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Modeling the transient flow of undercooled glass-forming liquids
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In a recent experimental study on flow behavior of Vitreloy-1,2ETi,5 7:Cu;» Ni;Bey, o), three

distinct modes of flow are suggested: Newtonian, non-Newtonian, and localized flow. In a
subsequent study, the experimental flow data is utilized in a self-consistent manner to develop a rate
equation to govern local free volume production. In the present study the production-rate equation
is transformed into a transport equation that can be coupled with momentum and energy transport
via viscosity to formulate a model capable to govern the flow of undercooled glass forming liquids.
The model is implemented to study the flow behavior of undercooled Vitreloy-1 melt. For a
temperature of 700 K and shear loading of 1.0 MPa, the model predicts that the flow profile
gradually stabilizes to its Newtonian limit while the liquid is maintained in structural and thermal
equilibrium. For the conditions of 675 K and 100 MPa, the model predicts that the flow profile
departs from its Newtonian limit and gradually stabilizes to a non-Newtonian limit. The
non-Newtonian profile is evaluated independently by considering structurally quasistatic conditions,
which yield the shear-rate dependency of flow. For the conditions of 650 K and 2.0 GPa, the model
predicts that the flow continuously localizes and ultimately accelerates unconstrained, while the
system is driven out of structural and thermal equilibration towards an unstable state associated with
free volume generation, viscosity degradation, and temperature rise. The computed temperature and
shear rate evolutions for the three distinct flow modes are superimposed on a temperature-shear rate
diagram and appear to computationally reproduce the experimental flow map. The system’s
structural state that appears to dictate flow behavior is quantified by a dimensionless number, which
results from a time scale analysis of the free volume production equatior200@ American
Institute of Physics.[DOI: 10.1063/1.1645669

I. INTRODUCTION outlines the boundaries between three distinct flow modes:
Newtonian, non-Newtonian, and shear localization. Newton-
Within the theoretical mechanics community, the studyian flow is realized at high temperatures and low shearing
of shear band formation has been a topic of ongoing interestates and is maintained independent of shear rate. Non-
It has been conventionally perceived that shear bands forrRewtonian flow is realized at moderate temperatures and
upon deformation close to or below glass transition, and thushearing rates and is essentially shear-rate dependent, how-
most of the early work was devoted to shear band formatiorver the dependency arises as a consequence of structural
in metallic glasses. Production experiments by Liquid-stabilization in the liquid which contributes to the flow re-
metal Technologies on injection casting of Vitreloy-1 maining stable. Shear localization is realized at low tempera-
(Zrg1 28Ti13 74CuUp, NijBey, 5), however, indicate that shear tures and high shearing rates. Under those conditions the
bands may also form upon deformation above glass transftow becomes extremely sensitive to shear rate and as a con-
tion in the deeply undercooled liquid region. Figure 1 showssequence it is driven out of stability. The plot suggests that
an angular corner of a Vitreloy-1 cast part. During moldthe range of temperature and shearing rate associated with
filling of this part the melt was maintained above glass transhear localization which contributes to shear banding is not
sition temperature, which implies that material deformationbounded by glass transition but carries onto the deeply un-
occurred in the undercooled liquid state. A zoom in the andercooled liquid region, hence providing further evidence for
gular corner reveals the existence of multiple shear bands. §hear banding in undercooled liquids.
appears that around the angular corner where the molten melt Shear localization in undercooled liquids and glasses is
had to undergo extremely high shearing ra&sarp change in fact caused by a local reduction in viscosity in the vicinity
in speed and directionthe flow became localized and ulti- of a stress concentration, and evolves to dramatically in-
mately evolved into serrated flow generating multiple sheaerease and confine the deformation until it approaches a local
bands perpendicular to the flow direction. instability, which is termed shear band. The decrease in vis-
Recently Luet al* carried out an experimental study on cosity during deformation is a consequence of increasing free
the flow behavior of Vitreloy-1. An experimental flow dia- volume and thus decreasing density, which severely reduces
gram is produced, which is presented in Fig. 2. The diagranthe material’s resistance to deformation. Early workden-
tified two potential origins of shear localization: thermal ex-
dAuthor to whom correspondence should be addressed; electronic maiPansion of molar volume induced by adiabatic heating which
marios@caltech.edu causes the free volume to increase, and structural disordering
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FIG. 2. Results from Vitreloy-1 flow experiments carried out by etual.

(Ref. 1. The boundaries for the transition from Newtonian to non-
Newtonian flow and from non-Newtonian to localized flow are shown. Each
flow mode is associated with a range of shearing rates and temperatures,
which extends above glass transitidg into the undercooled liquid region.

Bossuytet al!! extended the model to include transient ef-
fects and simulated the stress—strain response during defor-
mation.

In the present study, the rate equation governing free
volume production developed by Johnsenall® is trans-
formed into a transport equation, which under the assump-
tion of incompressible flow it can be regarded as a conser-
vation equation for free volume. This equation is coupled
with the conservations of momentum and energy via viscos-

: - e R - ity to form a complete transport model applicable
Fluid Flow o7 to bulk glass-forming liquids(such as those of the
Zr—Ti—Ni—Cu—Be Vitreloy alloy family undergoing defor-

FIG. 1. Acorner from a Vitreloy-1 cast part produced by Liquidmetal Tech- mation. The developed transport model is capable of com-
nologies. Around the angular corner the melt had to undergo excessivel‘%

thing transient free volume distributions as dictated by adia-
atic heating and structural disordering, and hence
simulating the transient flow evolution. The model is imple-
mented to simulate the transient flow of Vitreloy-1 under

. L . . asymmetric shear loading, as such loading could trigger
in the liquid induced by shear which contributes to free VOl'shear localization. The simplest flow model that involves

ume creation. Although significant heating is generated dur-

) L . o . asymmetric shear is the one dimensioniaD) pressure
ing shear localization, recent evideficéindicates that adia- drii//en flow. or “Poiseille” flow. in which thr(e sgegr loading

i . ) ¥s imposed at the channel wall by the applied pressure gra-
to be triggered by structural disordering. A model based.orbient. The aim of this study is to assess the potential of the

nd structural disordering would form an rooriate b igmodel in simulating the flow characteristics of the three flow
and structurai disordering would form an appropriate basig, ,qqq jiystrated on the experimental flow map in Fig. 2.

for understanding the mechanisms triggering shear localiza-
tion. 0. _ Il. FREE VOLUME TRANSPORT MODEL

More recently Johnsoat al.” utilized the experimental
flow data of Luet al! in a self-consistent manner to formu- ~ Assuming the validity of Vogel-Fulcher—Tamann equa-
late a simple constitutive flow law applicable to glass form-tion far from the Newtonian limit, the viscosity dependence
ing metallic liquids undergoing steady flow. The model, on free volume may be expressed in the fftm
which is essentially a simple treatment of free volume pro- Dav,T,
duction and annihilation during flow, is based on the assump-  5(v)= 7., ex;:< —) ,
tion that shearing results in the creation of free volume such V= Vo
as a relationship between free volume and shear rate is olwherev is the molar volumey, is the molar volume at the
tained by a self-consistency argument. The flow law was/ogel-Fulcher—Tammann temperatdrg, v— v, is the free
implemented to obtain the viscosity dependence on sheawlume, ® is the liquid “fragility” index, and « is the vol-
rate under structurally steady-state conditions. More recentlyme thermal expansion coefficief@ssumed temperature in-

high shearing rates. Consequently the flow became localized and develop
serrations generating multiple shear bands across the flow direction.

@
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dependent The infinite-shear-rate limit of viscosity can be £

approximated asy..=h,N,/ve, whereh,, is Planck’s con- P EJFU'VU) =V-(ny)-Vp, 7
stant,N, is Avogadro’s number, and, is the molar volume

of a relaxed liquid, i.e., the molar volume of a liquid under aT o

structural equilibration dictated only by temperature. Its tem- P\ 3¢ TU- VT) =V (kVT)+7(y:y), 8

erature dependence is given b
b P g y wherep is pressurep is the densityc, is the specific heat,

ve=vo[1+a(T—T,)]. 2) andk is the thermal conductivity. Equation§)—(8) repre-
sent a set of transport equations coupled through viscosity,
It is worth noting that the limit of viscosity at the equilibrium shear rate, and temperature. This set of equations could ad-
free volume,n(v— ve), is the Newtonian limitp, given by  equately simulate the transient flow evolution of bulk glass-
forming liquids under deformation. Moreover provided that a
70(T) = 7. ex% T, ) 3 suitable adaptive mesh is employed, the evolution of shear
T-T, instabilities, which arise as a consequence of the highly non-
linear dependence of viscosity on free volureg. (1)],
could be accommodated. However as this model is based on

For Vitreloy-1, the parameters above take the following val-

. — . — . _ —6 3 .
ue_ssTé,2—x41102_5K,Kd_>l— 19.8;7,=9.766<10"* m’/mole; and the assumption of continuum in the vicinity of localization, it
a=e ' would fail to simulate a shear band as it stands physically,

or desrir;lear\l/:/qr?icuhngg; atl)gmtfai?iﬁ:(rj r?tegzg:ii;]ng:{qgiged;:'volj.e., having finite thickness and being associated with a finite
g, wh q y crez . shear rate, but would tend to model a shear band in a more
ume proportional to the total shear strainigg= Ry, where

th rameteR is the free volume creation fficient and mathematical sense, i.e., as a mathematical instability char-
€ parameter 1s e free volume creation coeticient and ;o ;6 by zero thickness and associated with an infinite
describes the molar volume produced by a unit plastic She%rhear rate

strain. For Vitreloy-1, this parameter was determined by op- In the context of this study, the system of equations is

Tmization i 10 —
timization in the study of Johnscet al: ™10 beR=0.1%,. simplified and solved for the case of 1D pressure-driven flow

The_hgr(ctezsbfreelvolt:_me cfretﬁte(: ?31 ;shear \?”" te?d todb?PoiseuiIIe flow in a channel of thicknessl2 Although
anniriated by retaxation of the lotal Iree volume towar Soverly simplified, such flow conditions in their unstable limit

fgzift:gr?qt'imzﬁgr r\‘ztsioosfitregxglrgnitgaen Eﬁb:ﬁjﬁe\?alﬁ)etggwould replicate the instabilities associated with shear band
y d initiation during a single serration. From this perspective,

VlreFt_(Vl; T]e)/T”’fet'r'] In th?. S|m;zllest Imoldel ftc_)r I'?.u'd \./'Sfol; this study constitutes a valuable means for analyzing the dy-
€lastic behavior the configurational refaxation Ume 1S aKefy, , ;s of shear banding in bulk liquids. The transport equa-
as 7, = n(v)/G, whereG is the isoconfigurational liquid

shear modulus in the high-frequency limit and can be appons simplified for Poiseuille flow are

proximated by the static shear modulus of low temperature ou_d au ,
glass(33 GPa for Vitreloy-1. The local time-rate of change Pt~ ox| 7V x| TP ©
of free volume can then be expressed as
Jdv__|du V— Ve 10
dv . v, ot |ax| p(v)IG’ (10
at Vere™ Vrel= RY— 7]/—G’ (4)
aT _a [ aT au\?
Assuming continuum in the vicinity of localization and in- pcpﬁ_ x| ax +n(v) ax) (D

troducing a transport field that can accommodate free vol- , . Lo .
. e . . where p’ is the applied pressure gradiept=M/v is the
ume convection and diffusion, a conservation equation gov-

erning free volume transport mav be derived as density M =0.0603 kg/mole for Vitreloy, while the shear
9 P y rate is simplyy=|du/dx| The specific heat is given by,
_— =(1/M)(24.9+7.5x10 °T+8.17x 10°/T?) J/kgK,** and

2% v
—+4u-Vy=V.(DV»)+Ry— ——, (5)  the thermal conductivity bk=0.0163 +0.8407 W/m K4
at nlG e

Free volume diffusion is neglected.

whereu is the velocity field. In such transport field, the shear

rate tensor is given ag=Vu+(Vu)', and its magnitude as ;. ANALYSIS

y=+1/2(y:%). The free-volume diffusivityD can be taken

as equivalent to the liquid self-diffusion coefficient, since ~ Momentum transport, E¢{9), is characterized by a re-

free volume diffusion essentially implies atomic rearrangeJaxation time Slca|9u,re|~_PL2/77- This relaxation time char-

ment. However since diffusion coefficients characterizingdcterizes the time required for the flow profile to develop its

such liquids are extremely small, the diffusive divergence inNewtonian distribution, which for such 1D flow is parabolic.

Eq. (5) turns out to be insignificant. However if substantial deformation is sustained fobr
Practically, Eq.(5) could be coupled to the transport > Turel: further evolution of the profile could be realized.

equations that govern conservation of mass, momentum anthe Post-Newtonian flow evolution can be taken to progress

energy given, respectively, below quasistatically, i.e.pdu/dt=0, which implies that the shear
loading, defined asr= 7(t) y(t)=p’x, would remain con-
V-u=0, (6) stantin time. This suggests that the viscosity degrades at the

Downloaded 14 Dec 2005 to 131.215.225.171. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



2860 J. Appl. Phys., Vol. 95, No. 5, 1 March 2004 M. D. Demetriou and W. L. Johnson

0
© 10
g:/ 10 -
= 7
2 g
g =
2 R
2 = 10
2
8 1000 K
> 5
10 300 K
—— Implicit formulation
g | — Explicit approximation
10' 1 1 1
107 107 1° 10'° 10”
FIG. 3. Viscosity dependence on shear rate and temperature for Vitreloy-1 Shear Rate, ¥ (s)

computed from Eq(13). At low shearing rates and high temperatures, the

viscosity remains near the Newtonian limit governed by the Vogel—Fulcher-FIG. 4. Viscosity dependence on shear rate at different temperatures for
Tamann viscosity law. At higher shearing rates and lower temperatures, th¥itreloy-1 computed from Eqs(13) and (14). The explicit approximation
viscosity dependence on shear rate becomes more pronounced as the fegeurately fits the implicit formulation for the shear rate dependent viscosity
volume produced by shearing has a degrading effect on viscosity. over a wide range of shear rate and temperature.

approaches its infinite-shear-rate limit . At any given tem-

same rate as the shear rate evolves such that their productperature a range of shear rate exists for which the decaying
is maintained constant in time. Since nonlinear elasticitygependence of viscosity on shear rate becomes evident. This
theory is not incorporated in the model, the shear loadinggecaying range, which varies with temperature, is termed
considered in this Study were taken not to exceed the mat%'hear_rate “Stretching" and is attributed to free volume pro-
rial shear strengttr-2.0 GPa for Vitreloy-1so as to warrant  duction, which has a degrading effect on viscosity. It should
the validity of the model. be noted, however, that at very high shearing rates and very

Free volume transport, Eq10), is characterized by a |ow temperatures the solution is not justifiable, as the time
relaxation time scale, ¢~ 7/G. This time scale character- scales characterizing free volume annihilation become exces-
izes the time required for the liquid to structurally equili- sjvely large and the assumption of structurally quasistatic
brate. Under non-Newtonian flow conditions, the inducedfiow breaks down.
shear produces an amount of free volume, which on one |n the interest of providing a concise analytical expres-
hand is large enough to cause substantial viscosity degradaion for non-Newtonian steady-state viscosity, an analytic fit
tion, while on the other, is small enough to be annihilatedtp the numerical solution was carried out. The fitting was

Consequently the flow becomes shear-rate dependent yetd&complished by considering the limiting cases ofy
remains stable, while the flow profile relaxes to its non-_,0)= 5, and n(y— =)= 7., and by realizing that a char-

Newtonian limit. The shear rate dependence on flow can bgcteristic shear rate is given 16§/ 7... Moreover, the tem-
obtained by setting Eq4) to zero, i.e., equating local free perature variation of the shear-rate “stretching” of viscosity
volume production to free volume annihilation: in the non-Newtonian regime was considered. Physically, the
I “stretching” behavior is attributed to the existence of a spec-

Ry= . (12 tral distribution of relaxation events, whose average and vari-

7lG ;
ance vary with temperature. In order to accommodate the

Substituting Eqs(1) and(2) into Eq.(12), a self-consistency temperature variation of the relaxation distribution variance,
condition for the viscosity at a finite shear rate can be oba “stretching” shear-rate exponeyit(T) was introduced in
tained as follows? the approximation. The fitting formulation is given by

T. )= F{ Dav,T, 13 N 70
L TS e A CTeT 2 i) e LA e PR PR e BV P LA

Equation(13) is essentially an implicit formulation for The temperature dependence of the “stretching” exponent,
the viscosity dependence on temperature and shear rate undegtiich was the only fitting parameter in the approximation,
structurally nonequilibrium steady-state conditions. Equationvas approximated by the following polynomial function:

(13) can be solved numerically over a wide range of tem- _ _

peratures and shear rates. The solution for Vitreloy-1 in the B(T)=25824<10 'T?~6.5896< 10 T+ 1.1755.
temperature range of 550-1200 K and shear rate ofs shown in Fig. 4, the explicit approximation given by Eq.
107 2°-10°s ! obtained using the Newton—Raphson (14) accurately fits the implicit formulation given by Ed.3)
method is shown in Fig. 3. At sufficiently low shearing ratesover a wide range of temperature and shear rate. For shear
the viscosity remains near its Newtonian limji given by  rates of physical interestf<10'° s™1) Eq. (14) can be sim-

Eq. (3), while at excessively high shearing rates the viscosityplified considerably as follows:

(14)
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The shear rate dependency formulation given in Bdp)
exhibits functional similarity to empirical formulations em-
ployed in rheological studies for the characterization of non-
Newtonian fluids. In modeling non-Newtonian flows, struc-
turally quasistatic conditions can be assumed such as5Eq.
is rendered redundant and E@5) can be used in conjunc-
tion with the momentum equation to accurately predict the 0.002}
flow evolution.

Energy transport, Eq11), is characterized by a relax- 0.001r
ation time scalerT,re|~pch2/k. This time scale character- . . . . .
izes the time required for the system to attain thermal equili- 0 0.2 0.4 06 08 1
bration. The thermal relaxation time is excessively large x/L
when compared ta ¢, though when small characteristic g, 5. Evolution of the velocity profile under 700 K and 1.0 MPa. The
lengths are considered, as in the case of serrated flow whevelocity has fully relaxed to its Newtonian profile and appears stable at this
the characteristic length is the shear band spacing, this timinit over extended periods of times.
scale could become comparable t9 .. In the current
study, however, deformation is taken to occur locally in the ) )
bulk liquid such that the characteristic length is essentially}-0 MPa/m, which corresponds to a shear Ioad7|ng of 1.0
the ||qU|d dimension, which yields-T,rel> Tyrel This im- MPa. The Newtonian V|'SCOS|t[y at 700 K ts8X 10" Pas. .
plies that Eq.(11) would be unconditionally unstable in the Newtonian hydrodynamics dictate that under these condi-
time frame of deformation, as thermal relaxation would notions the system relaxes at75 us to a parabolic profile
be possible. The continuous rise in local temperature duringharacterized by-6.25 [nzm/_slmaxn_num velocity at the cen-
deformation as a consequence of adiabatic heating causky liné and~1.25<10"% s** maximum shear rate at the
local thermal expansion of the equilibrium molar vqume,Wa”' . ) o )
which increases free volume and could further exacerbate 1€ transient velocity distribution predicted by the
localization. The rate of local thermal expansion of the equi-M0de! under these conditions is shown in Fig. 5. Within 200
librium molar volume, which translates into a rate of in- #S the velocity appears to have fully relaxed to its Newton-
crease of free volume, can be approximated chy,/dt ian profile. Moreoyer the .row appears .sta}ble'at this limit
_ avon'yzlpcp- As a matter of fact, in flows of less under- ©Ver extended periods of_ times, as _the dlst_rlbutlo_n Qalcylated
cooled (higher temperatupeliquids that remain structurally &t 1.0 S shows only a slight deviation. This deviation is at-
equilibrated, shear localization could be realized as a solfibuted to insignificant amount of free volume generated at
consequence of thermal expansion. Shear bands evolvirfj€ Wall during the period of 1.0 s that caused a slight reduc-
from such thermally induced localization are termed «adia-tion in the wall viscosity. Therefore since the liquid is main-

(T, y)=

o
=]
S
O

0.004F

0.003r

Velocity, u (m/s)

batic.” tained in structural and thermal equilibrium, E¢%0) and
(11) are redundant and the flow evolution is dictated solely
IV. SIMULATION RESULTS by momentum transport.

Initially the melt is taken to be hydrodynamically, ther-
mally, and structurally at equilibrium, i.e., it is considered to
be at rest, at a uniform undercooling temperatiifeand To investigate the non-Newtonian flow regime, the ini-
equilibrium free volumevy(T;). At the channel boundaries, tial temperature is taken to be 675 K and the pressure gradi-
the no-slip condition is applied for velocity and vanishing ent 100 MPa/m, which corresponds to a shear loading of
Neumann(adiabati¢ conditions are implemented for both 100 MPa. The Newtonian viscosity at 700 K is
temperature and free volume. The channel half thickness: 1.2x10° Pas. The steady form of E() using the New-
which represents the bulk liquid, is taken tolbe 1 m. The tonian viscosity yields a steady-state parabolic profile char-
scientific packag&EMLAB was employed to numerically in- acterized by~42 cm/s maximum velocity at the center line
tegrate the transport equations by means of finite elementgnd~8.3x10 2 s~* maximum shear rate at the wall. On the
All simulations were performed using a nonuniform meshother hand, the steady form of E9) using the non-
consisting of 67 linear Lagrange elements having a boundarlifewtonian viscosity given by Eq15) yields a more local-
element size of 10° m and a mesh growth rate 1.2 in order ized steady-state profile characterized-b§ cm/s maximum
to accommodate the evolution of localization at the boundvelocity at the center line anet2.5x1071 s™1 maximum
ary. In order to evade numerical instabilities, artificial diffu- shear rate at the wall. Such non-Newtonian solution however
sion along the system characteristics was introduced. assumes isothermal conditions, i.e., ignores any temperature
rise due to adiabatic heating.

The flow evolution computed by the model under these

To investigate the Newtonian flow regime, the initial conditions, along with the steady-state Newtonian and non-
temperature is taken to be 700 K and the pressure gradieiewtonian profiles obtained from hydrodynamics, are plot-

B. Non-Newtonian flow

A. Newtonian flow
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FIG. 6. Evolution of the velocity profile under 675 K and 100 MPa. The |G, 7. Evolution of free volume distribution under 675 K and 100 MPa.

velocity gradually departs from its Newtonian linflower dotted ling and Free volume departs from its equilibrium valueo(T—T,) and gradually
stabilizes at a non-Newtonian one associated with the flow conditions. Thgapjlizes at a linear nonequilibrium distribution given laywo(T—To)

non-Newtonian limit can be evaluated independefilyper dotted lingby +Ry7/G, as dictated by structurally steady-state conditions.
considering the shear-rate dependency of flow.

R _ , . e The system’s transient flow response to the induced
ted in Fig. 6. Instead of relz_ixmg at its Newtonian limit shear loading is shown in Fig. 8. The plot suggests that the
(shown as the lower dotted line in the ploas would be 4, genarts from its Newtonian limit, however it does not
expected had the flow been_Neyvtpnlan, thg yelocny appear&ppear to stabilize at another limit but continuously localizes
to gradually depart from this limit and within 100 ms to by becoming flatter in the core and steeper near the wall. The

sr:abilize at anotr_]er Il'm't nearl_o crg/s.. Lhiﬁ highe: Iimg IfT flow advancement after localization is concluded, shown in
the non-Newtonian limit associated with the employed flowy,q ingert in Fig. 8, suggests that the flow ultimately tends to

conditions. It appears that the steady non-Newtonian S°|Uti°Qccelerate unconstrained towards its inviscidid-body

obtained using Eq(15) is sufficiently close to the evolved translation limit of gu/dgt—p’/p. The transient distribution

profile obtained from solving the complete transport model.Of shear rate is plotted in Fig. 9. The plot suggests that the

The apparent discrepancy can bﬁ_ar':trlbuted to alsllght Mshear rate distribution departs from its linear Newtonian
creasedw; te_mpﬁraturevcl).S K), WI Ic WSS correctly az_ value and localizes near the wall, where it gradually ap-
counted for In the complete simulation but was ignored I, ., hes a spike-like function tending to blowup. A shear
the steady-state modeling. The temperature rise contribut

further vi it d it h I d h | te distribution that blows up at the point of localization,
to further viscosity degrading at the wall due to therma €X’i e., a Delta-function distribution, could be perceived as a

pansion. This result hence suggests that the developed UraNFathematical representation of a shear band. Hence the shear

port model is reliable in modeling non-Newtonian flows \o40 eyolution in Fig. 9 could be regarded as the evolution of
since the computed flow evolution appears to be stabilized

near a profile that can be obtained independently by assum-

ing structurally static conditions. 045
In order to further exemplify the system’s stabilization to St1ems
a structural steady state, the evolution of free volume distri- 04y tdms
bution is plotted in Fig. 7. The plot suggests that free volume 0.35}
departs from its equilibrium valuevy(T—T,) and gradu- % osh
ally stabilizes at a nonequilibrium linear distribution. This g
distribution can be obtained independently by means of Eq. s 025
(12) as avy(T—Ty)+Ry7/G, where ynp=p’'x=oc. It can Z o2
therefore be concluded that under conditions that imply non- g
Newtonian flow, the model correctly computes the system’s = 08
structural evolution towards a steady nonequilibrium state. 01}
0.051
C. Shear localization ol— . . . \
0 02 04 /L 06 0.8 1

To investigate the shear localization flow regime, the ini-
tial temperature is taken to be 650 K, while a pressure grariG. 8. Evolution of the velocity profile under 650 K and 2.0 GPa. The flow
dient of 2.0 GPa/m is assumed corresponding to a shear loadeparts from its Newtonian limit and continuously localizes by becoming
ing of 2.0 GPa. This shear Ioading is equal to the materi Iatte_r in the_ core and steeper near the wall. The flow advancement_ after

. . . . _localization is concludedshown in the inseytsuggests that the flow ulti-
shear strength and is the maximum shear loading for whiChately tends to accelerate unconstrained towards its invisigiti-body

the validity of the model can be sustained. translation limit.
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FIG. 9. Evolution of shear rate distribution under 650 K and 2.0 GPa. TheFIG' 11. Evolution of free volume distribution under 650 K and 2.0 GPa.

shear rate distribution departs from its linear Newtonian value and Iocalize;rfhfe evolultlon of free volume d'smbuft'oﬂ eX(_emplglels the grafdl;]al ;)roducron
near the wall, where it gradually approaches a spike-like function tending t P! free volume as a consequence of shearing. Only part of the free volume

blow up. The evolution of shear rate distribution could be regarded as th@rOquEd should be attributed to liquid disordering, as _significant free vol-
evolution of a shear band in a bulk liquid during a single serration. ume is generated as a consequence of thermal expansion due to temperature

rise.

a shear band during a single serration. The evolution of tem- =~ = i L . . .
perature distribution, plotted in Fig. 10, exemplifies thecahzatlon is associated with viscosity degradation, which is a

gradual production of energy as a consequence of adiabatfnseauence of free volume production. The evolution of

heating. The plot suggests that during the development dree volume distribution, plotted in Fig. 11, exemplifies the

shear localization, the temperature rises locally by severdiradual production of free volume as a consequence of
degrees. However as localization sets in, the model predic€rng. It is worth noting that only part of the free volume
that temperature rises by several hundreds of degrees aB[oduced should be attributed to liquid disordering, as sig-

proaching the melting pointnot shown. This outcome is nificant thermal expansion also takes place as a consequence
consistent with experimental observations.

of adiabatic heating, which causes the equilibrium free vol-
Under the conditions considered here, the shear loadin

Eme to increase locally. In order to quantify the deviation
applied to the system is excessively high and contributes to

om structural equilibrium, the fractionw(— v.)/(v—vg) IS
very high amount of free volume being produced, which failscomputed locally and its evolu_tlo_n is plotted in Fig. 12.. !t
to annihilate as the relaxation time associated with these cofiPPears that the system's deviation from structural equilib-
ditions is also high. Consequently the system is driven out ofUM IS higher in the vicinity of localization and evolves in
structural and thermal equilibrium towards an unstable statiMe- This suggests that structural nonequilibration could
characterized by continuous shear localization. Experiment&iventually approach 100% when localization sets in. The
observations on shear band formation suggest that shear §volution of viscosity degradation owing to free-volume pro-

658 — T T y ; : 0.18— T
3
657} - £ 016
o
sl > 0.14
< 2 012
& 655f )
o £
o 0.10
2 654 %
o >
® 0.08
g. 653} 3
3 (L 0.06 -
F 52t 4
= 004
651} ©
0 002
650}
, , . . , , 0 . .
x/L x/L

FIG. 10. Evolution of temperature distribution under 650 K and 2.0 GPa.FIG. 12. Fraction of free volume produced by liquid disordering under 650
The evolution of temperature distribution exemplifies the gradual productiorK and 2.0 GPa. The fraction of generated free volume that can be attributed
of energy as a consequence of adiabatic heating. During the development tff disordering is higher in the vicinity of localization and evolves in time,
shear localization, the temperature rises locally by several degrees. suggesting that it could eventually reach 100% when localization sets in.

Downloaded 14 Dec 2005 to 131.215.225.171. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



2864 J. Appl. Phys., Vol. 95, No. 5, 1 March 2004 M. D. Demetriou and W. L. Johnson

10" — , . . . ; shear rate in the last five time steps for each set of conditions
is superimposed on the experimental flow map. In the case of
700 K and 1.0 MPa the simulation yields static shear rate and
temperature responses, i.e., Newtonian flow characteristics,
which fall within the experimental Newtonian flow regime.
In the case of 675 K and 100 MPa the simulation yields
rather transient shear rate and temperature responses, which
eventually stabilize. These are non-Newtonian flow charac-
teristics, and incidentally appear to be bounded within the
experimental non-Newtonian flow regime. In the case of 650
4 K and 2.0 GPa, the simulation yields highly transient shear
rate and temperature responses, which appear to become un-
stable. These are characteristics of shear localization. Al-
107 L . . . . . though the instability will grow further in time, it appears
0 02 o ¢ 08 1 that the evolution would be bounded within the shear local-
ization regime. Figure 14 therefore suggests that the model is
FIG. 13. Evolution of viscosity degradation under 650 K and 2.0 GPa.capable to computationally reproduce the experimental flow
During a single serration the I_ocal viscosity in the vicinity of localization is map.
reduced by 3 orders of magnitude. . . L
The simulation results indicate that the nature of flow
evolution is essentially dictated by the structural state of the
duction is shown in Fig. 13. As expected, the plot suggest§ystem, which is determined by a balance between free vol-
that during a single serration the local viscosity in the vicin-ume creation and free volume annihilation as given by Eq.
ity of localization is reduced dramatically by several orders(4). In order to gain more quantitative insight into the origins

Viscosity, n (Pa-s)
3

of magnitude. of each flow mode, a time scale analysis of Et.is carried
out. To characterize free volume creation, a time scale can be
V. DISCUSSION formulated as7, oo~ (¥) ta(T;—To)/(R/v,). The time

scale characterizing free volume relaxation, as used in for-
The developed transport model appears to successfuliyulating Eq.(4), is given byr, o~ 7/G. Therefore the ratio
simulate the flow characteristics of three distinct flow modesof this two time scales yields a dimensionless number that
Newtonian, non-Newtonian, and shear localization. Thecould characterize the structural state of the system
model is based on a free volume production-rate equation,
which comprises free volume creation and annihilation rates —
whose characteristics are optimized to flow experiméfis. Tooe  @(Ti=To) G

Therefore, it would be of interest to examine whether thea proportionality constant of 2 was incorporated to accom-
flow simulations yield temperature and shear rate evolution§|ish consistency with the experimental data. Small values of
that could computationally reproduce the experimental flowis dimensionless number would indicate that free volume
diagram of Fig. 2. _ can be annihilated at a much greater rate than can be created
In Fig. 14 the computed evolution of temperature andang consequently the liquid would be structurally maintained
in stable equilibrium, as Ed4) yields v~ v(T;). Therefore
small values would indicate tendency to Newtonian flow. A

Tyrel Rlvy o

(16)

. : . -
10% | .,.e"' 1 value near unity suggests that the rates of free volume cre-
= ‘,.s“" ation and free volume annihilation are similar, which implies
..,.f"‘ ) that structurally the liquid would be maintained in a virtual
_ 10"} .f .‘,.-«*"" steady state, however it would be far from equilibrium as Eqg.
o 650 K DD .’.,.s”’ ".,.-»"" (4) yields v~v,+Ro/G. Hence values near unity would
e 20GPag Py S indicate a tendency to non-Newtonian flow. Accordingly,
@ 10y 615K 3 large values of this parameter would indicate that free vol-
§ Shear Localization moéﬂpaf”' ume can be created at a much greater rate than it can be
7] - f"" X.r’ Newtonian Flow | annihilated and consequently the liquid would be structurally
P 3 e driven out of equilibrium as well as out of stability, which
" Non Newtonian +* 700 K are characteristics of shear localization. The characteristic
o2l o F'OW, yd 1.0MPa numbers that correspond to the sets of conditions employed
2 . . ‘ in this study, which are tabulated in Table I, are in compli-
625 650 675 700

Temperature (K) ance with the above reasoning.

FIG. 14. Computed flow evolutions superimposed on the experimental flow

diagram. The temperature and shear rate evolutions computed by the mod¥él- CONCLUSIONS

are bounded within the corresponding experimental flow regimes. This sug- .

gests that the model is capable of computationally reproducing the experi- A frée volume transport equation was formulated by

mental flow diagram. considering a model of local production rate of free volume,
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TABLE I. Values of the dimensionless number characterizing the system'sstabilize at another limit but continuously localizes and ulti-

structural state for the conditions considered in the simulation. mately accelerates unconstrained. Consequently the system
T,=700 K T=675K T,=650 K is driven out of struct_ural anq thermal staplllty towards an
o=1.0 MPa =100 MPa o=2.0 GPa unstable state associated with unconstrained free volume
generation, viscosity degradation, and temperature rise.
Ty rell Ty cre 0.0075 0.82 18.2 i
e The temperature and shear rate evolutions computed by

the model are superimposed on a temperature-shear rate dia-
gram, and appear to be bounded within the corresponding

which comprises free volume creation and annihilation rate§xperimental flow regimes. Therefore it can be concluded
that are calibrated to experimental flow data in a self-that the model is capable to computationally reproduce the
consistent manner. The free volume transport equation wa@xperimental flow diagram. The system’s structural state that
coupled with momentum and energy transport via viscosity@PPears to dictate flow behavior is quantified by a dimen-
to formulate a system of transport equations to govern thsionless number, which results from a time scale analysis of
flow of undercooled glass forming liquids. The model wasthe free volume production equation.
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