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Abstract

Background: Seasonal respiratory syncytial virus (RSV) epidemics occur annually in temperate climates and result
in significant pediatric morbidity and increased health care costs. Although RSV epidemics generally occur between
October and April, the size and timing vary across epidemic seasons and are difficult to predict accurately.
Prediction of epidemic characteristics would support management of resources and treatment.

Methods: The goals of this research were to examine the empirical relationships among early exponential growth
rate, total epidemic size, and timing, and the utility of specific parameters in compartmental models of
transmission in accounting for variation among seasonal RSV epidemic curves. RSV testing data from Primary
Children’s Medical Center were collected on children under two years of age (July 2001-June 2008). Simple linear
regression was used explore the relationship between three epidemic characteristics (final epidemic size, days to
peak, and epidemic length) and exponential growth calculated from four weeks of daily case data. A
compartmental model of transmission was fit to the data and parameter estimated used to help describe the
variation among seasonal RSV epidemic curves.

Results: The regression results indicated that exponential growth was correlated to epidemic characteristics. The
transmission modeling results indicated that start time for the epidemic and the transmission parameter co-varied
with the epidemic season.

Conclusions: The conclusions were that exponential growth was somewhat empirically related to seasonal
epidemic characteristics and that variation in epidemic start date as well as the transmission parameter over
epidemic years could explain variation in seasonal epidemic size. These relationships are useful for public health,
health care providers, and infectious disease researchers.

Background
Respiratory syncytial virus (RSV) has long been recog-
nized as a substantial public health threat [1] with
annual epidemics exacting an enormous toll on vulner-
able populations and health care delivery systems. RSV
is associated with substantial morbidity in children in
both the hospitalized and outpatient setting [2-5]. In
addition to the toll on the health of the population,
this disease imposes a large burden on the health care
system in terms of human and material resources.
Although no RSV vaccine exists, infants and children
with risk factors for severe RSV infection (eg, lung

disease or prematurity) can receive monthly doses of
palivizumab, a humanized murine anti-RSV monoclo-
nal antibody, during the RSV season. Palivizumab
treatment is extremely costly; the cost-effectiveness of
this therapy could be improved if treatment is given
only during times of high RSV activity. Treatment of
vulnerable individuals also improves overall health in
the population.
Prediction of seasonal epidemic characteristics includ-

ing times of high activity and total size would support
efficient management of resources and delivery of palivi-
zumab. Health care facilities could forecast requirements
for beds, staffing, testing, treatment, and other resources
needed to care for sick children. For greatest effective-
ness, these predictions should be made early in the RSV
season; the authors, including public health practitioners
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and physicians, hold the expert opinion that these pre-
dictions would be useful within the first month of the
observed start of the RSV seasonal epidemic.
In some regions, total epidemic size generally follows

a biennial cycle from year to year with smaller epidemic
seasons followed by larger epidemic seasons [6]. This
cycle is currently used to gauge upcoming RSV seasonal
epidemic size based on total size of the previous epi-
demic season. The Centers for Disease Control and Pre-
vention (CDC) researchers using the National
Respiratory and Enteric Virus Surveillance System found
that the prior epidemic season’s data were a relatively
imprecise predictor of the epidemic season onset in a
given community and that timing of the RSV epidemic
season may vary substantially in the same year among
communities in close proximity [7]. One goal of this
research was to explore year-to-year variation in epi-
demic seasons using local data. The biennial variation in
our seasonal epidemic data was seen in the early expo-
nential growth rates (slope of the cumulative case
curves, Figure 1) as well as total epidemic size. We
explored the relationship between exponential growth of
RSV epidemics and the seasonal epidemic characteristics
of total epidemic size, days to peak, and epidemic length
to assess predictions made early in the epidemic season.
Knowledge about viral transmission characteristics and

the data derived from surveillance systems can be used
to inform novel approaches for estimating characteristics
of RSV epidemics through the application of methods
rooted in epidemiological models of infectious disease
transmission [8,9]. These methods are being increasingly

applied to emerging threats like SARS [10-12] and pan-
demic influenza, but their application to routine epi-
demics of common respiratory viruses like seasonal
influenza and RSV has only begun to be explored.
Weber et al. [8] model RSV transmission to examine
how climate and social factors influence transmission in
a population. They consider compartmental models
using Susceptible-Infected-Recovered-Susceptible (SIRS)
with additions to include latency and stages of suscept-
ibility. They find no single best model for RSV epi-
demics; many “competing” models fit the observed data
well. We further explored the variation in seasonal epi-
demics using compartmental models. The variation in
exponential growth could potentially be related to varia-
tion in transmission rates, epidemic start dates, or pro-
portions susceptible as well as a host of other factors.
The second goal of this research was to evaluate the

ability of a compartmental model based on epidemiolo-
gic principles to fit observed data from a series of epi-
demics and examine the extent to which seasonal
variations in epidemics can be accounted for by varia-
tion in specific model parameters.
For these analyses, we used daily laboratory data from

the major pediatric health care facility in Utah where
routine viral testing is a fixture of standard clinical care
for children presenting to regional emergency depart-
ments. The utility of the data from these surveillance
systems for relating final epidemic size and modeling
the epidemic curve has not been fully evaluated. We
investigated the estimation of seasonal epidemic charac-
teristics using regression of exponential growth across
seven epidemic seasons. We also modified the model of
Weber et al. to explore the model fits and estimates of
epidemic size using variation of parameters within a
Susceptible-Exposed-Infected-Infected/Detected-Recov-
ered (SEIDR) model.

Methods
Data
Primary Children’s Medical Center (PCMC) is a 250-bed
children’s hospital that serves both as a community
pediatric hospital for Salt Lake County, Utah (2008
population 1 million [13]), and as a tertiary referral cen-
ter for five states in the Intermountain West (Utah,
Idaho, Wyoming, Nevada, and Montana, total 2008
population 8.36 million [14]). Eighty percent of pediatric
hospital admissions occurring in Salt Lake County and
73% occurring in the state of Utah are at PCMC.
During the study period, July 2001 through June 2008,

direct respiratory sampling (mainly saline-assisted naso-
pharyngeal aspiration) for respiratory viral testing was
performed for about 70% of children evaluated in the
PCMC emergency department for respiratory com-
plaints (unpublished data) and was required for all

Figure 1 Weekly observed RSV cases. Weekly observed RSV cases
for 7 epidemic years. Data collected from Primary Children’s Medical
Center in Salt Lake City from July 2001 through June 2008.
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hospitalized children with respiratory symptoms (eg,
upper or lower respiratory tract infection, bronchiolitis,
asthma, or bacterial or viral pneumonia). In addition,
respiratory viral testing was recommended for all febrile
infants one to 90 days of age. Test results were used to
inform patient cohorting and isolation procedures and
to assist with medical management. All samples were
initially tested by direct fluorescent antibody staining
(DFA). DFA testing was performed three to five times
daily depending on the season, with a mean turnaround
time of four hours. For all DFA negative specimens,
multiplex polymerase chain reaction (PCR) or viral cul-
ture was performed.
The data included in our analyses were all positive test

results from the above sampling protocols from any of
the testing methods during the study period. The prac-
tice of testing and test methods did not change appreci-
ably during the study period (unpublished data on
percentage of children tested and methods used). The
data were used as daily counts by age group, under two
and over two years old.
The RSV epidemic year was defined to be from July 1

of one year through June 30 of the following year. This
time period was chosen to place the beginning date
close to the middle of the inter-epidemic period,
approximately six months from the average historical
peak of the seasonal epidemic.
This study was reviewed by the Institutional Review

Boards of Intermountain Healthcare and the University
of Utah and determined by both organizations to be
exempt.

Regression analysis
Regression analysis was used to explore the relationship
between the initial exponential growth rate and the epi-
demic season characteristics of size, days to peak, and
length using the seven epidemic seasons of RSV data
from PCMC. The exponential growth rate, lt0, t1, for
time interval t0 to t1 was calculated as

λt0,t1 =
log

(
xt1

) − log
(
xt0

)
t1 − t0

, where xti denotes the cumula-

tive number of cases at time ti, i = 0,1. The exponential
growth rate was calculated at four weeks to assess regres-
sion predictions made early in the season. For compari-
son, exponential growth rate was also calculated at weeks
one through six. The total epidemic size was the sum of
cases over the epidemic year, including sporadic inter-
epidemic cases. An observable seasonal epidemic start
date of t0 was defined as the start of the first week of the
epidemic year with at least five confirmed RSV cases.
This was the definition used by the hospital epidemiolo-
gists at PCMC to declare the start of RSV outbreaks dur-
ing the study period. The term seasonal epidemic refers

to the period from the epidemic start date until the epi-
demic end date, defined as the end of the last week of the
epidemic year with at least five confirmed RSV cases.
The number of days until the peak for the epidemic sea-
sons was calculated as the midpoint day of the largest
seven-day moving average window minus the epidemic
season start day. The length of the epidemic season was
calculated as the epidemic season end day minus the epi-
demic season start day.
Relationships between the initial exponential growth

rate and seasonal epidemic characteristics were
described using the Pearson correlation coefficient and
assessed using standard regression statistics. The fits of
the regression models were assessed using the percent
error of the model fits from the observed values. To
combine across seasons, the absolute values of the per-
cent errors were averaged providing the mean absolute
percent error for the model.

SEIDR model
We modeled the observed RSV cases using an extension
of the SIR model that included individuals (c for chil-
dren and a for adults) that were susceptible (Sc and Sa),
exposed (Ec and Ea), infectious(Ic and Ia), infectious and
subsequently detected children (D), and recovered com-
bined across children and adults (R). This SEIDR model
was applied to a series of seven epidemic years. The
population was split into children less than two years
old (children) and those older than two (adults). It has
been shown that the initial RSV infection is the most
severe and occurs in almost every child in their first two
years of life. Transmission is modeled as a function of
time using a cosine function to mirror the cyclic nature
of epidemics [8]. There is an offset to this cycle (a),
which we estimate along with transmission parameter
(b). Births and deaths (μ) are accounted for in the sus-
ceptible class only. Achievement of age two is accounted
for in all age-separated classes (h). Assumptions of sim-
ple compartmental models that we made were as pre-
sented in Koopman [15].
Our SEIDR transmission model (Figure 2) was defined

using the following system of non-linear differential

Figure 2 Schematic representation of the flow through model
compartments.
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equations:
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Here b was the transmission parameter, L the latency
period, f the under-two detection fraction, and g the
recovery parameter. All parameters are presented in the
next subsection with descriptions, ranges, and reference
values from the literature. Solution to the set of differ-
ential equations is addressed below.

Model parameters
To fit the SEIDR model to the empiric epidemic data,
three parameters-latency period, birth and death rate,
and recovery period-were specified based on the litera-
ture. Three parameters associated with variation across
epidemic years were estimated: 1) the temporal offset of
the epidemic cycle (a), 2) detection fraction (f), and 3)
transmission parameter (b). Different models were spe-
cified to explore the effect of these three parameters. All
combinations of these were considered: models with one
parameter allowed to vary across seasons, models with
two parameters allowed to vary across seasons, and a
model with all parameters allowed to vary across
seasons.
Each parameter is described below.

Birth and death rate (μ)
The number of daily births and deaths were entered in
the model based on census data for Salt Lake County.
Aging rate (h)
It was assumed that 1/365th of the children in each age-
separated compartment reached the age of two each
day.
Detection fraction (f)
The detection fraction parameter reflected the fraction
of the RSV epidemic in children under two years old
that was captured in our data set. The detection fraction
parameter was estimated as a constant parameter across
years and also allowed to vary by epidemic year.
Latency period (L)
The latency period is the time between exposure result-
ing in transmission and time of infectiousness. The
latency period was specified using the median value
from Crowcroft [16], five days.

Transmission parameter (b)
The transmission parameter determined the rate of
transmission from contacts between infectious and sus-
ceptible individuals. We assumed a homogeneous, uni-
formly mixing population. The transmission parameter
was estimated as a constant parameter across years and
also allowed to vary by epidemic year.
Recovery parameter (g)
The recovery parameter specifies the time from infec-
tiousness to recovery. This was specified as 0.1, which
translates to a ten-day recovery period, following the
work by Weber [8] and in the range of one to 21
reported by Hall [17].
Epidemic cycle offset (a)
The final model parameter was the offset of the annual
epidemic cycle. A regular annual cycle is thought to
vary due to weather and climate conditions. The SEIDR
model captures the entire epidemic, detected and not
detected. Prior to observing RSV cases, the epidemic
cycle started within the undetected population. This off-
set parameter was estimated as a constant parameter
across years and also allowed to vary by epidemic year.

Model fitting
The nonlinear equations were solved using the lsoda
function from the odesolve library [18] in R statistical
software [19]. The parameters were estimated using a
grid search. Two fitting statistics were used. The esti-
mates were the values that minimized the square root of
the sum of standardized squared errors (RSE) and/or
the square root of the sum of squared standardized
errors (RMSE). The RSE was calculated as the square
root of the sum of the squared errors between the
observed daily cases and the fitted model, divided by the

fitted value, RSE =

√
365∑
i=1

(
xi − x̂i

)2

x̂i

, where x̂i was the

fitted value on day i. The RMSE was calculated as the
square root of the sum of the squared weighted errors
between the observed daily cases and the fitted model;
the weight being the fitted value,

RMSE =

√
365∑
i=1

(
xi − x̂i

x̂i

)2

. The denominator from these

measures adjusted for the magnitude of the epidemic
curve to avoid fitting the model mainly to the peak,
where differences could over-inflate the fitting statistic
and under-value differences during the early and late
stages of the epidemic. The RMSE reduces the effect of
fit to the peak more than does the RSE.
A grid search was used starting with an initial wide

range of values for f, b, and a. The search grid was
repeated with successively narrowing ranges to minimize
the RSE. The grid started with the range of reasonable
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values, 0 - 1 for b and f and one to 200 days for a. The
range was reduced and resolution increased iteratively
around minimal RSE and RMSE values. The minimum
grid resolution was 0.0001 for b, 0.01 for f, and one day
for a. The RSEs and RMSEs from the grid search results
were used to select the best parameter estimates within
each model type (eg, one model type had only transmis-
sion rates that varied by epidemic year).
The model with all three parameters allowed to vary

by epidemic year was fit as a saturated model to provide
a benchmark for RSE and RMSE, along with the
Schwarz Criteria described below, and percent error in
estimating epidemic size when evaluating more parsimo-
nious models in which only one of the 3 parameters was
allowed to vary by epidemic year. Multiple measures
were used to compare the models, in part because the
Schwarz criteria assumed the residuals were indepen-
dent and identically distributed, which was not the case;
they are, in fact, autocorrelated.
The Schwarz Information Criterion [20] were calcu-

lated based on the weighted least squares method used
for parameter estimation. There were n = 2555 data
points, 365 days of case data for each of seven years,
and k, the number of parameters estimated was 28 in
the full model (four parameters for seven years) and 16
in each other model (two parameters for seven years
and two parameters overall). The Schwarz Criteria were

calculated as: BIC = 2555 × ln
(∑7

j=1 M2
j

)
+ 2k ln(2555)

where M represents either the RSE or RMSE fit statistic
[21]. The absolute values of the percent error in esti-
mating total epidemic size were summed across seasons
for comparison of models.

Results
Descriptive Analysis
The number of children with test-positive RSV infection
ranged from 682 cases in 2004-5 to 1704 cases in 2007-
8 (Table 1). The median size of the annual epidemic
was 1113 cases. Overall, 98% of cases were detected
between the months of October and April. Larger

epidemics alternated with smaller epidemics. The ampli-
tude of this biennial cycle was approximately 600 cases.
The total number of children (under 18 years of age)

tested per epidemic year ranged from approximately
3000 to 7000, with numbers of tests increasing over
time. Overall, 21% percent of these were positive for
RSV, varying according to the biennial cycle. Of children
tested, 81% were less than three years old and 95% were
less than 11 years old. Of children with positive tests,
92% were less than three years old and 99% were less
than 11 years old. Of the children tested, 70% were
from Salt Lake County and 77% of children with posi-
tive tests were from Salt Lake County.

Regression analyses
Exponential growth rates calculated from cases accumu-
lated for four weeks from the observed epidemic season
start ranged from 0.034 to 0.081 (Table 1) across the
epidemic seasons. The effective reproductive numbers
ranged from 1.27 to 1.49 using a serial interval of seven
days [16]. In regression analyses (Table 2), the four-
week exponential growth rate exhibited a substantial
positive correlation with epidemic size (r = 0.69, p =
0.08), and was negatively correlated with start day (r =
-0.43, p-value = 0.33), days to peak (r = -0.44, p-value =
0.32), and length of the epidemic (r = -0.58, p-value =
0.17). The regression models provided estimates of epi-
demic season characteristics that were on average within
16% of observed epidemic season size, 11% of observed
days to peak, and 8% of observed epidemic length.
Using exponential growth rates calculated from weeks
one through six provided, in general, increasing correla-
tion (Table 3).

SEIDR model
The saturated SEIDR model was fit to seven epidemic
years of observed RSV data with epidemic year-specific
RSE values that ranged from 13 to 21, RMSE values that
ranged from 0.40 to 0.77 and percent error of total
cases that ranged from 1% to 16%. The fit statistics for
the models with either transmission parameter or

Table 1 Observed RSV epidemic size, start date, days to peak, duration, and 4-week exponential growth

Years
(Epidemic Year)

Epidemic
Size

Observed Start

(t0)

Days Until Peak Duration Exponential
Growth

2001-2 (1) 1074 12/12/01 69 124 0.063

2002-3 (2) 733 12/4/02 83 175 0.034

2003-4 (3) 1553 11/19/03 75 142 0.081

2004-5 (4) 682 11/27/04 85 173 0.033

2005-6 (5) 1400 11/02/05 62 154 0.068

2006-7 (6) 1113 11/12/06 80 176 0.061

2007-8 (7) 1704 11/27/07 59 144 0.050

Leecaster et al. BMC Infectious Diseases 2011, 11:105
http://www.biomedcentral.com/1471-2334/11/105

Page 5 of 9



detection fraction estimated as a constant across epi-
demic year did not differ substantially from those from
the saturated model (Table 4). The minimum RSE
model with detection fraction held constant across epi-
demic years had the smallest % error, smallest Schwarz
RSE Criterion, and had other fit statistics nearly equal
to the saturated model. The minimum RMSE models
were, in general, fitting to the tails of the epidemic and
resulted in large errors in estimating epidemic size.
The pattern of variation in estimates of offset from all

models matched the biennial cycle variation in total epi-
demic size across epidemic years (Figure 3). The varia-
tion in estimates of the transmission parameter and
detection fraction did not necessarily match this cycle
for all epidemic years. The parameter estimates for the
transmission parameter were negatively correlated with
total epidemic size.

Discussion
The SEIDR model we presented made assumptions that
simplified the reality of RSV transmission. We have
identified three limitations to the SEIDR modeling
effort. First, the population age separation does not take
full advantage of differences in interaction among a
non-homogenous population. Second, related to this,
the parameter values were not allowed to vary within
the population. Transmission, for instance, could be
age-dependent (due, eg, to hand-washing habits). Third,
the grid search method of parameter estimation did not
provide estimated standard errors for parameter esti-
mates, which limited the ability to compare models and
seasons.
Despite these limitations, this SEIDR model was use-

ful; it modeled the observed RSV cases from PCMC as
part of larger unobserved epidemic seasons and

provided a framework for investigating the model para-
meters. The parameters offset and transmission may not
be completely identifiable within this framework but
more likely represent combined other forces unmea-
sured here.
Our future work includes addressing these limitations

and expanding the complexity of the models. RSV is
carried by all age groups but is, in general, only a con-
cern for infants. Thus, an age-stratified model, possibly
with different mixing mechanisms, would more closely
resemble the true transmission. The biennial cycle of
large, early, and short seasonal epidemics followed by
smaller, later, and longer seasonal epidemics the next
year observed in Utah is similar to other published stu-
dies of seasonal RSV epidemics in temperate climates.
The theories for this phenomenon include the existence
and switching of two RSV disease strains, climate pat-
terns, and waning immunity after infection [6,8,9,22-24].
These and other theories could be investigated in more
complex models. It is understood that immunity after
infection of RSV is partial, at best. This incomplete
immunity and severity of re-infections could be incorpo-
rated into more complex models [8,25]. Finally, future
modeling efforts will involve approaches that include
measures of uncertainty in parameter estimates, includ-
ing Bayesian methods [26,27] and likelihood and other
methods [28,29].

Conclusions
The first main conclusion of this work was that expo-
nential growth was somewhat empirically related to sea-
sonal epidemic characteristics. The variations in
epidemic seasons from data collected at PCMC during
the seven years of the study can be partially explained
by the variation in exponential growth, especially char-
acteristics of epidemic size, peak day, and length of the
epidemic. The seven years of data were not sufficient to
make conclusive statements on the nature of the rela-
tionships. These early findings based on just seven data
points can be built upon to explore early prediction of

Table 2 Results of regression analysis using exponential
growth to predict epidemic size, days to peak, and
length

Total
Epidemic

Size

Days to
Epidemic

Season Peak

Length of
Epidemic
Season

Regression Intercept
(S.E.)

321.0 (417) 87.5 (13.5) 192.3 (24.0)

Regression Slope (S.
E.)

15383 (7175) -255.3 (233) -659 (413)

Regression Model p-
value

0.08 0.32 0.17

R2 0.48 0.19 0.20

Root Mean Square
Error

17.6 3.2 4.2

Mean of Absolute %
Error

16 11 8

Table 3 Correlations between exponential growth rate
(calculated at weeks one through six) with observed RSV
epidemic size, start date, days to peak, and duration

Epidemic Weeks used
for Exponential Growth

Rate

Epidemic
Size

Observed
Start (t0)

Days
Until
Peak

Duration

1 0.30 -0.52 0.17 0.09

2 0.58 -0.63 -0.33 -0.30

3 0.62 -0.51 -0.36 -0.47

4 0.69 -0.43 -0.44 -0.58

5 0.78 -0.40 -0.56 -0.64

6 0.81 -0,40 -0.59 -0.62
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the upcoming RSV epidemic season. These early predic-
tions could be used by hospitals to budget and allocate
resources and to coordinate the timing of palivizumab
treatment. They can be used by public health to advise
clinicians and the public and also to help identify non-
standard epidemics earlier in the season. For example,
health departments might take specific actions if the
number of observed cases during the season greatly
exceeds early predictions.

The second main conclusion of this work was that
variation of the transmission parameter and the start of
the epidemic (offset) over epidemic years could explain
the variation in seasonal epidemic size. The three model
parameters allowed to vary by epidemic year (detection
fraction, transmission parameter, and offset) provided
possible rationale for the variation in seasonal epidemic
size. The model with detection fraction held constant
across epidemic year fits the observed data well with the

Table 4 Fit statistics for models with different sets of parameters allowed to vary across epidemic year

Model: Min RSE Models Min RMSE Models Schwarz Criterion

Parameters that vary by epidemic year Sum RSE Sum % Error Sum RMSE Sum % Error RSE RMSE

Time Offset 128 114 4.3 197 20050 2905

Transmission Parameter 152 127 4.6 217 20992 3288

Detection Fraction 154 202 4.6 221 21073 3287

Time Offset & Transmission Parameter 115 58 3.8 179 19556 2239

Time Offset & Detection Fraction 122 110 4.1 185 19871 2736

Transmission Parameter & Detection Fraction 147 119 4.4 218 20936 3254

All 113 75 3.5 188 19578 1946

The RSE and RMSE column values represent the models with the minimum of the fit statistic over that category. The % error is the sum of the absolute values of
the % error in estimating epidemic size.

Figure 3 SEIDR model parameter estimates. SEIDR model parameter estimates for three models for each of the 7 seasons. The parameters are
transmission parameter (top right), epidemic offset (bottom left), and detection fraction (bottom right). The estimates from the model with 1) all
parameters varying by epidemic year are open triangles, 2) transmission parameter constant across epidemic year are plus signs, and 3)
detection fraction constant across epidemic year are x’s. The data were collected by Primary Children’s Medical Center, Salt Lake City, UT from
July 2001 through June 2008.
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fewest parameters. The parameter estimates from this
model also match the expected biennial pattern of the
epidemic years. From the models considered in this
study, this one performs best overall (Figure 4).
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