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ABSTRACT

We present a new model for the Sun’s global photospheric magnetic field during a deep minimum of activity, in
which no active regions emerge. The emergence and subsequent evolution of small-scale magnetic features across
the full solar surface is simulated, subject to the influence of a global supergranular flow pattern. Visually, the
resulting simulated magnetograms reproduce the typical structure and scale observed in quiet Sun magnetograms.
Quantitatively, the simulation quickly reaches a steady state, resulting in a mean field and flux distribution that are
in good agreement with those determined from observations. A potential coronal magnetic field is extrapolated
from the simulated full Sun magnetograms to consider the implications of such a quiet photospheric magnetic field
on the corona and inner heliosphere. The bulk of the coronal magnetic field closes very low down, in short
connections between small-scale features in the simulated magnetic network. Just 0.1% of the photospheric
magnetic flux is found to be open at 2.5 R

e
, around 10–100 times less than that determined for typical Helioseismic

and Magnetic Imager synoptic map observations. If such conditions were to exist on the Sun, this would lead to a
significantly weaker interplanetary magnetic field than is currently observed, and hence a much higher cosmic ray
flux at Earth.
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1. INTRODUCTION

The Sun’s magnetic activity varies from low to high across
an approximately 11 year cycle. In addition to this, cycle
amplitudes also vary from one cycle to the next (see, e.g., the
review by Hathaway 2010 and references therein). In extreme
cases, the Sun has been known to enter a grand minimum of
magnetic activity, in which very few or no sunspots are
observed. The most famous example of this is the Maunder
Minimum, a seventy year period from 1645 to 1715 during
which almost no sunspots were observed (Maunder 1890);
although cyclic behavior was still present (Beer et al. 1998).
Švanda et al. (2016) suggest that pores (white light photo-
spheric features with strong magnetic fields) may have been
invisible to observers at the time due to their lower resolution
telescopes, but could potentially have contributed to the Sun’s
global dynamo and its continued reversal of its polar magnetic
caps. The cause and lead up to this grand minimum is an
interesting topic of study, for example Eddy et al. (1976)
suggest that faster rotation at the equator and stronger overall
differential rotation may have been linked to its onset. In the
present paper, however, we are interested in the state of the
solar photosphere once it has reached the deepest phase of a
grand minimum of activity. One possibility is that only small-
scale magnetic features were present during such a state.
Indeed, Riley et al. (2015) suggest that in the later stages of the
Maunder Minimum, the solar photosphere may have consisted
entirely of small-scale ephemeral regions (ERs), with no
significant large-scale magnetic dipole structure. Low solar
magnetic activity results in less magnetic flux leaving the Sun
(open flux) and hence a weaker interplanetary magnetic field
(IMF), which in turn leads to a higher galactic cosmic ray
intensity at Earth (see, e.g., Usoskin 2013 and references
therein). In the current paper, we simulate an extremely low
activity global photospheric magnetic field, in which no active

regions or active region remnants are present. The properties
and consequences of this low activity simulation are
considered.
The Sun’s photospheric magnetic field extends over a vast

range of spatial and timescales; from the largest active regions,
with physical extents of hundreds of megameters and lifespans
of days to weeks (Harvey & Zwaan 1993), down to the smallest
features of the inter-network, on the scale of a few hundred
kilometers with lifespans of minutes to hours (de Wijn
et al. 2008). The processes that determine the evolution of
this magnetic field also cover a wide range of spatial and
timescales, from the Sun’s global differential rotation and
meridional flow, which have timescales of 1/4 year and 2
years, respectively (Wang et al. 1989b; Mackay &
Yeates 2012), down to the convective flows of granulation
and supergranulation, with timescales of hours to days (Simon
& Leighton 1964; Rieutord & Rincon 2010).
Many authors have studied the properties of magnetic

features on the solar surface and the nature of their evolution.
On the smallest scales (a few hundred to few thousand
kilometers), authors such as Harvey (1993), Schrijver et al.
(1997), Parnell (2002), Hagenaar et al. (2003), DeForest et al.
(2007), de Wijn et al. (2008), Lamb et al. (2013), and Jin &
Wang (2015) have considered the nature of the magnetic
features of the so-called magnetic carpet. For studies on active
region scales and global evolution see, for example, Harvey &
Zwaan (1993), Parnell et al. (2009), and the references in
Solanki (2003), Hathaway (2010), and van Driel-Gesztelyi &
Green (2015).
In addition to observational studies, many models simulate

the evolution of magnetic features across a variety of time and
spatial scales. On the largest scales, Wang et al. (1989a) and
Wang & Sheeley (1991) constructed a surface flux transport
model that included differential rotation, meridional flow, and a
supergranular diffusion term. Other authors considering the
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large-scale evolution of solar and stellar photospheric magnetic
fields based on flux transport models are, for example, Mackay
et al. (2002a, 2002b), Mackay (2003), Schrijver & DeRosa
(2003), Wang et al. (2005), Gibb et al. (2014), and Lemerle
et al. (2015). For a review of flux transport models see Mackay
& Yeates (2012). Recently, more sophisticated models have
been developed, for example combining flux transport with the
Babcock–Leighton dynamo model (Miesch & Dikpati 2014).
The majority of the above models are macroscopic in nature,
considering only the largest scales of magnetic features, where
the random walk of smaller scale features within convective
cells is approximated through a diffusion term. Several authors
have constructed models for the evolution of small-scale
magnetic features, building in a variety of the observed flux
evolution processes including emergence, cancellation, coales-
cence, and fragmentation (e.g., Schrijver et al. 1997; Crouch
et al. 2007), as well as the influence of underlying convective
flows (e.g., Parnell 2001; Meyer et al. 2011).

Schrijver (2001) and Schrijver et al. (2002) modeled the
global evolution of the Sun’s photospheric magnetic field,
incorporating magnetic features that spanned from active
regions (few times 1022 Mx) down to ephermeral regions
(few times 1019 Mx, e.g., Harvey 1993). They included
differential rotation and meridional flow, but did not explicitly
simulate supergranulation. Instead, magnetic features moved in
random directions with a step length based upon their flux
(greater flux resulting in smaller velocity) and a flux dispersal
coefficient. The four flux evolution processes of emergence,
cancellation, coalescence, and fragmentation were built into the
model, although the emergence phase itself was not simulated
—new magnetic features were inserted into the simulation
under the assumption that the polarities had already separated.
From the simulated photospheric magnetic fields, they
considered the radiative losses of the Sun and other cool stars
(Schrijver 2001), and the long-term evolution (several hundred
years) of the photosphere (Schrijver et al. 2002).

Thibault et al. (2012, 2014) extended the magnetic carpet
model of Crouch et al. (2007) to cover the full solar surface,
and included active regions with properties determined from
the cycle 21 sunspot database of Wang and Sheeley, as well as
differential rotation and meridional flow. Emergence of new
small-scale magnetic features was simulated by injecting
individual mixed polarity magnetic elements at random spatial
locations. Cancellation and coalescence were built into the
model, but fragmentation was not explicitly included. They
also did not include a supergranular flow profile, instead,
similarly to Schrijver (2001), magnetic features moved in
random directions with a specified step length. They simulated
a full solar cycle, focusing in particular on the variation of their
simulated magnetic network during this time.

The aim of this paper is to build on the magnetic carpet
model of Meyer et al. (2011), extending the supergranular flow
pattern and evolution processes to cover the full Sun. The
eventual goal is to produce a global photospheric evolution
model that includes the macroscopic active regions and global
flows, as well as supergranulation and the microscopic flux
evolution processes of the magnetic carpet. These processes, in
particular supergranulation, play an important role in determin-
ing the random walk of magnetic flux across the solar surface
as well as the fragmentation and redistribution of active region
flux. For the present paper we focus first on the evolution of the
small-scale magnetic field. Our study differs from those

discussed above as follows: (1) we define an actual super-
granular flow profile, rather than approximating this as a
random walk; (2) we explicitly simulate the emergence of new
magnetic features by having opposite polarities move apart on
appearance, with the probability distribution for newly
emerging flux taken from the observational study of Thornton
& Parnell (2011); and (3) the fragmentation of magnetic
features is simulated, based on their flux and lifespan. The aim
of the full model is to produce realistic surface simulations, as
well as to provide a lower boundary condition to be coupled
with a coronal field evolution model (e.g., Yeates et al. 2008).
The paper is structured as follows. The model is described in

Section 2, including the construction of the global super-
granular flow profile and a brief description for each of the four
flux evolution processes. Results are presented in Section 3.
We focus first on visual results, starting with the global
photospheric magnetic field, then focusing on a smaller region
to demonstrate the evolution of the model and how it compares
to observed magnetograms. Next, quantitative results are
presented for comparison with observed solar parameters.
Finally, a global potential coronal magnetic field is extrapolated
from one of the simulated global magnetograms. Its properties
are compared with potential coronal fields extrapolated from
active and quiet Sun synoptic maps observed by the
Helioseismic and Magnetic Imager (HMI; Scherrer et al.
2012) on board the Solar Dynamics Observatory (SDO).
Discussion, conclusions and future development of the model
are given in Section 4.

2. MODEL

The full Sun photospheric model is a 2D surface model
based on the Cartesian magnetic carpet model of Meyer et al.
(2011), with calculations now in spherical coordinates and with
a supergranular flow profile that is determined for the full Sun.
At present, the supergranules in our model are not time-
evolving. This is adequate for the present paper where we show
the development of the surface magnetic field into a steady
state, in which the rates of flux emergence and cancellation are
equal. In addition, the small-scale features of the magnetic
carpet tend to evolve on timescales of minutes to hours (e.g., de
Wijn et al. 2008; Zhou et al. 2010; Lamb et al. 2013), whereas
supergranule lifespans are on the order of one to several days
(Hirzberger et al. 2008; Rieutord & Rincon 2010). Meyer et al.
(2011) found that using non-time-evolving supergranules in the
model did not produce unrealistic results. The parameters for
the following model are the same as those used in the local
model of Meyer et al. (2011). These were chosen based either
on observational studies, or by varying and choosing the best fit
when observations did not exist (e.g., Parnell 2001). Since the
present study still considers local scale evolution and relatively
short timescales, but now on a global scale, the existing
parameters were deemed appropriate.

2.1. Magnetic Features versus Magnetic Elements

In order to avoid confusion in the following discussion, we
define here what we mean henceforth by a magnetic feature as
opposed to a magnetic element:

1. A magnetic feature is what is observed on the solar
surface, as an irregularly shaped patch of magnetic flux
(e.g., DeForest et al. 2007).

2
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2. A magnetic element is a “block” of magnetic flux in our
simulation that is given a Gaussian BR profile when the
simulated magnetogram is computed. As will be
discussed in Section 3, several magnetic elements can
compose an irregularly shaped magnetic feature.

The radial magnetic field, BR j, , at a distance of r from the center
of a magnetic element j is given by

= -B B e , 1R j j
r r

, 0,
j

2
0,
2

( )

where B j0, is the element’s peak magnetic field strength and r j0,

is its Gaussian half-width, both determined from its flux, fj (see

Meyer et al. 2011 for further details). The contribution of all

magnetic elements is summed to compute the full magneto-

gram:

å=
=

B B . 2R

j

N

R j

1

, ( )

2.2. Supergranular Flow Profile

One of the key features of the model is the small-scale
convective flow that dominates the evolution of the magnetic
elements on the solar surface. We now describe how this is
specified. Hirzberger et al. (2008) found supergranule areas to
span from 160 to 2000 Mm2, with a roughly log-normal
distribution and a mean of 575 Mm2. Assuming the super-

granules to be approximately circular ( p=R A ), this gives
radii spanning from Rmin=7.1 Mm to Rmax=25.2 Mm, with
a mean of 13.5 Mm. We randomly generate enough super-
granules to fill the full solar surface, with their radii fitting this
log-normal distribution.

The horizontal flow profile within an individual supergranule
is given by

⎧
⎨
⎩

⎫
⎬
⎭

=
-

v A R
R

R
exp , 3R 0

2

max
2

( )

where A0 is the parameter determining the physical extent of

the supergranule, Rmin�A0 Rmax�Rmax. The flow profile for

the full Sun is produced by summing all of the individual flow

profiles, after which we scale the flow profile so that the peak is

1 km s−1 and the mean flow is roughly 0.35 km s−1. For the

simulation discussed in Section 3, 7428 supergranules were

generated to cover the full Sun. A stronger supergranule (with

A0=2.0), in which no emergence is allowed to occur, is

placed at each of the poles, to prevent magnetic elements from

crossing them. A randomly directed velocity representing the

contribution of granulation is also included, across the full solar

surface. This contribution will tend to be weaker at the center

of a supergranule and stronger at the boundaries between

supergranules: 0–0.1 km s−1 within 0.75 of the supergranule

cell radius of its center, 0–0.2 km s−1 otherwise. This helps to

prevent magnetic elements from becoming stationary once they

reach the network between cells.
The velocities of magnetic elements are usually determined

from the underlying convective flows. In addition to this,
however, there are times, such as when the magnetic elements
are undergoing emergence or cancellation, that their velocities
are not dominated by supergranulation but specified in other

ways. These processes will be described in the following
sections.

2.3. Emergence

New magnetic flux appears on the solar surface via the
process of flux emergence. As in Meyer et al. (2011), flux
emergence within our model is determined by the probability
distribution of Thornton & Parnell (2011):

⎛

⎝
⎜

⎞

⎠
⎟f

y

f

y
=

a-

N
n

, 4bp
0

0

bp

0

( ) ( )

where n0=1.77×10−14 cm−2 day−1, ψ0=1016 Mx, and

α=2.74. Integrating Equation (4) over the range [fa, fb] Mx

gives the number of bipoles expected to emerge per cm2 per

day, with an absolute flux in that range. We compute the

number of bipoles expected to emerge across the full Sun for

the full simulation in discrete intervals of length

2f0=8×1016 Mx, where bipoles in the range [fa, fb] are

assigned a flux of fa+f0. The flux range for newly emerging

bipoles in our simulation is 8×1016–4×1020 Mx (with

individual polarities having flux in the range 4×1016–
2×1020 Mx), and every magnetic element within the

simulation must have flux that is an integer multiple of the

unit flux, f0=4×1016 Mx. This gives an emergence

frequency of approximately 5.5×107 bipoles per day, or

640 bipoles per hour across the full Sun. Each bipole is

assigned a random time step of emergence and supergranule to

emerge within. The time step for the simulation is 1 minute and

it is run for 3000 time steps (50 hr) in total.
Magnetic elements are treated as “points” within the

simulation, with arrays containing their defining parameters
(position, flux etc.) updated at each time step. A magnetogram
can then be computed by assigning each element a Gaussian
profile in BR and summing over all of their Gaussian profiles
(Equation (2)). When a bipole is inserted into the simulation,
the points representing the two opposite polarity elements are
co-located. These points initially move in opposite directions
(determined by a randomly assigned tilt angle) until they reach
a separation of 1.5d(fbp/2), where d(fbp/2) is the diameter of
each element (see Meyer et al. 2011 for further details). Their
initial separation velocity is 5 km s−1, slowing to 0.5 km s−1, in
line with observations of such small-scale elements (e.g.,
Harvey 1993; Hagenaar et al. 2003). Once the magnetic
elements have reached the specified separation, their subse-
quent motion is determined entirely by the underlying super-
granular flow profile until another process takes over
(fragmentation, coalescence, cancellation). Since the opposite
polarity elements overlap completely when first inserted, they
do not contribute flux to the simulated magnetogram. As they
move apart, the effect in the simulated magnetogram is that
their BR profiles grow in flux until they have separated
completely, simulating the emergence of magnetic field as is
observed. New magnetic elements can also be produced via the
breaking apart of an existing magnetic element, described
below.

2.4. Fragmentation

Fragmentation is the breaking apart of a magnetic element
into two or more smaller elements. Within our model, the

3
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fragmentation process is based upon that of Parnell (2001),
where the probability of fragmentation depends on a magnetic
element’s flux and age. It is possible for any element of flux
greater than 2f0=8×1016 Mx to fragment during any time
step, however older and larger elements have a greater
probability of fragmentation. Based on the recommendation
of Parnell (2001), we choose a fragmentation rate of
Rf=1.5×10−4 s−1. Within the simulation, for an element
to undergo fragmentation, its flux f must satisfy

f y> - k q1 , 5f( ) ( )

where ψ=8×1018 Mx, kf=0.75 and kf<q<1 is

randomly generated for each element, every time step. To

introduce a random time-dependence, an element satisfying

Equation (5) will only undergo fragmentation if

<s T T , 6f ( )

where 0<s<1 is random, T is the age of the magnetic

element and Tf=1/Rf. It can be seen that the maximum value

that the right-hand side of Equation (5) may take is 2×1018

Mx, and Equation (6) will always be satisfied once T�Tf.
Therefore every element with flux greater than 2×1018 Mx

will fragment within Tf=1/Rf≈1 hr 50 minutes, but it is

possible for smaller, younger elements to fragment as well.
At present, an element may only split into two new elements

at a given time, but may go on to split several more times in
succession. If Equations (5) and (6) are satisfied for an element
of flux f, it will split into two new elements of flux f1 and f2.
A random number p is chosen such that 0.55�p�0.95, then

⎛

⎝
⎜

⎞

⎠
⎟f
f
f
f=

p
round ,1

0
0

so that f1 is an integer multiple of unit flux f0, and

f2=f−f1.
The two new “child” elements will have the same speed as

the “parent” element had before fragmentation, and direction of
motion ±0.3πq from their original direction, where 0<q�1
is a random number.

The opposite process to fragmentation is coalescence, where
like polarity magnetic elements merge together, or cancellation
in the case of opposite polarity magnetic elements. These
processes are described below.

2.5. Cancellation and Coalescence

Cancellation and coalescence are treated as the same process
within the simulation, the only difference is whether the
elements involved are of the same or opposite polarity. At
present, an element may only cancel/coalesce with one other
element at a time, but may subsequently cancel/coalesce with
additional elements at later times. Two elements f1 and f2 are
defined to be within their interaction range if the distance
between their centers is less than 0.5(d(f1)+d(f2)), where
d(f1) and d(f2) are their respective diameters. If this is the
case, the two elements will cancel/coalesce only if they satisfy
additional conditions, namely:

1. To prevent pairs of emerging/fragmenting elements from
immediately canceling/coalescing with their process
partner, they cannot do so with that partner unless they
have completed the process of emergence or fragmenta-
tion. The process is complete once the elements have

reached the specified separation distance discussed in the
above sections.

2. Elements already undergoing cancellation/coalescence
cannot begin the process with a new element until the
current process is complete. The conditions for this are
described below.

Once it has been determined that two elements will cancel/
coalesce, they move toward one another with a constant
velocity of 1 km s−1 until their centers meet. Once their centers
meet, in the case of coalescence or partial cancellation, one of
the elements will be removed and the other element will take
on the sum or difference between their fluxes as appropriate. In
the case of full cancellation, where the two elements have equal
and opposite flux, both elements are removed from the
simulation. Within the simulated magnetogram, coalescence
is observed as two elements merging together to create a larger
element as their BR profiles overlap. In the case of cancellation,
the elements’ BR profiles shrink as they overlap.

2.6. Parallelizing the Model

The model is required to handle the evolution of several
millions of small-scale magnetic elements at a time. Due to
this, we parallelized the model to increase its speed and
efficiency. The simulation is parallelized so that each processor
models a region of equal area, and hence a roughly equal
number of magnetic elements. Processors are only required to
communicate with nearest neighbors to check for cross-
processor interaction of magnetic elements. This optimization
is highly efficient.
As mentioned previously, elements are treated as “points”

within the simulation, with arrays containing their defining
parameters. Global magnetograms may be calculated at any
time and at any desired resolution, but are not calculated at
every time step so as not to slow the code. The calculation of
global magnetograms from the data held within the simulation
is parallelized, but is still relatively time-consuming. Therefore,
global Sun magnetograms are only computed at specific time
steps of interest. In addition to the global magnetograms, a
local magnetogram times series can also be easily calculated for
small sub-regions within the simulation.

3. RESULTS

Figure 1(a) shows a full disc image of the photospheric
magnetic field produced by the simulation after t=49.7 hr. At
present, the simulation only produces the radial magnetic field,
BR. The full magnetogram has been wrapped around a sphere,
and BR has been multiplied by a cosine factor to produce a line
of sight foreshortening effect. Figure 1(b) shows a planar map
representation of the full Sun magnetogram at the same time,
having “unwrapped” the sphere. The map is computed with
3600×1440 pixels, the same as an SDO/HMI line of sight
synoptic map. This allows us to compare global potential
magnetic fields computed from both the simulated planar maps
and observed synoptic maps (see Section 3.1).3

We start the simulation from an empty Sun. As the
simulation progresses, new magnetic elements emerge as
bipoles within the supergranular cells and evolve based on

3
Note that the simulated planar map is constructed from a single time frame,

as opposed to latitudinal slices taken throughout solar rotation in the case of a
synoptic map.
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the underlying supergranular velocity profile as well as through
interactions with one another. Figure 2 shows a planar map
from the simulation after t=1 hr. The four images below, (b)
−(e), show enlarged snapshots of the region indicated by the
white box in (a) at (b) t=1 hr, (c) t=3.3 hr, (d) t=10 hr,

and (e) 45.3 hr. The region considered lies across the equator
and is aproximately 278×278 Mm in size. These snapshots
illustrate the time-evolving nature of the simulation and the
filling of the region as the simulation progresses. Similar results
are found for all other locations in the simulation. In (b) and (c),

Figure 1. Photospheric magnetic field at t=49.7 hr, viewed (a) on the solar disc (centered at f=0, θ=90 deg) and (b) as a planar representation, both saturated
at ±30 G.

5
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near the start of the simulation, the magnetic elements appear
largely circular due to their assigned Gaussian profiles. There
are also only a small number of “larger” elements. By t=10 hr
in image (d), and even more so by t=45.3 hr in (e), the

magnetic elements appear much more irregularly shaped as
“clumps” form composed of multiple overlapping Gaussian
profiles, giving a more realistic effect. One can also see the
outline of the underlying supergranular cell pattern as these

Figure 2. (a) Full Sun planar map at t=1 hr, saturated at ±30 G. (b)−(e) Zoomed in magnetogram region (indicated by white box on (a)) at (b) t=1 hr, (c)
t=3.3 hr, (d) t=10 hr and (e) 45.3 hr, saturated at ±100 G.

6
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larger clumps form a magnetic network along the supergranule
boundaries.

Figure 3 shows a direct comparison between (a) a region of a
simulated magnetogram and (b) a quiet Sun region observed by
HMI. The simulated magnetogram region is taken at t=27 hr
in the simulation and is an equatorial region of size 139×139
Mm (approximately 192× 192 arcsec). The HMI magneto-
gram was observed close to disc center, and is of the same size
and resolution (≈0.5 arcsec) as the simulated magnetogram.
Both magnetograms are saturated at±30 G. The noise level in
the HMI magnetogram was estimated to be 2σ=9.701 G by
fitting a histogram to pixel values over a 24 hr series of HMI
data which includes this image. Random noise in the range
±2σ has also been added to the simulated magnetogram. The
noise is added purely for a more realistic visual comparison,
and is not included in any quantitative analysis. The simulated
magnetogram clearly contains more rounded magnetic ele-
ments due to their Gaussian BR profile, but larger, irregularly
shaped features and a magnetic network have been produced on
the same scale as observed in the HMI quiet Sun region.
Movies showing a time series of the simulated region in (a) are
included in the online journal, showing the region with and
without the addition of random noise. Of particular interest in
the movies is the emergence and subsequent fragmentation of a
large bipole near the center of the region, forming the bipolar
feature seen at the center of image (a).

Figure 4 provides quantitative information. Plot (a) shows
the mean magnetic field as a function of time (black line)
calculated directly from the simulation, where each magnetic
element is treated as a “point.” To compute this, the absolute
fluxes of all magnetic elements are summed up and divided by
the total area of the Sun to give an estimate of the mean
magnetic field in the simulation. This will always be an upper
estimate for the mean field, and in general will tend to over-
estimate it. The red stars show the mean magnetic field
computed directly from the simulated magnetograms. When the
magnetogram is computed, many of the magnetic elements’
Gaussian BR profiles overlap. This is why the “true” mean
magnetic field of the magnetogram is always slightly less than
that calculated when treating the elements as points. It is also

likely that a small fraction of magnetic flux will be “lost” due to
numerical error when computing the magnetogram, but this can
be minimized by choosing a sufficiently high resolution. The
importance of this intermediate calculation of the magnetic
field from the simulated point elements is that it shows the
general trend of the quantity without having to calculate
computationally heavy full Sun magnetograms. For example,
the plot here shows that there is an initial rapid increase in the
mean field, followed by it beginning to level off and approach a
steady state. This gives us an indication of the simulation’s
behavior to inform our choice of times of interest in which we
may wish to compute full or sub-region magnetograms.
For the full Sun magnetograms used to compute the mean

field values (red stars) in Figure 4(a), the resolution was chosen
to be the same as a high-resolution HMI magnetogram (≈0.5
arcsec), both to minimize flux loss and for a direct comparison
with observed magnetograms. This results in a 11962×5981
pixel magnetogram which is computationally expensive to
compute, therefore full Sun magnetograms have only been
produced at selected times. Although the red stars are
consistently lower than the black line, they follow the same
trend. The value of 7–8 G for this steady state is in line with
observations of the quiet Sun mean field. The box in the lower
right of the plot shows a zoomed section of the last 7 hr of the
simulation. It can be seen that the mean field is still gradually
increasing at this stage, at a rate of around 1.7×10−4 G per
minute. The study of Meyer et al. (2011), which used the same
simulation parameters, suggests that this should level off if left
for longer (simulations in Meyer et al. 2011 were run for 250 hr
in total). For the present study, however, 50 hr is the limit to
which we believe it is reasonable to run the full Sun simulation
without beginning to consider larger-scale evolution processes
such as differential rotation and meridional circulation. These
will be built in as part of a future study.
The simulation reaches a steady state when the rates of

emergence and cancellation are equal. Figure 4(b) shows the
emergence rate minus the cancellation rate (Mx cm−2 s−1) for
the full 50 hr simulation. The emergence rate is approximately
steady for all time, as newly emerging bipoles determined from
Equation (4) are randomly distributed throughout the simulation.

Figure 3. (a) Simulated magnetogram at t=27 hr, centered at f=304, θ=74 deg, with random noise in the range ±2σ=9.701 G. (b) HMI magnetogram centered
at x=1.64, y=−77.68 arcsec, at 23:46:22 on 2011/01/18. All saturated at ±30 G. Movies of (a) with and without noise are included (feb20fs_Mm.mpg and
feb20fs_Mm_noise.mpg).

(Animations (a and b) of this figure are available.)
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The cancellation rate rapidly increases from zero at the start of
the simulation until it also becomes approximately steady after
the first few hours. The result is that the emergence minus
cancellation curve shows an initial rapid decrease, then oscillates
about zero (red dashed line) for the remainder of the simulation.
Due to this, we are satisfied that the simulation has reached a
steady state.

Figure 4(c) shows the total number of magnetic elements in the
simulation as a function of time. The curve levels off even more

rapidly than the mean field or emergence minus cancellation rate.
The mean magnetic field continues to increase after the number of
magnetic elements has levelled off due to the formation of larger
(greater flux) magnetic elements through coalescence, forming the
magnetic network. The total number of magnetic elements levels
off around 3.8×106, which is greater than that expected from
observations of the Sun at any instant. The box in the lower right
of the plot shows a zoomed section for the last 7 hr of the
simulation. The average change in the number of elements at this

Figure 4. (a) Mean magnetic field as a function of time calculated from the simulation (magnetic elements, black line) and simulated magnetograms (red stars). (b)
Emergence minus cancellation rate as a function of time for the simulation. (c) Number of magnetic elements in simulation as a function of time. (d) Flux distribution
as calculated from the simulated magnetic elements (orange) and using the SWAMIS code to detect magnetic features in the simulated magnetograms (green). The
purple line shows the observed power law determined by Parnell et al. (2009), the red line shows the power law fit to the magnetic element distribution (orange data)
and the blue line shows the fit to the SWAMIS detected magnetic feature distribution (green data). The black line shows the slope of the observed emergence
distribution that is built into the model (Thornton & Parnell 2011). (e) Flux distribution as calculated from the simulated magnetic elements, and (f) using the
SWAMIS code to detect magnetic features in the simulated magnetograms, for a series of different times.
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time is just 2 per minute. Parnell et al. (2009) determined a power

law relationship between the frequency of solar magnetic features

versus feature flux. The form used in Meyer et al. (2011) to

determine the expected number of observed magnetic features is:

⎛

⎝
⎜

⎞

⎠
⎟f

y
f
y

=
-

-M
N

cm , 7
f

0 0

1.85

2( ) ( )

where Nf=3.6×10−17cm−2 and ψ0=1016 Mx. Integrating

Equation (7) over the range of element fluxes in our simulation

indicates that over an order of magnitude more elements are

found in the simulation than would be expected in reality. The

observed law (Equation (7)) suggests that there should be just

790,000 features with fluxes in the range 4×1016–1020 Mx.

This discrepancy is due to our differing definitions of a magnetic

“feature” or “element”; one “feature” as identified by Parnell

et al. (2009) may be composed of many tens of overlapping

Gaussian elements in our simulation. This is illustrated by

Figure 5(a), which shows a zoomed in region of the simulated

magnetogram at t=49.7 hr, with contours of magnetic field in

red (positive) and green (negative). Blue stars overplotted

indicate the centers of all the individual Gaussian magnetic

peaks. To resolve this issue, we used the same feature tracking

code as was used to obtain the power law of Parnell et al. (2009)

to identify features within our simulated magnetograms.

The code used is called SWAMIS (DeForest et al. 2007; Lamb
et al. 2013) with a “clumping” feature identification scheme, as
applied by Parnell et al. (2009). The clumping feature scheme is
chosen over other feature detection methods tested as they found it
to be more robust when comparing data from different instruments
and resolutions, as well as less sensitive to changes in sensitivity.
Clumping identifies all connected, same-sign pixels above a
certain threshold as a single feature. We set the minimum feature
size to be 3 pixels, and the minimum pixel value for detection to
10 G. The input for the code was an equatorial region of the
simulated magnetogram at t=49.7 hr, spanning the full
circumference of the equator and 15° in latitude either side,
giving a region of approximately 4373×363 Mm. As discussed
in Section 2.1, we will use the term “magnetic feature” to describe
a feature identified by SWAMIS, and “magnetic element” to
describe the individual “points” whose properties are held in
arrays within our simulation. Figure 5(b) shows the same
magnetogram region as Figure 5(a), but now the blue stars
indicate the centroids of all of the magnetic features detected by
SWAMIS. Comparing with (a), it can clearly be seen that
significantly fewer features are detected by SWAMIS than there
are individual elements within the simulation. For illustrative
purposes, Figure 5(c) shows the same region again, with different
features detected by SWAMIS displayed in different colors.
A summary of quantitative results from SWAMIS is given in

Table 1 alongside results determined “directly” from individual
elements in the simulated region. Predicted values for the mean

Figure 5. (a) Simulated magnetogram at t=49.7 hr, centered at f=187, θ=97 deg. Contours of magnetic field (red=positive, green=negative) are displayed at
±[10, 50, 100, 200, 350] G. Blue stars indicated the locations of the centers of all individual Gaussian magnetic elements in the region. (b) As in (a), but blue stars
now represent the centroids of all magnetic features detected by SWAMIS in the region. (c) Same region, with different magnetic features identified by SWAMIS in
different colors.

Table 1

Table of Values for Magnetic Elements within The Simulation, and Magnetic Features Identified by SWAMIS within The Simulated Magnetogram

Simulation Values SWAMIS Values Predicted

(Magnetic Elements) (Magnetic Features) (Equation (7))

No. of features 1,012,294 192,534 207,000

Min. feature flux 4×1016 Mx 4.004×1016 Mx K

Max. feature flux 2.888×1019 Mx 1.105×1020 Mx K

Mean feature flux 1.262×1017 Mx 4.436×1017 Mx 5.1×1017 Mx

Total feature flux 1.278×1023 Mx 8.541×1022 Mx K

Mean field 8.04 G 6.9 G (magnetogram) 6.6 G

Note. Values computed from magnetogram region (f, θ)ä[0, 360]×[75, 105] deg at t=49.7 hr.
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flux (favg) and mean field (Bavg) are calculated from
Equation (7) as follows (Meyer et al. 2011):
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SWAMIS detects an order of magnitude fewer magnetic

features in the region than there are magnetic elements, which

is in good agreement with the number of features predicted by

Equation (7). The minimum size of feature detected is the same

as the minimum element size, but the mean and maximum size

of features detected by SWAMIS are several times larger, as

expected. The mean feature size of 4.4×1017 Mx detected by

SWAMIS is in good agreement with the mean feature size of

5.1×1017 Mx predicted by Equation (9). A mean magnetic

field of 6.9 G is calculated from the synthetic magnetogram to

which SWAMIS was applied. This is slightly lower than the

mean field of 8.04 G calculated by summing the fluxes of all

individual magnetic elements and dividing by the area of the

magnetogram, for the same reasons as given when discussing

Figure 4(a): due to magnetic elements’ Gaussian profiles

overlapping when computing the magnetogram. The mean field

of the synthetic magnetogram is also in good agreement with

the mean field predicted by Equation (8).
The orange curve in Figure 4(d) shows the flux distribution

calculated directly from the simulation, where magnetic
elements are binned according to their simulation flux value.
The red curve overplotted is a power law fit to this data. The
green curve shows the flux distribution as determined from the
simulated magnetograms using SWAMIS, where magnetic
features are detected as “clumps” that may be composed of
many individual magnetic elements. The blue curve over-
plotted is a power law fit to the SWAMIS data. For comparison
with the two power law fits discussed above (red and blue), the
observed power law determined by Parnell et al. (2009) is
overplotted in purple, and the power law for newly emerging
flux (Equation (4)) is plotted in black. The fit to the simulated
magnetic elements distribution (red) is much closer to the line
of the emergence distribution (black), with slopes of −2.53 and
−2.74, respectively. The magnetic element slope (red) is
slightly shallower than the emergence slope (black), due to
larger elements forming than emerge, but is still much steeper
than that of Parnell et al. (2009) (purple). As discussed above,
this is unsurprising due to our differing definitions between
magnetic features and magnetic elements, and the true
comparison should be with the SWAMIS detected slope. The
fit of the SWAMIS detected flux distribution (blue) is excellent
when compared with the Parnell et al. (2009) power law
(purple), with slopes of −1.83 and −1.85, respectively. This
demonstrates the success of our model in reproducing the
behavior of small-scale photospheric magnetic features, as a

consequence of the emergence and evolution of smaller
magnetic elements. For interest, a time series of histograms is
shown for both the simulated magnetic elements (e) and the
SWAMIS detected magnetic features (f). In both cases, the
histograms tend to move toward the right as larger magnetic
elements or features form, but the slopes of the SWAMIS
histograms are consistently less steep due to the greater number
of large, complex features formed in the simulated magneto-
grams. A future study will compare series of simulated and
HMI small-scale magnetograms using SWAMIS, so that
aspects of the simulated flux evolution processes (e.g.,
timescales, velocities) may be quantitatively compared with
observations to determine their realism, and the model modified
as appropriate.

3.1. Coronal Magnetic Field

In the present study, we do not consider the coronal
magnetic field in any great detail. Here we consider potential
field extrapolations purely for visual comparison and to
speculate on the coronal structure of a grand minimum state
Sun, as potential field source surface (PFSS) extrapolations are
widely used by the scientific community. For a more in-depth
study of grand minimum coronae, Riley et al. (2015) compare
the magnetic structure and emission of coronae for various
hypothetical grand minimum photospheric states using a
thermodynamic MHD model.
A potential magnetic field was extrapolated from a simulated

full Sun magnetogram at t=49.7 hr for comparison with
potential fields extrapolated from quiet (CR2097, 2010 May)
and active (CR2142, 2013 September) SDO/HMI synoptic
maps. To create an equivalent lower boundary condition from
the simulated magnetogram, it was interpolated to a planar map
of the same resolution as an HMI synoptic map: 3600×1440
in longitude and cosine colatitude. Considering first the
photospheric magnetic field of each map, Figure 6(a) shows
the absolute flux through the photosphere as a function of
colatitude, for the simulation (black), CR2097 (red), and
CR2142 (blue). There are clear spikes in the absolute flux at
active latitudes in the active case, CR2142, and to a lesser
extent in CR2097 due to weaker and decayed active regions.
The absolute flux of the simulation displays a sinusoidal profile
with colatitude, since magnetic features are evenly distributed
across the solar surface. From this it is clear that even during
solar minimum, decaying or remnant active region flux plays a
role at low latitudes. There is a clear overlap in the absolute
flux of the simulation and of the quiet Sun synoptic map
CR2097 for around 40° across the solar equator, indicating that
the simulation has correctly described the photospheric
magnetic field strength in this region. Around the poles,
however, the flux of the two HMI maps is much higher than
that of the simulation. This is due to meriodional circulation
transporting remnants of decaying active regions poleward to
form near-unipolar caps, achieving peak strength around solar
minimum (e.g., Babcock 1959). With no active regions
emerging (and indeed no meridional circulation at present), a
build-up of magnetic flux at the poles does not occur in the
simulation. From this it can be seen that there are clear
differences between our quiet Sun model and a so-called quiet
(low activity) observation of the Sun.
A potential field was extrapolated out to a source surface (Rss) at

2.5 solar radii (R
e
), from the simulation and HMI maps. Figure 7

shows field line plots for each of the potential fields, to give an
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impression of the overall coronal structure. In each case, field lines
are plotted from starting points in the plane of sky at 1.25 R

e
and

1.5 R
e
, at intervals of 10°. Note that for the simulation, this image

is not representative of the bulk of magnetic connections, which
close very low down (see, e.g., Figure 6(b) and the discussion
below). Although the simulation represents a globally quiet
photospheric magnetic field, its coronal field is very different to
that of CR2097 which is an observation of the Sun during solar
minimum in 2010. There is very little open field originating from
the simulated magnetogram, whereas the potential coronal field of
CR2097 has a clear dipolar structure, due to the aforementioned
build-up of near-unipolar flux at the poles.

The overall coronal structure of the simulated magnetogram
looks more similar to that of the active Sun observation,
CR2142, however their photospheric magnetic fields are
clearly vastly different. There are fewer open field regions in
CR2142 than CR2097 due to most of the flux connecting
between large active regions. In the case of the simulation,
most of the flux closes down even lower in short connections
between very evenly distributed small positive and negative
magnetic features located in the magnetic network. Figure 6(b)
shows the normalized flux through the source surface at 2.5 R

e
,

colored as in (a). As seen in Figure 7, the general structure of
the open flux of the simulation (black) looks more similar to
that of the active Sun corona (blue) than the quiet Sun corona
(red). In the quiet case, CR2097, there are clear peaks toward
the poles illustrating the Sun’s dipolar structure at this stage of
its activity cycle. The flux of the simulation and active Sun,
CR2142, has an approximately sinusoidal distribution with

colatitude because the open flux is evenly distributed, there are
no predominantly open regions. As mentioned above, however,
the bulk of magnetic connections close very low down in the
simulation, so there is very little open flux at all. Figure 6(c)
indicates the fraction of open flux versus colatitude for each
simulation. The plot was created by assuming that all of the
open flux is purely radial from the photosphere to 2.5 R

e
,

hence was calculated simply as the ratio of the total flux at 2.5
R
e
to that at the photosphere at each colatitude. In reality, even

a potential coronal field is much more complex than this
assumption, but it is useful for illustrative purposes. The plot
shows that for the mixed polarity, small-scale simulation, only
around 0.1% of the flux is open, whereas for the two HMI
synoptic maps, between 1% and 10% of the flux is open. Sharp
increases in the open flux ratio near the poles are due to the
potential field being space filling. There is very little surface
flux in the polar regions of the HMI synoptic maps due to
difficulty in observing the poles, and we have prevented
magnetic elements from emerging or moving directly across
the poles in our simulation (see Section 2). The extrapolated
potential field expands into the polar regions, however, giving a
higher value to this approximate ratio.
Table 2 shows the mean field at the photosphere and 2.5 R

e

for each of the potential fields, as well as the mean field at
2.5 R

e
as a percentage of photospheric mean field.4 This is also

Figure 6. In each plot, line colors represent the simulation at t=49.7 hr (black), HMI Carrington Rotation 2097 (red) and HMI Carrington Rotation 2142 (blue). (a)
Absolute magnetic flux through photosphere vs. colatitude. (b) Normalized open flux vs. colatitude. (c) Fraction of open flux vs. colatitude. (d) Normalized mean field
vs. solar radii. Vertical dashed line indicates where simulation mean field drops below 1% of its photospheric value.

4
Note: Mean field at the photosphere for the simulation is weaker in Table 2

than the value given in Table 1 due to significant reduction in magnetogram
resolution, as well as smoothing during potential field extrapolation.
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illustrated by Figure 6(d), which shows normalized mean field
versus solar radii (black=simulation potential field,
red=CR2097, blue=CR2142). The photospheric mean
fields of the HMI magnetograms are higher than that of the
simulation due to the presence of active regions and active
region remnants. The mean field of the simulation planar map
also drops off much more rapidly with height than either of the
HMI synoptic maps. By 1.14 R

e
(indicated by vertical dashed

line), the simulated magnetogram’s mean field has decreased to
less than 1% of its photospheric value, i.e., more than 99% of
magnetic connections close down below this height. In
contrast, the mean fields of CR2097 and CR2142 are at 18%
and 17% of their photospheric values at this height. The
complete absence of active regions or their remnants, as in the
simulation, is one possibility for how the solar photosphere
would look during a grand minimum of solar activity. If this
were the case, with the coronal field behaving as illustrated by
Figures 7(a) and 6(d), this would significantly reduce the
strength of the IMF at Earth (1 au). From Table 2, the value of
the mean field at 2.5 R

e
in the simulation is 0.0002 G. This

would give a mean field at 1 au of just 2.9×10−8 G
(» R R0.0002 .ss

2
1 au
2 ). This is around 1000 times smaller than

the typical values observed this century (≈3 nT=3×10−5

G, e.g., Yeates et al. 2010), but it is also an order of magnitude
lower than the ephemeral-only Sun estimates of Riley et al.
(2015) (2.9×10−6G for±10 G ERs, 8×10−7 G for±3 G
ERs). Lee et al. (2011) suggest that the source surface for a
PFSS should be lower during low solar activity (although
interestingly, Réville et al. (2015) find the opposite). PFSS
extrapolations were produced for the same simulated photo-
spheric magnetic field as Figure 7(a) with different source
surface heights, and the mean field at 1 au estimated for each of
these. The results are summarized in Table 3. From the table, it
is interesting to note that a factor of 6 decrease in the source
surface height (2.5 R

e
to 1.25 R

e
) produces a factor of 20

increase in the IMF at 1 au. The lower source surface
extrapolations do produce IMF values closer to those of Riley
et al. (2015) (around 100 times smaller than presently
measured), but it should be noted that a PFSS is an very
simplified and limited approximation to the coronal magnetic
field. On further development of the global photospheric
evolution model, we will consider a more realistic non-
potential, time-evolving coronal magnetic field, for more
detailed future studies.

4. DISCUSSION, CONCLUSIONS, AND FUTURE WORK

The aim of this paper was to construct a realistic model for
the evolution of small-scale magnetic features across the full
Sun, and consider the implications of such a quiet Sun for the
corona and IMF. The model incorporates supergranulation and
the flux evolution processes of emergence, cancellation,
coalescence, and fragmentation. The simulation and magneto-
gram calculation codes are parallelized for efficiency, since
several million small-scale magnetic features exist across the
solar surface during any instant.
Qualitatively, the magnetic feature and network scales

produced in the simulated magnetograms compare very
favorably with observed SDO/HMI quiet Sun magnetograms.
The simulation rapidly reaches a steady state, where the rates of
emergence and cancellation are approximately equal, and the
mean field produced is within the expected range for the quiet
Sun. Using the SWAMIS feature identification code to
compare the simulation with the results of Parnell et al.
(2009), we find excellent agreement in the number of magnetic
features produced, mean magnetic field and flux distribution
slope.
A potential coronal field was extrapolated from a full Sun

magnetogram late in the simulation, for comparison with
potential fields extrapolated from HMI synoptic maps observed
during solar maximum and solar minimum. The visual
structure of the simulation coronal field is very different to
that found in either of the HMI coronal fields. The mean field
also drops off much more rapidly in height for the simulation,
indicating that most connections close very low down. This is
due to the lack of any active regions or active region remnants
producing large, unipolar areas within the simulation. If this
were representative of the Sun during a grand minimum of
activity, it would have significant implications for the Earth.
Such a rapid decrease in height of the Sun’s coronal magnetic

Figure 7. Potential field extrapolations from synoptic maps of (a) the simulation at t=49.7 hr, (b) HMI Carrington Rotation 2097 (CR2097), and (c) HMI Carrington
Rotation 2142 (CR2097).

Table 2

Mean Magnetic Field at The Photosphere and at 2.5 R
e
for Each of The

Potential Fields Extrapolated

Simulated CR2097 CR2142

Magnetogram (Quiet) (Active)

Mean field at photosphere 1.8 G 3.4 G 7.0 G

Mean field at 2.5 R
e

0.0002 G 0.05 G 0.04 G

% open flux 0.01 1.5 0.5
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field would result in a very weak IMF, and hence greater
exposure of the Earth to cosmic rays. Cosmic ray intensity at
1 au is known to be inversely correlated with solar activity
(Usoskin et al. 1998, 2001). A much reduced level of magnetic
activity and IMF would therefore result in a significant increase
in cosmic rays at Earth. It has been suggested that there is a
connection between cosmic rays and the Earth’s climate,
although the exact link is still an open question (see, e.g.,
Nesme-Ribes et al. 1993; Svensmark & Friis-Christensen 1997;
Jørgensen & Hansen 2000; Usoskin & Kovaltsov 2008;
Mironova et al. 2015).

In future, we plan to extend the full Sun model to incorporate
active region scale magnetic features and their interaction with
magnetic carpet scale features. As part of this, it will be
required to introduce time-evolving supergranular flows as well
as the processes of differential rotation and meridional
circulation. One effect of time-evolving supergranules will be
to help break apart magnetic elements, for faster convergence
of the simulation to a steady state. For the present study,
differential rotation and meridional circulation would not have
had a significant net effect on the simulation due to the short
timescale considered and because we have included no
systematic orientation for the emergence of ERs. They will
be vital to the realistic evolution of active regions, however,
which can have lifespans of many weeks and tend to follow
Joy’s orientation law and Hale’s polarity law. These large-scale
flows will also have a significant effect on a time-evolving non-
potential coronal magnetic field, which we intend to consider in
future. It may also be of interest to consider the effect of a
large-scale background magnetic field (dipole or quadrupole
for example) on the small-scale magnetic network. In addition,
it is our intention to further investigate smaller time- and
spatial-scale simulated magnetograms, using SWAMIS to
compare flux evolution processes within our model directly
to those in observations. This will allow us to determine and
improve their realism within the small-scale and global models.
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Andrews. The authors would like to thank Craig DeForest and
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