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In a recent experimental study on flow behavior of Vitreloy-1 (Zr41.25Ti13.75Cu12.5Ni10Be22.5), three
distinct modes of flow are suggested: Newtonian, non-Newtonian, and localized flow. In a
subsequent study, the experimental flow data is utilized in a self-consistent manner to develop a rate
equation to govern local free volume production. In the present study the production-rate equation
is transformed into a transport equation that can be coupled with momentum and energy transport
via viscosity to formulate a model capable to govern the flow of undercooled glass forming liquids.
The model is implemented to study the flow behavior of undercooled Vitreloy-1 melt. For a
temperature of 700 K and shear loading of 1.0 MPa, the model predicts that the flow profile
gradually stabilizes to its Newtonian limit while the liquid is maintained in structural and thermal
equilibrium. For the conditions of 675 K and 100 MPa, the model predicts that the flow profile
departs from its Newtonian limit and gradually stabilizes to a non-Newtonian limit. The
non-Newtonian profile is evaluated independently by considering structurally quasistatic conditions,
which yield the shear-rate dependency of flow. For the conditions of 650 K and 2.0 GPa, the model
predicts that the flow continuously localizes and ultimately accelerates unconstrained, while the
system is driven out of structural and thermal equilibration towards an unstable state associated with
free volume generation, viscosity degradation, and temperature rise. The computed temperature and
shear rate evolutions for the three distinct flow modes are superimposed on a temperature-shear rate
diagram and appear to computationally reproduce the experimental flow map. The system’s
structural state that appears to dictate flow behavior is quantified by a dimensionless number, which
results from a time scale analysis of the free volume production equation. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1645669#

I. INTRODUCTION

Within the theoretical mechanics community, the study
of shear band formation has been a topic of ongoing interest.
It has been conventionally perceived that shear bands form
upon deformation close to or below glass transition, and thus
most of the early work was devoted to shear band formation
in metallic glasses. Production experiments by Liquid-
metal Technologies on injection casting of Vitreloy-1
(Zr41.25Ti13.75Cu12.5Ni10Be22.5), however, indicate that shear
bands may also form upon deformation above glass transi-
tion in the deeply undercooled liquid region. Figure 1 shows
an angular corner of a Vitreloy-1 cast part. During mold
filling of this part the melt was maintained above glass tran-
sition temperature, which implies that material deformation
occurred in the undercooled liquid state. A zoom in the an-
gular corner reveals the existence of multiple shear bands. It
appears that around the angular corner where the molten melt
had to undergo extremely high shearing rates~sharp change
in speed and direction!, the flow became localized and ulti-
mately evolved into serrated flow generating multiple shear
bands perpendicular to the flow direction.

Recently Luet al.1 carried out an experimental study on
the flow behavior of Vitreloy-1. An experimental flow dia-
gram is produced, which is presented in Fig. 2. The diagram

outlines the boundaries between three distinct flow modes:
Newtonian, non-Newtonian, and shear localization. Newton-
ian flow is realized at high temperatures and low shearing
rates and is maintained independent of shear rate. Non-
Newtonian flow is realized at moderate temperatures and
shearing rates and is essentially shear-rate dependent, how-
ever the dependency arises as a consequence of structural
stabilization in the liquid which contributes to the flow re-
maining stable. Shear localization is realized at low tempera-
tures and high shearing rates. Under those conditions the
flow becomes extremely sensitive to shear rate and as a con-
sequence it is driven out of stability. The plot suggests that
the range of temperature and shearing rate associated with
shear localization which contributes to shear banding is not
bounded by glass transition but carries onto the deeply un-
dercooled liquid region, hence providing further evidence for
shear banding in undercooled liquids.

Shear localization in undercooled liquids and glasses is
in fact caused by a local reduction in viscosity in the vicinity
of a stress concentration, and evolves to dramatically in-
crease and confine the deformation until it approaches a local
instability, which is termed shear band. The decrease in vis-
cosity during deformation is a consequence of increasing free
volume and thus decreasing density, which severely reduces
the material’s resistance to deformation. Early work2–5 iden-
tified two potential origins of shear localization: thermal ex-
pansion of molar volume induced by adiabatic heating which
causes the free volume to increase, and structural disordering
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in the liquid induced by shear which contributes to free vol-
ume creation. Although significant heating is generated dur-
ing shear localization, recent evidence6–9 indicates that adia-
batic heating is not the prime origin, as localization appears
to be triggered by structural disordering. A model based on
free volume production dictated by both adiabatic heating
and structural disordering would form an appropriate basis
for understanding the mechanisms triggering shear localiza-
tion.

More recently Johnsonet al.10 utilized the experimental
flow data of Luet al.1 in a self-consistent manner to formu-
late a simple constitutive flow law applicable to glass form-
ing metallic liquids undergoing steady flow. The model,
which is essentially a simple treatment of free volume pro-
duction and annihilation during flow, is based on the assump-
tion that shearing results in the creation of free volume such
as a relationship between free volume and shear rate is ob-
tained by a self-consistency argument. The flow law was
implemented to obtain the viscosity dependence on shear
rate under structurally steady-state conditions. More recently

Bossuytet al.11 extended the model to include transient ef-
fects and simulated the stress–strain response during defor-
mation.

In the present study, the rate equation governing free
volume production developed by Johnsonet al.10 is trans-
formed into a transport equation, which under the assump-
tion of incompressible flow it can be regarded as a conser-
vation equation for free volume. This equation is coupled
with the conservations of momentum and energy via viscos-
ity to form a complete transport model applicable
to bulk glass-forming liquids ~such as those of the
Zr–Ti–Ni–Cu–Be Vitreloy alloy family! undergoing defor-
mation. The developed transport model is capable of com-
puting transient free volume distributions as dictated by adia-
batic heating and structural disordering, and hence
simulating the transient flow evolution. The model is imple-
mented to simulate the transient flow of Vitreloy-1 under
asymmetric shear loading, as such loading could trigger
shear localization. The simplest flow model that involves
asymmetric shear is the one dimensional~1D! pressure
driven flow, or ‘‘Poiseuille’’ flow, in which the shear loading
is imposed at the channel wall by the applied pressure gra-
dient. The aim of this study is to assess the potential of the
model in simulating the flow characteristics of the three flow
modes illustrated on the experimental flow map in Fig. 2.

II. FREE VOLUME TRANSPORT MODEL

Assuming the validity of Vogel–Fulcher–Tamann equa-
tion far from the Newtonian limit, the viscosity dependence
on free volume may be expressed in the form10

h~n!5h` expS FanoTo

n2no
D , ~1!

wheren is the molar volume,no is the molar volume at the
Vogel–Fulcher–Tammann temperatureTo , n2no is the free
volume,F is the liquid ‘‘fragility’’ index, and a is the vol-
ume thermal expansion coefficient~assumed temperature in-

FIG. 1. A corner from a Vitreloy-1 cast part produced by Liquidmetal Tech-
nologies. Around the angular corner the melt had to undergo excessively
high shearing rates. Consequently the flow became localized and developed
serrations generating multiple shear bands across the flow direction.

FIG. 2. Results from Vitreloy-1 flow experiments carried out by Luet al.
~Ref. 1!. The boundaries for the transition from Newtonian to non-
Newtonian flow and from non-Newtonian to localized flow are shown. Each
flow mode is associated with a range of shearing rates and temperatures,
which extends above glass transitionTg into the undercooled liquid region.
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dependent!. The infinite-shear-rate limit of viscosity can be
approximated ash`5hpNa /ne , wherehp is Planck’s con-
stant,Na is Avogadro’s number, andne is the molar volume
of a relaxed liquid, i.e., the molar volume of a liquid under
structural equilibration dictated only by temperature. Its tem-
perature dependence is given by

ne5no@11a~T2To!#. ~2!

It is worth noting that the limit of viscosity at the equilibrium
free volume,h(n→ne), is the Newtonian limith0 given by

h0~T!5h` expS FTo

T2To
D . ~3!

For Vitreloy-1, the parameters above take the following val-
ues:To5412 K; F519.8; no59.76631026 m3/mole; and
a55.3231025 K21.

Shearing under a finite shear rateġ results in liquid dis-
ordering, which can be quantified by creation of excess vol-
ume proportional to the total shear strain asṅcre5Rġ, where
the parameterR is the free volume creation coefficient and
describes the molar volume produced by a unit plastic shear
strain. For Vitreloy-1, this parameter was determined by op-
timization in the study of Johnsonet al.10 to beR50.19no .
The excess free volume created by shear will tend to be
annihilated by relaxation of the total free volume towards
equilibrium.12 The rate of relaxation can be related to the
relaxation time for viscosity toward its equilibrium value as
ṅ rel5(n2ne)/tn,rel . In the simplest model for liquid visco-
elastic behavior the configurational relaxation time is taken
as tn,rel5h(n)/G, whereG is the isoconfigurational liquid
shear modulus in the high-frequency limit and can be ap-
proximated by the static shear modulus of low temperature
glass~33 GPa for Vitreloy-1!. The local time-rate of change
of free volume can then be expressed as

dn

dt
5 ṅcre2 ṅ rel5Rġ2

n2ne

h/G
, ~4!

Assuming continuum in the vicinity of localization and in-
troducing a transport field that can accommodate free vol-
ume convection and diffusion, a conservation equation gov-
erning free volume transport may be derived as

]n

]t
1u"“n5“•~D“n!1Rġ2

n2ne

h/G
, ~5!

whereu is the velocity field. In such transport field, the shear
rate tensor is given asġ5“u1(“u)†, and its magnitude as
ġ5A1/2(ġ:ġ). The free-volume diffusivityD can be taken
as equivalent to the liquid self-diffusion coefficient, since
free volume diffusion essentially implies atomic rearrange-
ment. However since diffusion coefficients characterizing
such liquids are extremely small, the diffusive divergence in
Eq. ~5! turns out to be insignificant.

Practically, Eq.~5! could be coupled to the transport
equations that govern conservation of mass, momentum and
energy given, respectively, below

“•u50, ~6!

rS ]u

]t
1u•“uD5“•~hġ!2“p, ~7!

rcpS ]T

]t
1u•“TD5“•~k“T!1h~ġ:ġ !, ~8!

wherep is pressure,r is the density,cp is the specific heat,
and k is the thermal conductivity. Equations~5!–~8! repre-
sent a set of transport equations coupled through viscosity,
shear rate, and temperature. This set of equations could ad-
equately simulate the transient flow evolution of bulk glass-
forming liquids under deformation. Moreover provided that a
suitable adaptive mesh is employed, the evolution of shear
instabilities, which arise as a consequence of the highly non-
linear dependence of viscosity on free volume@Eq. ~1!#,
could be accommodated. However as this model is based on
the assumption of continuum in the vicinity of localization, it
would fail to simulate a shear band as it stands physically,
i.e., having finite thickness and being associated with a finite
shear rate, but would tend to model a shear band in a more
mathematical sense, i.e., as a mathematical instability char-
acterized by zero thickness and associated with an infinite
shear rate.

In the context of this study, the system of equations is
simplified and solved for the case of 1D pressure-driven flow
~Poiseuille flow! in a channel of thickness 2L. Although
overly simplified, such flow conditions in their unstable limit
would replicate the instabilities associated with shear band
initiation during a single serration. From this perspective,
this study constitutes a valuable means for analyzing the dy-
namics of shear banding in bulk liquids. The transport equa-
tions simplified for Poiseuille flow are

r
]u

]t
5

]

]x Fh~n!
]u

]xG1p8, ~9!

]n

]t
5RU]u

]xU2 n2ne

h~n!/G
, ~10!

rcp

]T

]t
5

]

]x Fk
]T

]xG1h~n!S ]u

]xD 2

, ~11!

where p8 is the applied pressure gradient,r5M /n is the
density (M50.0603 kg/mole for Vitreloy!, while the shear
rate is simplyġ5u]u/]xu The specific heat is given bycp

5(1/M )(24.917.531023T18.173106/T2) J/kg K,13 and
the thermal conductivity byk50.0163T10.8407 W/m K.14

Free volume diffusion is neglected.

III. ANALYSIS

Momentum transport, Eq.~9!, is characterized by a re-
laxation time scaletu,rel;rL2/h. This relaxation time char-
acterizes the time required for the flow profile to develop its
Newtonian distribution, which for such 1D flow is parabolic.
However if substantial deformation is sustained fort
@tu,rel , further evolution of the profile could be realized.
The post-Newtonian flow evolution can be taken to progress
quasistatically, i.e.,r]u/]t50, which implies that the shear
loading, defined ass[h(t)ġ(t)5p8x, would remain con-
stant in time. This suggests that the viscosity degrades at the
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same rate as the shear rate evolves such that their products
is maintained constant in time. Since nonlinear elasticity
theory is not incorporated in the model, the shear loadings
considered in this study were taken not to exceed the mate-
rial shear strength~;2.0 GPa for Vitreloy-1! so as to warrant
the validity of the model.

Free volume transport, Eq.~10!, is characterized by a
relaxation time scaletn,rel;h/G. This time scale character-
izes the time required for the liquid to structurally equili-
brate. Under non-Newtonian flow conditions, the induced
shear produces an amount of free volume, which on one
hand is large enough to cause substantial viscosity degrada-
tion, while on the other, is small enough to be annihilated.
Consequently the flow becomes shear-rate dependent yet it
remains stable, while the flow profile relaxes to its non-
Newtonian limit. The shear rate dependence on flow can be
obtained by setting Eq.~4! to zero, i.e., equating local free
volume production to free volume annihilation:

Rġ5
n2ne

h/G
. ~12!

Substituting Eqs.~1! and~2! into Eq.~12!, a self-consistency
condition for the viscosity at a finite shear rate can be ob-
tained as follows:10

h~T,ġ !5h` expF FanoTo

noa~T2To!1~R/G!ġh~T,ġ !G . ~13!

Equation~13! is essentially an implicit formulation for
the viscosity dependence on temperature and shear rate under
structurally nonequilibrium steady-state conditions. Equation
~13! can be solved numerically over a wide range of tem-
peratures and shear rates. The solution for Vitreloy-1 in the
temperature range of 550–1200 K and shear rate of
10220– 1020 s21 obtained using the Newton–Raphson
method is shown in Fig. 3. At sufficiently low shearing rates
the viscosity remains near its Newtonian limith0 given by
Eq. ~3!, while at excessively high shearing rates the viscosity

approaches its infinite-shear-rate limith` . At any given tem-
perature a range of shear rate exists for which the decaying
dependence of viscosity on shear rate becomes evident. This
decaying range, which varies with temperature, is termed
shear-rate ‘‘stretching’’ and is attributed to free volume pro-
duction, which has a degrading effect on viscosity. It should
be noted, however, that at very high shearing rates and very
low temperatures the solution is not justifiable, as the time
scales characterizing free volume annihilation become exces-
sively large and the assumption of structurally quasistatic
flow breaks down.

In the interest of providing a concise analytical expres-
sion for non-Newtonian steady-state viscosity, an analytic fit
to the numerical solution was carried out. The fitting was
accomplished by considering the limiting cases ofh(ġ
→0)5h0 andh(ġ→`)5h` , and by realizing that a char-
acteristic shear rate is given byG/h` . Moreover, the tem-
perature variation of the shear-rate ‘‘stretching’’ of viscosity
in the non-Newtonian regime was considered. Physically, the
‘‘stretching’’ behavior is attributed to the existence of a spec-
tral distribution of relaxation events, whose average and vari-
ance vary with temperature. In order to accommodate the
temperature variation of the relaxation distribution variance,
a ‘‘stretching’’ shear-rate exponentb(T) was introduced in
the approximation. The fitting formulation is given by

h~T,ġ !5
h0

11~h0 /h`21!tanh$@ ġ/~G/h`!#b~T!%
. ~14!

The temperature dependence of the ‘‘stretching’’ exponent,
which was the only fitting parameter in the approximation,
was approximated by the following polynomial function:

b~T!52.582431027T226.589631024T11.1755.

As shown in Fig. 4, the explicit approximation given by Eq.
~14! accurately fits the implicit formulation given by Eq.~13!
over a wide range of temperature and shear rate. For shear
rates of physical interest (ġ,1010 s21) Eq. ~14! can be sim-
plified considerably as follows:

FIG. 3. Viscosity dependence on shear rate and temperature for Vitreloy-1
computed from Eq.~13!. At low shearing rates and high temperatures, the
viscosity remains near the Newtonian limit governed by the Vogel–Fulcher–
Tamann viscosity law. At higher shearing rates and lower temperatures, the
viscosity dependence on shear rate becomes more pronounced as the free
volume produced by shearing has a degrading effect on viscosity.

FIG. 4. Viscosity dependence on shear rate at different temperatures for
Vitreloy-1 computed from Eqs.~13! and ~14!. The explicit approximation
accurately fits the implicit formulation for the shear rate dependent viscosity
over a wide range of shear rate and temperature.
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h~T,ġ !5
h0

11~h0 /h`!@ġ/~G/h`!#b~T! . ~15!

The shear rate dependency formulation given in Eq.~15!
exhibits functional similarity to empirical formulations em-
ployed in rheological studies for the characterization of non-
Newtonian fluids. In modeling non-Newtonian flows, struc-
turally quasistatic conditions can be assumed such as Eq.~5!
is rendered redundant and Eq.~15! can be used in conjunc-
tion with the momentum equation to accurately predict the
flow evolution.

Energy transport, Eq.~11!, is characterized by a relax-
ation time scaletT,rel;rcpL2/k. This time scale character-
izes the time required for the system to attain thermal equili-
bration. The thermal relaxation time is excessively large
when compared totu,rel , though when small characteristic
lengths are considered, as in the case of serrated flow where
the characteristic length is the shear band spacing, this time
scale could become comparable totn,rel . In the current
study, however, deformation is taken to occur locally in the
bulk liquid such that the characteristic length is essentially
the liquid dimension, which yieldstT,rel@tn,rel . This im-
plies that Eq.~11! would be unconditionally unstable in the
time frame of deformation, as thermal relaxation would not
be possible. The continuous rise in local temperature during
deformation as a consequence of adiabatic heating causes
local thermal expansion of the equilibrium molar volume,
which increases free volume and could further exacerbate
localization. The rate of local thermal expansion of the equi-
librium molar volume, which translates into a rate of in-
crease of free volume, can be approximated bydne /dt
5an0hġ2/rcp . As a matter of fact, in flows of less under-
cooled ~higher temperature! liquids that remain structurally
equilibrated, shear localization could be realized as a sole
consequence of thermal expansion. Shear bands evolving
from such thermally induced localization are termed ‘‘adia-
batic.’’

IV. SIMULATION RESULTS

Initially the melt is taken to be hydrodynamically, ther-
mally, and structurally at equilibrium, i.e., it is considered to
be at rest, at a uniform undercooling temperatureTi and
equilibrium free volumene(Ti). At the channel boundaries,
the no-slip condition is applied for velocity and vanishing
Neumann~adiabatic! conditions are implemented for both
temperature and free volume. The channel half thickness,
which represents the bulk liquid, is taken to beL51 m. The
scientific packageFEMLAB was employed to numerically in-
tegrate the transport equations by means of finite elements.
All simulations were performed using a nonuniform mesh
consisting of 67 linear Lagrange elements having a boundary
element size of 1026 m and a mesh growth rate 1.2 in order
to accommodate the evolution of localization at the bound-
ary. In order to evade numerical instabilities, artificial diffu-
sion along the system characteristics was introduced.

A. Newtonian flow

To investigate the Newtonian flow regime, the initial
temperature is taken to be 700 K and the pressure gradient

1.0 MPa/m, which corresponds to a shear loading of 1.0
MPa. The Newtonian viscosity at 700 K is;83107 Pa s.
Newtonian hydrodynamics dictate that under these condi-
tions the system relaxes at;75 ms to a parabolic profile
characterized by;6.25 mm/s maximum velocity at the cen-
ter line and;1.2531022 s21 maximum shear rate at the
wall.

The transient velocity distribution predicted by the
model under these conditions is shown in Fig. 5. Within 200
ms the velocity appears to have fully relaxed to its Newton-
ian profile. Moreover the flow appears stable at this limit
over extended periods of times, as the distribution calculated
at 1.0 s shows only a slight deviation. This deviation is at-
tributed to insignificant amount of free volume generated at
the wall during the period of 1.0 s that caused a slight reduc-
tion in the wall viscosity. Therefore since the liquid is main-
tained in structural and thermal equilibrium, Eqs.~10! and
~11! are redundant and the flow evolution is dictated solely
by momentum transport.

B. Non-Newtonian flow

To investigate the non-Newtonian flow regime, the ini-
tial temperature is taken to be 675 K and the pressure gradi-
ent 100 MPa/m, which corresponds to a shear loading of
100 MPa. The Newtonian viscosity at 700 K is
;1.23109 Pa s. The steady form of Eq.~9! using the New-
tonian viscosity yields a steady-state parabolic profile char-
acterized by;42 cm/s maximum velocity at the center line
and;8.331022 s21 maximum shear rate at the wall. On the
other hand, the steady form of Eq.~9! using the non-
Newtonian viscosity given by Eq.~15! yields a more local-
ized steady-state profile characterized by;9 cm/s maximum
velocity at the center line and;2.531021 s21 maximum
shear rate at the wall. Such non-Newtonian solution however
assumes isothermal conditions, i.e., ignores any temperature
rise due to adiabatic heating.

The flow evolution computed by the model under these
conditions, along with the steady-state Newtonian and non-
Newtonian profiles obtained from hydrodynamics, are plot-

FIG. 5. Evolution of the velocity profile under 700 K and 1.0 MPa. The
velocity has fully relaxed to its Newtonian profile and appears stable at this
limit over extended periods of times.
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ted in Fig. 6. Instead of relaxing at its Newtonian limit
~shown as the lower dotted line in the plot!, as would be
expected had the flow been Newtonian, the velocity appears
to gradually depart from this limit and within 100 ms to
stabilize at another limit near;10 cm/s. This higher limit is
the non-Newtonian limit associated with the employed flow
conditions. It appears that the steady non-Newtonian solution
obtained using Eq.~15! is sufficiently close to the evolved
profile obtained from solving the complete transport model.
The apparent discrepancy can be attributed to a slight in-
crease in temperature~;0.5 K!, which was correctly ac-
counted for in the complete simulation but was ignored in
the steady-state modeling. The temperature rise contributed
to further viscosity degrading at the wall due to thermal ex-
pansion. This result hence suggests that the developed trans-
port model is reliable in modeling non-Newtonian flows
since the computed flow evolution appears to be stabilized
near a profile that can be obtained independently by assum-
ing structurally static conditions.

In order to further exemplify the system’s stabilization to
a structural steady state, the evolution of free volume distri-
bution is plotted in Fig. 7. The plot suggests that free volume
departs from its equilibrium valuean0(T2T0) and gradu-
ally stabilizes at a nonequilibrium linear distribution. This
distribution can be obtained independently by means of Eq.
~12! as an0(T2T0)1Rġh/G, where ġh5p8x[s. It can
therefore be concluded that under conditions that imply non-
Newtonian flow, the model correctly computes the system’s
structural evolution towards a steady nonequilibrium state.

C. Shear localization

To investigate the shear localization flow regime, the ini-
tial temperature is taken to be 650 K, while a pressure gra-
dient of 2.0 GPa/m is assumed corresponding to a shear load-
ing of 2.0 GPa. This shear loading is equal to the material
shear strength and is the maximum shear loading for which
the validity of the model can be sustained.

The system’s transient flow response to the induced
shear loading is shown in Fig. 8. The plot suggests that the
flow departs from its Newtonian limit, however it does not
appear to stabilize at another limit but continuously localizes
by becoming flatter in the core and steeper near the wall. The
flow advancement after localization is concluded, shown in
the insert in Fig. 8, suggests that the flow ultimately tends to
accelerate unconstrained towards its inviscid~rigid-body
translation! limit of ]u/]t→p8/r. The transient distribution
of shear rate is plotted in Fig. 9. The plot suggests that the
shear rate distribution departs from its linear Newtonian
value and localizes near the wall, where it gradually ap-
proaches a spike-like function tending to blowup. A shear
rate distribution that blows up at the point of localization,
i.e., a Delta-function distribution, could be perceived as a
mathematical representation of a shear band. Hence the shear
rate evolution in Fig. 9 could be regarded as the evolution of

FIG. 6. Evolution of the velocity profile under 675 K and 100 MPa. The
velocity gradually departs from its Newtonian limit~lower dotted line! and
stabilizes at a non-Newtonian one associated with the flow conditions. The
non-Newtonian limit can be evaluated independently~upper dotted line! by
considering the shear-rate dependency of flow.

FIG. 7. Evolution of free volume distribution under 675 K and 100 MPa.
Free volume departs from its equilibrium valuean0(T2T0) and gradually
stabilizes at a linear nonequilibrium distribution given byan0(T2T0)
1Rġh/G, as dictated by structurally steady-state conditions.

FIG. 8. Evolution of the velocity profile under 650 K and 2.0 GPa. The flow
departs from its Newtonian limit and continuously localizes by becoming
flatter in the core and steeper near the wall. The flow advancement after
localization is concluded~shown in the insert! suggests that the flow ulti-
mately tends to accelerate unconstrained towards its inviscid~rigid-body
translation! limit.
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a shear band during a single serration. The evolution of tem-
perature distribution, plotted in Fig. 10, exemplifies the
gradual production of energy as a consequence of adiabatic
heating. The plot suggests that during the development of
shear localization, the temperature rises locally by several
degrees. However as localization sets in, the model predicts
that temperature rises by several hundreds of degrees ap-
proaching the melting point~not shown!. This outcome is
consistent with experimental observations.

Under the conditions considered here, the shear loading
applied to the system is excessively high and contributes to a
very high amount of free volume being produced, which fails
to annihilate as the relaxation time associated with these con-
ditions is also high. Consequently the system is driven out of
structural and thermal equilibrium towards an unstable state
characterized by continuous shear localization. Experimental
observations on shear band formation suggest that shear lo-

calization is associated with viscosity degradation, which is a
consequence of free volume production. The evolution of
free volume distribution, plotted in Fig. 11, exemplifies the
gradual production of free volume as a consequence of
shearing. It is worth noting that only part of the free volume
produced should be attributed to liquid disordering, as sig-
nificant thermal expansion also takes place as a consequence
of adiabatic heating, which causes the equilibrium free vol-
ume to increase locally. In order to quantify the deviation
from structural equilibrium, the fraction (n2ne)/(n2n0) is
computed locally and its evolution is plotted in Fig. 12. It
appears that the system’s deviation from structural equilib-
rium is higher in the vicinity of localization and evolves in
time. This suggests that structural nonequilibration could
eventually approach 100% when localization sets in. The
evolution of viscosity degradation owing to free-volume pro-

FIG. 9. Evolution of shear rate distribution under 650 K and 2.0 GPa. The
shear rate distribution departs from its linear Newtonian value and localizes
near the wall, where it gradually approaches a spike-like function tending to
blow up. The evolution of shear rate distribution could be regarded as the
evolution of a shear band in a bulk liquid during a single serration.

FIG. 10. Evolution of temperature distribution under 650 K and 2.0 GPa.
The evolution of temperature distribution exemplifies the gradual production
of energy as a consequence of adiabatic heating. During the development of
shear localization, the temperature rises locally by several degrees.

FIG. 11. Evolution of free volume distribution under 650 K and 2.0 GPa.
The evolution of free volume distribution exemplifies the gradual production
of free volume as a consequence of shearing. Only part of the free volume
produced should be attributed to liquid disordering, as significant free vol-
ume is generated as a consequence of thermal expansion due to temperature
rise.

FIG. 12. Fraction of free volume produced by liquid disordering under 650
K and 2.0 GPa. The fraction of generated free volume that can be attributed
to disordering is higher in the vicinity of localization and evolves in time,
suggesting that it could eventually reach 100% when localization sets in.
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duction is shown in Fig. 13. As expected, the plot suggests
that during a single serration the local viscosity in the vicin-
ity of localization is reduced dramatically by several orders
of magnitude.

V. DISCUSSION

The developed transport model appears to successfully
simulate the flow characteristics of three distinct flow modes,
Newtonian, non-Newtonian, and shear localization. The
model is based on a free volume production-rate equation,
which comprises free volume creation and annihilation rates
whose characteristics are optimized to flow experiments.1,10

Therefore, it would be of interest to examine whether the
flow simulations yield temperature and shear rate evolutions
that could computationally reproduce the experimental flow
diagram of Fig. 2.

In Fig. 14 the computed evolution of temperature and

shear rate in the last five time steps for each set of conditions
is superimposed on the experimental flow map. In the case of
700 K and 1.0 MPa the simulation yields static shear rate and
temperature responses, i.e., Newtonian flow characteristics,
which fall within the experimental Newtonian flow regime.
In the case of 675 K and 100 MPa the simulation yields
rather transient shear rate and temperature responses, which
eventually stabilize. These are non-Newtonian flow charac-
teristics, and incidentally appear to be bounded within the
experimental non-Newtonian flow regime. In the case of 650
K and 2.0 GPa, the simulation yields highly transient shear
rate and temperature responses, which appear to become un-
stable. These are characteristics of shear localization. Al-
though the instability will grow further in time, it appears
that the evolution would be bounded within the shear local-
ization regime. Figure 14 therefore suggests that the model is
capable to computationally reproduce the experimental flow
map.

The simulation results indicate that the nature of flow
evolution is essentially dictated by the structural state of the
system, which is determined by a balance between free vol-
ume creation and free volume annihilation as given by Eq.
~4!. In order to gain more quantitative insight into the origins
of each flow mode, a time scale analysis of Eq.~4! is carried
out. To characterize free volume creation, a time scale can be
formulated astn,cre;(ġ)21a(Ti2To)/(R/no). The time
scale characterizing free volume relaxation, as used in for-
mulating Eq.~4!, is given bytn,rel;h/G. Therefore the ratio
of this two time scales yields a dimensionless number that
could characterize the structural state of the system

tn,rel

tn,cre
52

R/no

a~Ti2To!

s

G
. ~16!

A proportionality constant of 2 was incorporated to accom-
plish consistency with the experimental data. Small values of
this dimensionless number would indicate that free volume
can be annihilated at a much greater rate than can be created
and consequently the liquid would be structurally maintained
in stable equilibrium, as Eq.~4! yieldsn'ne(Ti). Therefore
small values would indicate tendency to Newtonian flow. A
value near unity suggests that the rates of free volume cre-
ation and free volume annihilation are similar, which implies
that structurally the liquid would be maintained in a virtual
steady state, however it would be far from equilibrium as Eq.
~4! yields n'ne1Rs/G. Hence values near unity would
indicate a tendency to non-Newtonian flow. Accordingly,
large values of this parameter would indicate that free vol-
ume can be created at a much greater rate than it can be
annihilated and consequently the liquid would be structurally
driven out of equilibrium as well as out of stability, which
are characteristics of shear localization. The characteristic
numbers that correspond to the sets of conditions employed
in this study, which are tabulated in Table I, are in compli-
ance with the above reasoning.

VI. CONCLUSIONS

A free volume transport equation was formulated by
considering a model of local production rate of free volume,

FIG. 13. Evolution of viscosity degradation under 650 K and 2.0 GPa.
During a single serration the local viscosity in the vicinity of localization is
reduced by 3 orders of magnitude.

FIG. 14. Computed flow evolutions superimposed on the experimental flow
diagram. The temperature and shear rate evolutions computed by the model
are bounded within the corresponding experimental flow regimes. This sug-
gests that the model is capable of computationally reproducing the experi-
mental flow diagram.
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which comprises free volume creation and annihilation rates
that are calibrated to experimental flow data in a self-
consistent manner. The free volume transport equation was
coupled with momentum and energy transport via viscosity
to formulate a system of transport equations to govern the
flow of undercooled glass forming liquids. The model was
implemented to study the flow behavior of Vitreloy-1 in 1D
pressure driven flow.

Experiments on the flow behavior of Vitreloy-1 suggest
three distinct modes of flow: Newtonian, non-Newtonian,
and localized flow. Each flow mode is associated with a
range of shearing rates and temperatures, which extends
above glass transition into the undercooled liquid region. The
model’s capability in simulating the characteristics of each
flow mode under different temperature and shear loading
conditions is evaluated. For the conditions of 700 K and 1.0
MPa, the model predicts that the flow profile gradually sta-
bilizes to its Newtonian limit and the liquid is maintained in
structural and thermal equilibrium. For the conditions of 675
K and 100 MPa, the model predicts that the flow profile
departs from its Newtonian limit and gradually stabilizes to
another higher limit, a non-Newtonian one, which is associ-
ated with a steady nonequilibrium free volume distribution.
The non-Newtonian limit has been evaluated independently
by considering the shear-rate dependency of flow, which can
be obtained by equating the rates of free volume creation and
annihilation, as implied by a structural steady state. For the
conditions of 650 K and 2.0 GPa, the model predicts that the
flow departs from its Newtonian limit, however it does not

stabilize at another limit but continuously localizes and ulti-
mately accelerates unconstrained. Consequently the system
is driven out of structural and thermal stability towards an
unstable state associated with unconstrained free volume
generation, viscosity degradation, and temperature rise.

The temperature and shear rate evolutions computed by
the model are superimposed on a temperature-shear rate dia-
gram, and appear to be bounded within the corresponding
experimental flow regimes. Therefore it can be concluded
that the model is capable to computationally reproduce the
experimental flow diagram. The system’s structural state that
appears to dictate flow behavior is quantified by a dimen-
sionless number, which results from a time scale analysis of
the free volume production equation.
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TABLE I. Values of the dimensionless number characterizing the system’s
structural state for the conditions considered in the simulation.

Ti5700 K
s51.0 MPa

Ti5675 K
s5100 MPa

Ti5650 K
s52.0 GPa

tn,rel /tn,cre 0.0075 0.82 18.2
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