to traditional views approximating
convection as closed cells or “rolls”, almost nothing of the descending part of the flow returns to the surface,
but it is replaced by upflows from larger depths. As opposed to the field-aligned rolls of the Danielson (1961)
kind, this pattern maintains a low field strength in the gaps through the process of convective expulsion.
While these gaps may not be exactly field free (as none of the convection zone is), they are regions where the
hydrodynamic forces dominate over magnetic forces, i.e., the field is “below equipartition with convection”.
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in the near future will further improve our understanding of penumbrae, in particular with
regard to their outermost parts. With this level of agreement with observations, there is little
doubt that the simulations are reproducing the physics of sunspot structure as observed at
the surface.

Next to the treatment of the atmospheric magnetic field, the physics of radiation is of
equal importance for realism in numerical simulations. Cooling by radiation at the surface
determines the thermal structure of the penumbra and drives the observed flows. On the
other hand, it also determines the detailed appearance of penumbral structure at the optical
depth unity surface. Any physically meaningful comparison with observations thus requires
inclusion of radiation physics at a fairly well-developed level. The fact that the level of real-
ism needed for a meaningful interpretation of solar-surface structure, magnetic or quiet, has
now been achieved should be considered one of the most significant advance in theoretical
solar physics of the past few decades.

8.2. The Starspot Connection

It is important to keep in mind that our Sun is not the only star that possesses spots. More-
over, it is more than likely that all late-type stars with convective envelopes exhibit spots, or
“starspots” (e.g. reviews by Berdyugina, 2005 and Strassmeier, 2009). Spotted stars consti-
tute roughly 90% of all stars in the Milky Way, basically all GKM stars and a large fraction
of F, and L and T dwarfs are spotted, representing a mass range from the brown dwarf limit
up to the 2.4 M⊙ of a G giant, and an age range from the pre-main sequence phase up to
the asymptotic giant branch. Stars with planets can also be affected by magnetic processes
and their magnetic environment may even affect close-in planets and back-react onto the
star (see e.g. Shkolnik, Walker, and Bohlender, 2003; Catala et al., 2007; Kashyap, Drake,
and Saar, 2008; Lanza, 2008). Therefore, we must understand sunspots first, before we can
understand starspots.

Models of starspots do not exist yet but the mere size difference suggests that a scaling
from a sunspot model is not appropriate (e.g. Solanki and Unruh, 2004). While sunspots
typically cover 10−4 to 10−5 of the solar surface and only during solar maximum reach
about 10−3, the record holder among other stars is still the one big starspot seen on the K0
giant XX Tri in December 1997 (Strassmeier, 1999). Based on the star’s Hipparcos distance
of 197 pc, the spot’s area covers approximately 12×20 R2

⊙, i.e. 22% of the star’s hemisphere
or 10 000 times the area of the largest sunspot group. Clearly, its emergence, structure, and
decay must be addressed on a global scale. Figure 18 shows a Zeeman – Doppler image of
the active spotted star II Pegasi (Carroll et al., 2007) combined with a numerical simulation
of a non-axisymmetric dynamo. Although it is just a demonstration example, it nonetheless
highlights the expected global starspot – dynamo connection.

8.3. Conflicting Helioseismic Observations

A prevalent, largely phenomenological, approach to modeling the subsurface structure
of sunspots has been to treat the regions of magnetism as perturbations to the back-
ground wave speed. These types of models have been constructed using a variety of local-
helioseismic procedures. A comparison of structural (wave-speed) inversions for AR 9787
using both ring-diagram analysis and time – distance helioseismology with phase-speed fil-
ters was presented by Gizon et al. (2009a, 2009b), and it is partially reproduced in Fig-
ure 19.
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Figure 18 A starspot on the K
subgiant II Pegasi. The surface
temperature and the photospheric
magnetic field is a Zeeman
– Doppler observation while the
interior shows a numerical
simulation of a non-axisymmetric
dynamo in a fully convective star.
There, polarity in the western
hemisphere mirrors the polarity
in the eastern hemisphere. On the
surface, red means a field
strength of up to 800 G according
to the color bar while blue means
basically no detection. In the
interior, red means the field is
pointing outward, blue means the
field points inward (Carroll et al.,
2007).

Figure 19 Comparison of different helioseismic methods used to infer wave-speed perturbations below AR
9787 [δcw/c]. The red and blue curves show the ring-diagram and phase-speed filtered time – distance results,
respectively, from Gizon et al. (2009a, 2009b). The time – distance result is shown along the axis of the
sunspot; the ring-diagram results have been scaled by a factor of ten. The black curve indicates the fast-mode
speed perturbation [(cf − c)/c] from the radiative MHD simulations of Rempel et al. (2009b), described
in Section 4.4; it approaches the value 75 at z = 0 Mm. The green line represents the on-axis wave-speed
perturbations deduced from the phenomenological model of Fan, Braun, and Chou (1995), based on the
Hankel phase-shift measurements of Braun (1995).

As is evident, these two inversions give subsurface wave-speed profiles with opposite
signs and different amplitudes. Gizon et al. (2009a, 2009b) discussed a number of fac-
tors which could contribute to such a disagreement, including the observation that the
ring-diagram inversions include a treatment of near-surface effects absent from the time –



54 H. Moradi et al.

distance analyses and the apparent sensitivity of the measurements to details of the analysis
which are not included in the models. A prominent example is the sensitivity of time –
distance measurements to parameters of the filters (Section 7.3). As suggested by Braun
and Birch (2008), some evidence of a strong near-surface contribution to helioseismic mea-
surements in sunspots is shown in the forward modeling of Fourier – Hankel measurements
performed by Fan, Braun, and Chou (1995). It is worthwhile, for comparative purposes
therefore, to plot the results of the subsurface perturbation suggested by Fan, Braun, and
Chou (1995) in Figure 19. An important caveat in this comparison is that the Hankel phase-
shift measurements (Braun, 1995), from which this wave-speed result was inferred, were of
different sunspots. However, Braun and Birch (2008) show that these phase-shift measure-
ments agree favorably with more recent ridge-filtered holography measurements of sunspots
of similar size. The relative fast-wave-speed perturbations of the sunspot model of Rempel
et al. (2009b), presented in Section 4.4, are also included in Figure 19 for reference: this
model also displays positive wave-speed perturbations in the first 2 Mm below the surface.

8.4. Emergence of a New Paradigm in Sunspot Seismology

Keeping in mind all of the above caveats, it is worth noting that three out of four curves
shown in Figure 19 are consistent with a strong, positive wave-speed perturbation extending
about 2.5 Mm below the surface. Below this depth, the helioseismic inversions show con-
siderably stronger deep wave-speed perturbations (albeit, of opposite signs) than the other
methods. Braun and Birch (2006) have argued that shallow wave-speed perturbations such
as those suggested by Fan, Braun, and Chou (1995) are required to explain the systematic
frequency dependence in the mean travel times observed in sunspots. Of course, it is well
to keep in mind the warnings of Gizon et al. (2009a, 2009b), namely the possible naivety
of modeling potentially complicated effects of the magnetic field in terms of an equivalent
sound-speed perturbation.

Many of these magnetic effects are more suitably explored through the numerical meth-
ods discussed in Section 6. Perhaps the strongest argument in favor of a shallow, fast wave-
speed model is provided by the linear simulations of MHD wave propagation (Section 7.8).
These forward numerical computations show that a simple semi-empirical sunspot model
extending no deeper than 2 Mm (Figure 3) is capable of reproducing many features of the
helioseismic measurements, in particular the cross-covariance signatures of the sunspot in
AR 9787. While additional linear simulations will be needed to confirm this claim, the re-
alistic radiative simulations of sunspot-like structure by Rempel et al. (2009b) will provide
the ultimate testbed to validate the forward and inverse methods of sunspot seismology.

Finally, we note that sunspot seismology will benefit greatly from improved observations
by the Solar Dynamics Observatory (SDO). The Helioseismic and Magnetic Imager (HMI)
instrument onboard SDO will not only provide higher-resolution Doppler images of the
solar disk, but it will also provide full vector magnetograms. Reliable measurements of the
photospheric magnetic field will be key to constraining the near-surface layers of sunspot
models, as detailed models of the surface layers are a necessity in order to probe the deeper
structure of sunspots.
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