
1

Modeling the Vulnerability Discovery Process

O. H. Alhazmi and Y. K. Malaiya

Computer Science Department

Colorado State University

Fort Collins CO 80523

omar|malaiya @cs.colostate.edu

Abstract

Security vulnerabilities in servers and operating

systems are software defects that represent great risks.

Both software developers and users are struggling to
contain the risk posed by these vulnerabilities. The

vulnerabilities are discovered by both developers and

external testers throughout the life-span of a software

system. A few models for the vulnerability discovery

process have just been published recently. Such models

will allow effective resource allocation for patch

development and are also needed for evaluating the

risk of vulnerability exploitation. Here we examine

these models for the vulnerability discovery process.

The models are examined both analytically and using

actual data on vulnerabilities discovered in three
widely-used systems. The applicability of the proposed

models and significance of the parameters involved are

discussed. The limitations of the proposed models are

examined and major research challenges are

identified.

1. Introduction

The vulnerability discovery process is analogous to

the process of finding defects in software during

testing. Vulnerabilities are, after all, a class of software

defects [20]. However, there are some remarkable

differences.

Software testing conducted within an organization

is a reasonably well-defined process. At the same time,

the effort that goes into finding vulnerabilities can

depend on the rising and falling share of the installed

base. A significant fraction of the vulnerabilities are

found externally. Some of the finders are experts in

commercial security organizations. However, some of

the finders may be potential “black-hat” individuals

who may be tempted to use the vulnerabilities

discovered for their own gain. It is considered

acceptable for some known bugs to be present in the

software; they are often not fixed until the next release.

Nonetheless, the presence of a known and unremedied

vulnerability is highly undesirable. The system

developers need to release patches as soon as possible

after a vulnerability is discovered. The presence of

known vulnerabilities in operating systems and servers

can represent an extremely high risk for some

organizations such as banks, investment and brokerage

houses and web-based merchants.

Just as it is not feasible for a software to be certified

defect-free, it is not possible to identify and fix every

vulnerability present in an operating system. The

software developers and users need to be able to assess

the risk posed by the vulnerabilities and must invest in

effective counter-measures. It is now recognized that

the risk can depend on the delay involved in

developing and releasing a patch [6, 10]. A developer

needs to allocate sufficient resources for continuous

vulnerability testing and patch development to stay

ahead of the hackers. The users need to invest in data

safeguard mechanisms, intrusion detection and damage

control. This investment must be proportional to level

of risk involved.

Software reliability growth models [13, 17] have

been used for characterizing the defect-finding process.

Such models are used to assess the test resources

needed to achieve the desired reliability level by the

target date and are needed for evaluating the reliability

level achieved. They can also be used to estimate the

number of residual defects that are likely to be present.

There is a need to develop similar models for

quantitative characterization of the security aspects of

the software. There are two separate processes to be

considered. The first is the vulnerability discovery

process, while the second is exploitation of individual

vulnerabilities discovered. In this paper we examine

modeling the first process. While the two processes are

distinct, evaluation of the overall risk should involve a

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05)

1071-9458/05 $20.00 © 2005 IEEE

2

joint consideration of both processes. Obviously a

vulnerability needs to be discovered before it can be

exploited. While those who attempt to exploit

vulnerabilities may often be amateurs, those who

discover vulnerabilities must have significant technical

expertise.

In the security field, the vulnerability exploitation

models (VEMs) were the first to be considered.

Browne et al. [9] have examined the exploitation of

some specific vulnerabilities and have presented a

modeling scheme. Investigations on the modeling of

the vulnerability finding process have recently been

examined by a few researchers. We examine and

evaluate these models, termed vulnerability discovery

models (VDMs), in this paper. An evaluation of the

risk would involve both characterization of

vulnerability discovery process was well as their

potential exploitation. This evaluation of the risk

involves both VEMs and VDMs.

The first VDM model proposed by Anderson [5] is

here termed the Anderson Thermodynamic (AT)

model. The second termed the AML model, is a

logistic model proposed by Alhazmi and Malaiya in [2]

and investigated in [3]. Two trend models were

examined by Rescola in [19]; a linear model and an

exponential model; these are termed RL and RE

respectively. Finally, we try to fit and test a new model

LP, which is an application of a traditional Logarithmic

Poisson reliability growth model [18] proposed by

Musa and Okumoto. All of these can be termed time-

based models since they consider calendar time as the

main factor. An effort-based model has also been

proposed by Alhazmi and Malaiya in [2]. It will not be

considered in this paper since it uses a different

approach that attempts to use test-effort as the main

factor instead of calendar time.

Alhazmi and Malaiya [2] have examined

applicability of the AML model to the Windows 98

and NT 4.0 cumulative vulnerability data and found the

fit to be acceptable. On the other hand, Rescorla [19],

using the non-cumulative vulnerability rate data, found

the fit for the two models considered to be insignificant

for three of the four systems under consideration and

significant for Red hat Linux 6.2. The applicability of

the model proposed by Anderson [5] has not yet been

considered. No comparison of the VDMs has yet been

done. This paper examines and compares all the

proposed models in a uniform manner, using the same

data sets.

Ideally a time-based model such as an SRGM or a

VDM should fit the available data perfectly. However,

a model is an approximation of actual behavior that

may be subject to some minor factors which are not

modeled, in addition to some statistical fluctuations. A

model should be useful for making future projections

and for identifying the current trends. Thus, it should

attempt to model the longer term trend. It is desirable

that a model have a simple interpretation of the

parameters; however, such an interpretation is not

always easily found. If a parameter has an

interpretation, it may be possible to estimate the

general range in which its value should lie. When

curve fitting is iterative, it can be quite useful to start

with a preliminary estimate of the parameters as an

initial value. In this paper we briefly examine the basis

of proposed models and evaluate the applicability of

the models using actual vulnerability data.

Just as static models for defect density and fault

exposure ratio can assist in use of the SRGMs, the

metrics vulnerability density and vulnerability/defect

ratio can be applied to complement and support VDMs.

Alhazmi and Malaiya [2] have shown that for similar

systems, the values of these attributes tend to fall

within a range. Static metrics can be used to constrain

parameter estimation during fitting [4].

This paper examines the proposed models and

presents a comparison using actual data for

vulnerabilities in three major operating systems.

Statistical goodness of fit tests are used to examine

how well models track the actual discovery process. In

the next section we discuss the proposed models. In

section 3 the data-sets used for evaluation and the

methodology is described. In Section 4, the models’

adequacy is examined; the section evaluates measures

for goodness of fit and presents the findings. In Section

5, the results are further discussed. Finally the

conclusions are presented and the future work is

identified in the last section.

2. Vulnerability Discovery Models

Here we present a summary of the main features of

the vulnerability discovery models (VDMs) proposed.

Although some of them were not formally termed a

“model,” they are appropriate candidates for further

examination. For uniformity, the models are presented

in such a way as to give the cumulative number of

vulnerabilities with time as the independent variable. A

vulnerability is defined as “a defect which enables an

attacker to bypass security measures” [20]. VDMs can

describe the rate of vulnerability discovery, denoted by

(t), or the cumulative number of vulnerabilities

discovered, denoted by (t). Note that (t) is obtained

by integrating (t) with respect to time.

Anderson Thermodynamic Model (AT): This

model was originally proposed for software reliability

in [8]. Later, Anderson applied it to vulnerabilities in

[5]; Figure 1 shows a hypothetical plot of AT model

for different values of k/ and C. Let us suppose that

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05)

1071-9458/05 $20.00 © 2005 IEEE

3

there are N(t) vulnerabilities left after t tests, and let the

probability that a test fails be (t). The model assumes

that encountering a vulnerability causes it to be

removed and also that no bugs are reintroduced. Using

an analogy from thermodynamics, Anderson argues

that (t) ≤ k / t, where k is a constant. Arguing that

equality should be a reasonable approximation, he

finally arrives at the model

t

k
t

γ
ω =)(, (1)

where γ is a factor that takes into account the lower

failure rate during beta testing by the users compared

with alpha testing. Since we want to compare

cumulative models we integrate equation 3 to get the

model in terms of the cumulative number of

vulnerabilities given by the function (t) as follows:

+=

=Ω

)ln()ln(

)(

C
k

t
k

dt
t

k
t

γγ

γ

where)ln(C
k

γ
represents the integration constant.

Simplifying we get,

)ln()(Ct
k

t
γ

=Ω , (2)

where C is a constant introduced by the integration.

Note that this (t) in this model is not defined when

t=0; hence we will only consider its applicability when

t 1. As t grows, (t) grows with logarithmic increase.

It should be noted that this model has a relationship to

the well-known Logarithmic Poisson SRGM and the

failure rate bound proposed Bishop and Bloomfield

[7].

Alhazmi-Malaiya Logistic Model (AML): This

model was proposed by Alhazmi and Malaiya in [2].

They have also proposed an effort-based model

(AMEB); however, it is not comparable to the other

models examined here. The AML model is based on

the observation that the attention given to an operating

system increases after its introduction, peaks at some

time and then drops because of the introduction of a

newer competing version; Figure 2 shows a

hypothetical plot of AML model for different values of

A, B and C. Thus the vulnerability discovery rate

increases at the beginning, reaches a steady rate and

then starts declining. The cumulative number of

vulnerabilities thus shows an increasing rate at the

beginning as the system starts attracting an increasing

share of the installed base. After some time, a steady

rate of vulnerability finding yields a linear curve.

Eventually, as the vulnerability discovery rate starts

dropping, there is saturation due both to reduced

attention and a smaller pool of remaining

vulnerabilities.

Anderson Thermodynamic Model

K/γ=1,C=10

K/γ=8,C=8

K/γ=5,C=10

Time

C
u

m
u

la
ti

v
e
 V

u
ln

e
ra

b
il

it
ie

s
Figure 1 –Anderson Thermodynamic (AT)

model

The model assumes that the rate of change of the

cumulative number of vulnerabilities is governed by

two factors, as given in Equation 3 below. One of

these factors declines as the number of remaining

undetected vulnerabilities declines. The other factor

increases with the time needed to take into account the

rising share of the installed base. The saturation effect

is modeled by the first factor. While it is possible to

obtain a more complex model, this model provides a

good fit to the data, as shown below.

Let us assume that the vulnerability discovery rate

is given by the differential equation:-

)(Ω−Ω=Ω
BA

dt

d
, (3)

where is the cumulative number of vulnerabilities, t

is the calendar time, and initially t=0. A and B are

empirical constants determined from the recorded data.

By solving the differential equation we obtain

1
)(

+
=Ω − ABtBCe

B
t , (4)

where C is a constant introduced while solving

Equation 1. It is thus a three-parameter model given by

the logistic function. In Equation 4, as t approaches

infinity, y approaches B. Thus, the parameter B

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05)

1071-9458/05 $20.00 © 2005 IEEE

4

represents the total number of accumulated

vulnerabilities that will eventually be found. The

model given by Equation 4 will be referred to as the

Alhazmi-Malaiya Logistic (AML) model [2].

Alhazmi-Malaiya Logistic Model

A=.0024,B=60,

C=190

A=.052,B=60,

C=50

A=.003,B=60

C=120

Time

C
u

m
u

la
ti

v
e
 V

u
le

ra
b

il
it

ie
s

Figure 2 – Alhazmi-Malaiya Logistic (AML)
model

This model addresses the fact that the

vulnerabilities found in an operating system depend on

its own usage environment. It should be noted that the

saturation phase may not be seen in an OS which has

not been present for a sufficiently long time. Also, if

the initial adaptation is quick due to better prior

publicity, in some cases early learning phase (when the

slope gradually rises) may not be significant.

A non-linear regression may require an initial

estimate of the parameter values. An initial estimate of

B may be obtained by noting the size of the software

and using the typical vulnerability density values of

similar software. Using Equation 2, we can show that

the maximum slope is given by AB
2
/4, which occurs at

y = B/2. It can also be mathematically shown that the

two inflexion points in the derivative of Ω are 2.63/AB

time period apart. This fact can be used guide

parameter estimation during fitting [4].

Rescola Linear Model (RL): Rescola has

attempted to identify trends in the vulnerability

discovery data by applying some statistical tests. We

here refer to these tests as the linear model and

exponential model [19]; Figure 3 shows a hypothetical

plot of RL model for different values of B and K.

First, we examine Rescorla linear model that

attempts to fit the vulnerability finding rate linearly

with time, rather than using the cumulative data.

Vulnerabilities were grouped in 3-months-periods of

time. The linear fit for the failure rate (t) implies the

model:

KBtt +=)(ω , (5)

where B is the slope and K is a constant, while both are

regression coefficients. The cumulative vulnerability

discovery model can be derived by integrating (5):

 +=Ω dtKBtt)()(

Kt
Bt

t +=Ω
2

)(
2

, (6)

here the integration constant is taken to be zero to

allow (t) to be zero at t =0. In this model as t grows,

 grows polynomially, as given by the squared term.

Rescorla's Linear

B=.1,K=1

B=.2,K=1.5

B=.3,K=2

B=.4,K=2

Time

C
u

m
u

la
ti

v
e
 V

u
ln

e
ra

b
il

it
e
s

Figure 3 –Rescorla linear (RL) model

Rescorla's Exponential

=-.05,N=35

=-.02,N=80

=-.01,

N=40

=-.13,

N=45

Time

C
u

m
u

la
ti

v
e

 V
u

ln
e

ra
b

il
it

ie
s

Figure 4 –Rescorla exponential (RE) model

Rescorla Exponential Model (RE): Rescorla [19]

has also used Goel-Okumoto SRGM [11] to fit the

data. This exponential model can be given as:

ω(t) = N e- t, (7)

where N is the total number of vulnerabilities in the

system and λ is a rate constant. Again, we here

integrate (7) to get the cumulative number of

vulnerabilities. Figure 4 shows some plots of RE

model for different values of λ, and N.

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05)

1071-9458/05 $20.00 © 2005 IEEE

5

(t) = tNeNdt λλλ −− −=teN

(t) =)1(teN λ−− , (8)

where the integration constant has been equated to

N to allow the initial value of Ω to be zero. Note that

as time grows, Ω approaches N.

Logarithmic Poisson Model (LP): This model is

also known as the Musa-Okomoto model [18]. A

physical interpretation of the model and its parameters

is complex. An interpretation in terms of the

variability of the fault exposure ratio is given in [14].

Figure 5 shows various plots of LP model for different

values of 0 and 1.

)1ln()(10 tt ββ +=Ω , (9)

where 0 and 1 are regression coefficients. At t=0,

(t) = 0; (t) grows indefinitely as the system ages

with a logarithmic growth. In spite of the fact that the

parameters have a complex interpretation, the model

has been found to be among the better fitting SRGMs

in many cases.

Logarithmic Poisson Model

0=8, 1=1

0=4, 1=1

Time

C
u

m
u

la
ti

v
e

 V
u

ln
e

ra
b

il
it

e
s

Figure 5 –Logarithmic Poisson (LP) model

Some of the models are somewhat related. The AT

and LP models are given by rather similar expressions,

with the significant difference that AT is undefined at t

= 0. It can be shown that RE and LP may yield similar

short term projections, but they differ significantly for

very large values of t.

3. Methodology for Model Evaluation

Here we discuss how the data was collected and

prepared for fitting, and then we describe how the

goodness of fit was evaluated.

The data sources: Compared to data that has been

used for SRGMS in the past, vulnerability data

demonstrates some different characteristics. One of the

main differences is that generally no information is

available concerning the faults in SRGM data, whereas

for vulnerabilities the data bases identify the specific

vulnerability. The vulnerability data comes from well-

known products, since the data for every operating

system and server, both commercial and open-source,

are available. The SRGM data comes only from some

selected projects where the management has permitted

disclosure of the data. On the other hand, vulnerability

data has some limitations—namely, that it comes from

a limited number of sources, and the number of

vulnerabilities typically represents only a small

fraction of the total number of defects.

Table 1: The data sets used

S
y

stem
s

L
in

es o
f co

d
e

(m
illio

n
s)

O
S

 T
y

p
e

K
n

o
w

n

V
u

ln
era

b
ilities

V
u

ln
era

b
ility

D
en

sity

(p
er K

slo
c)

R
elea

se D
a

te

Windows

95
15

Commer-

cial client 50 0.0033
Aug

1995

Windows

XP
40

Commer-

cial client 88 0.0022
Oct

2001

R H Linux

6.2
17

Open-

source

server
118 0.00694

Mar

2000

Vulnerability data needs to be manually extracted

from data bases. Our major sources of data are the

Mitre Corporation [16] website and the ICAT [12]

metabase. ICAT is an easily searchable data base with

the option of downloading an ACCESS database.

Evaluation of goodness of fit: We will apply two

goodness-of-fit tests. The first is the chi-square

goodness of fit test. The chi-square (
2
) statistic is

calculated as follows:

=

−
=

n

i i

ii

e

eo

1

2
2)(χ , (10)

where oi is the observed value and ei is the model’s

expected value.

For fit to be acceptable, the chi-square statistic

should be less than the critical value for a given alpha

level and the degrees of freedom. The P-value is the

probability that a value of the
2
 statistic at least as

high as the value calculated by the above formula

could have happened by chance. We use an alpha level

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05)

1071-9458/05 $20.00 © 2005 IEEE

6

of 5%; i.e., if the P-value of the chi-square test is

below 0.05 then the fit will be rejected. A P-value

closer to 1 indicates a better fit. P-value is calculated

by using the number of degrees of freedom of the data

set and chi-square distribution.

For model adequacy testing Akaike Information

Criteria (AIC) [1] is also frequently used. AIC is used

to make a fair comparison between the models. AIC is

formally defined as

AIC= (-2 × log likelihood) + 2M

An equivalent way to compute AIC is

 AIC=T ln(RSS) + 2M, (11)

where M is the number of free parameters of the

examined model, T the number of observations, and

RSS the residual sum of squares. We use the

formulation of AIC given by Equation 11. The Akaike

In our analysis, we have used the data sets for three

significantly different operating systems. The

vulnerability data of Windows 95 is for a client

operating system that has existed for several years. It

has gone through nearly a complete life-cycle and its

remaining installed base is now very small. The data

set for Windows XP represents a relatively new

operating system which may be near the peak of its

popularity. We have also included data for Linux Red

Hat 6.2 which represents an open-source operating

system. Some of the key attributes of the three systems

are given in Table 1, [3, 12, 15, 16]. Windows XP is

much bigger than Windows 95; however, its

vulnerability density is comparable. It is likely that

significant number of yet undiscovered vulnerabilities

is present in Windows XP. The higher number of

vulnerabilities in RH Linux 6.2 may be due to the fact

that a larger fraction of the software’s functionality

may be devoted to access control.

4. Fitting Data to Proposed Models

The results of fitting the models to the data is

presented graphically in the plots given in Figures 6,7

and 8, which show the fitted plots along with actual

cumulative data. The parameter values obtained during

the fit, and the corresponding measures of goodness of

fit for the three operating systems’ sets, are given in

Tables 2, 3 and 4. First we discuss the results for each

model individually and afterwards each software

system’s datasets.

The Windows 95 data (Figure 6) has a distinct s-

shape due to the fact that vulnerability detection

reached saturation some time ago. As we would

expect, the AML model fits quite well. The fitted AT

model gives negative values at the beginning and

significantly diverges from the actual data, except near

the end, that is why AT’s chi-square value is

incomparable with the other models. The fitted RE, RL

and the LP models generate linear plots and thus show

considerable divergence at the end.

The Linux Red Hat 6.2 data (Figure 7) shows a

milder s-shape, permitting most models except AT to

fit reasonably well. The data for Windows XP (Figure

8) show a very linear trend, allowing LP, RE and RL to

fit quite well. This is likely to change when the

vulnerability discovery rate for Windows XP

eventually saturates. The AT model again has a

problem with fitting during the initial stage and again

in the last stage.

For the Linux Red Hat 6.2 data, LP, RL, RE and

AML models successfully fitted with P-values ranging

from 0.915 to 0.998 (Table 3). However, AML gave a

better AIC test score of 429.89, while the others

yielded values close to 469.

Table 4 shows that for the Windows XP dataset LP,

RE, RL and AML successfully fit the data with P-

values ranging between 0.918 to 0.99997. However,

the AT model did not fit the dataset. The RL model has

the lowest AIC of 249.4, while for the other models the

value ranged from 273.4 and 373.19. The reason that

the AML model was not better for Windows XP is that

it is relatively new operating system and the saturation

phase has not yet been reached. The RL model fits the

Windows XP data very well.

Windows 95

0

10

20

30

40

50

60

70

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103
Time (Months)

C
u

m
u

la
ti

v
e
 V

u
ln

e
ra

b
il
it

ie
s

Cumilitive vulns RE RL AML AT LP

Figure 6 –Fitted VDMs with actual Windows 95
data

Comparative performance of the models: Here

we examine the performance of each individual model.

The Anderson Thermodynamic (AT) model was

unable to fit any of the data, exhibiting the highest AIC

scores and lowest P-values. For the Windows 95 data,

with an AIC of (947) it is 100 points away from the

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05)

1071-9458/05 $20.00 © 2005 IEEE

7

nearest model. For Linux 6.2 it has demonstrated an

AIC of (572.79), which is 103 points. For Windows

XP it was about 85 points higher than the closest

model.

Rescorla linear (RL) model was able to fit two out

of three of the datasets under consideration. RL was

not able to fit the Windows 95 data (see Figure 6)

because of the strong S-shaped trend of the data; at

best, the model was stretched as linear as possible.

Thus, it scored poorly in the chi-square test with a P-

value of only 0.0035, whereas it should have been at

least 0.05 to be acceptable. For Linux 6.2 it achieved a

P-value of 0.915, which is a very good fit. It fits the

Windows XP data very well with a P-value of 0.99997.

Table 2- Windows 95 goodness of fit results
2 –test Mode

l
Parameters

2 P-Value
RSS AIC

K/ C
*AT

17.795 2.36
222.3

2.14

×10-12 7961.2
947.1

4

0 1LP
157.63 4.14×10-3 144.72 1×10-5 3095

847.9

4

 N
RE

0.0001 5629.7
135.82 0.00198 3300.3

854.6

9

S K
RL

-0.00137 0.674
147.07 0.0035 3006.2

844.8

8

A B C
AML

0.002 49.15 1.41
48.4 .999999 416.27 639.3

*Chi-square test was applied to the positive values for

the AT model.

Linux Red Hat 6.2

0

20

40

60

80

100

120

140

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
Time (Months)

C
u

m
u

la
ti

v
e

 V
u

ln
e

ra
b

il
it

ie
s

Cumilitive vulns RE RL AML AT LP

Figure 7 – Fitted VDMs with actual Red Hat
Linux 6.2 data

The Rescorla Exponential (RE) model was able to

fit two out of three of the data sets considered. RE was

not able to fit the Windows 95 data (see Figure 6)

because of the prominent S-shape of the data set curve,

the fit was judged to be poor in the chi-square test with

a P-value of only 0.0198, which is significantly less

than the 0.05 that is considered acceptable. For Linux

6.2 and Windows XP the P-values were 0.925 and 0.97

respectively, a very good fit in both cases. However,

RE scored 854.69 in the AIC test for Windows 95,

which is higher than other models except AT. For

Linux Red Hat 6.2, the AIC was 469.82 which is close

to the values for LP and RL, although larger than the

value for AML. For Windows XP, again it was with a

high AIC of 288.58.

The Alhazmi-Malaiya Logistic Model (AML) is the

only model that fits all three data sets well. The fit was

especially superior for the Windows 95 and Linux Red

Hat 6.2 data sets, where it gave the best AIC results.

For Windows 95, AML has an AIC value of 639.3,

which is much less than the other models which have

scored between 844 and 947.14. The AML model fits

the data with an excellent P-value very close to 1. The

other four models failed the goodness of fit test for

Windows 95, since they generated unacceptably high

chi-square values and consequently low P-values

below 0.02. AML was the best model in RedHat Linux

6.2 data set, with a low 429.89 on AIC with a 40 points

better than the nearest model. Although AML fits well

with Windows XP data, it is able to score only a

modest 273.34 on the AIC. The RL model fit the

Windows XP data better due to the fact that the

Windows XP data has is very linear, which gives it an

advantage over the AML model. We would, however,

expect the Windows XP data to eventually saturate.

The results show that the AML is the most consistent

model for the three data sets.

Table 3- Fitting Results for Red Hat Linux 6.2
2 –test

Model Parameters
2 P-Value

RSS AIC

K/ C
*AT 38.3 9.39

173.6 1.1×10-20 18156.6572.79

0 1
LP

6999.9 3.2×10-4 38.9 0.998 3077.6 469.85

 N
RE

0.0004 5629.7
38.98 0.925 3076.18469.82

S K
RL

-0.0013 2.2816
40.02 0.915 3069.8 469.7

A B C
AML

0.0008125.2 0.128
32.43 0.996 1492.96429.89

*Chi-square test was applied to the positive values for

the AT model

The Logarithmic Poisson (LP) model was able to fit

the Linux 6.2 data with a P-value of 0.998 and

Windows XP with a P-value equal to 0.9654.

However, it failed to fit the Windows 95 data set with a

low P-value of 1x10
-5

. On the AIC scale for Linux 6.2,

it scored 469.85, which is close to the score of the RL

and RE models and better than the AT model. For

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05)

1071-9458/05 $20.00 © 2005 IEEE

8

Windows XP, the AIC was 284.49, better than the RE

model and worse than the RL and AML models.

Both RE and RL demonstrate a good fit for a short

term. Both the models are flexible and can adjust to a

linear trend with an adjustment of their regression

parameters. However, they may not work very well for

the long term. The RE model is somewhat better than

RL with the ability to capture the saturation in the later

phase. On the other hand, the S-shaped AML model

has shown excellent fit, especially for the long term.

Furthermore, the AML model is flexible enough to

also fit short term data.

Windows XP

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
Time (Months)

C
u

m
u

la
ti

v
e

 v
u

ln
e

ra
b

il
it

ie
s

Cumilitive vulns RE RL AML AT LP

Figure 8 – Fitted VDMs with actual Windows
XP data

Table 4- Fitting results for Windows XP
2 –test

Model Parameters
2 P-Value

RSS AIC

K/ C
*AT

27.1 7.61
115 1.1×10-9 6568.3373.19

0 1LP
7211.85 0.000277

26.15 0.9654 757.9 284.49

 N
RE

0.00035 5628.8
26.44 0.955 761.8 284.7

S K
RL

0.0162 1.482
13.82 0.99997 328.7 249.4

A B C
AML

0.001 107.5 0.144
29.12 0.918 581.69273.37

*Chi-square test was applied to the positive values for

the AT model

5. Results and Observations

Of the five models examined, three of them—RL,

RE and LP, appear to do a good job of following the

shorter-term trends, especially when the cumulative

vulnerabilities show a linear trend. The AT model

generally does not appear to fit the actual data well.

The AML model often provides the best fit since it can

follow the S-shaped trend that is observed in some

cases.

The AML model uses three parameters, while the

others are two-parameter models. However, both the

measures, the P-value and AIC, take the number of

parameters into account and thus provide a fair basis

for comparison.

Among the five models, the parameters of the RE

and AML models have some simple interpretations.

One of the parameters in both is related to the total

number of vulnerabilities present in the software. If the

expected range of vulnerability density values can be

estimated based on past experience, a preliminary

estimate of the total number of vulnerabilities may be

empirically obtained [3]. However, empirical

estimation of other parameters requires further

investigation.

The evaluation presented here is based on three

operating systems that represent two commercial

systems in different life-cycle phases and one open-

source software system. These observations need to be

further validated using data from other systems.

The vulnerability data is generally of higher quality

than that used for evaluating SRGMs in the past.

However, there are some significant issues to keep in

mind. One is that vulnerabilities are sometimes

reported in batches, which affects the accuracy of the

time a vulnerability is recorded. If cumulative data is

being used for analysis, this will cause some

fluctuations but should not change the longer-term

trend present in the data.

ICAT metabase can have some ambiguity in

identifying a specific version of a software system.

Consequently, researchers need to check details of

vulnerabilities and use some of the ICAT references

for additional verification. Sometimes duplicate entries

are encountered. Rescorla has mentioned some of these

irregularities in [19].

Since data bases only include the publicly known

vulnerabilities, for proprietary software systems we

may not know about unpublished vulnerabilities.

However, with external experts competing to discover

vulnerabilities, it is likely that disclosure of

vulnerabilities will be carried out as soon as a patch is

available. For open-source systems, the discovered

vulnerabilities are usually available in the public

domain.

Vulnerabilities are shared among successive

versions due to code reuse. This can raise the question

of where the vulnerability was discovered—in the new

version or in the older version. Sometimes

vulnerabilities in the ICAT metabase are discovered

prior to the specified version’s release date, a problem

that can be overcome by filtering omitted pre-release

date vulnerabilities.

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05)

1071-9458/05 $20.00 © 2005 IEEE

9

The AT, RL, RE and LP models assume a stable

level of testing effort over time. However, it would be

reasonable to assume that the extent of the testing

effort is driven by the cost/reward factors. Finding

vulnerabilities in a widely-installed system should be

more rewarding to internal testers, who would put in

extra effort into minimizing the probability of

exploitation in the popular systems. The external

experts and hackers would find it more rewarding to

find vulnerabilities in systems that are currently

popular. Thus the testing effort varies with changes in

the market share of software systems. This variability

of effort was addressed in [2] by developing an

equivalent effort model. The model addresses changes

in the usage environment, which affects the discovery

process. The model considered the time spent by the

number of workstations using the software systems.

The equivalent effort model fit very well but the model

requires data that can be very hard to collect. The AML

model attempts to implicitly model the effort variation.

6. Conclusions and Discussion

This paper presents an examination of the

applicability of recently proposed quantitative

vulnerability discovery models to actual data.

Systematic software testing in a developing

organization occurs prior to release and the bugs are

found internally. On the other hand vulnerability

discovery occurs throughout the product lifetime and

the vulnerabilities are found both internally and

externally. Moreover, compared with ordinary bugs,

the number of vulnerabilities is very small. This raises

a question about applicability of quantitative models,

such as the SRGMs that have been successfully used.

The results presented here show that some of the

proposed models fit the actual vulnerability discovery

process very well.

Four vulnerability discovery models were examined

using Akaike Information Criteria (AIC) and chi-

square (
2
) tests. Results show that the AML model is

generally the best for the longer term, performing

better for Windows 95 and Linux 6.2. Because it

captures the S-shape pattern in the data, it has better fit

as determined by using AIC and the chi-square test.

RL, RE, LP and AML all show very good fit for

Windows XP, a system that has not yet shown signs of

saturation. This can be attributed to the fact that they

can fit trends that are largely linear. The AT model

considered did not perform well in general.

These vulnerability discovery models ignore the

architecture of the software system. They assume that

vulnerabilities are found in random places within

software systems. In some specific modules, exploiting

information concerning the architecture of the system

can focus security testing to the code with higher

chance of finding vulnerability, which will make

security testers more productive.

We have analyzed the models statistically and

analytically. However since models with a good fit will

not necessarily have good estimation capability, there

is a need to examine the ability of the models to

estimate the future vulnerability discovery rate. In a

concurrent work [4], the prediction capabilities of two

of the VDM models are examined. The results show

that the prediction capability gets better as more data

becomes available. The investigations show that

putting some constraints on the models’ parameters

based on previous observations significantly improves

the prediction capability. Examination of the

prediction capabilities of the other models is still

needed to show broader comparison of the other

vulnerability discovery models.

VDMs can be termed dynamic models. It is possible

to define and use static metrics that impact the

parameter values in such models. Metrics such as

vulnerability density and vulnerability/defect ratios [3]

can be used to check the projections made using VDMs

during early phases when the available data is

insufficient, or when a VDM is known to have some

specific limitations.

Vulnerability discovery models can be used by both

the developers and the user community. Developers

can assess the product readiness by projecting future

vulnerability discovery trends. Developers need to

allocate security maintenance resources to detect

vulnerabilities, preferably before others do; and to

release security patches as soon as possible. The users

also need to assess the risk due to vulnerabilities before

patches are applied. A patch may need to be tested for

stability before it is applied as discussed by

Brykczynski et al. [10] and Beattie et al. [6]. Effective

security policy at an organization would require time

and resources. Vulnerability discovery models can be

used to quantitatively guide such policies.

 The models considered have some limitations,

namely, that they treat all vulnerabilities equally, even

though some vulnerabilities may represent higher

severity levels. Moreover, the models do not address

code re-use and overlap among consecutive versions of

software systems. Vulnerability discovery models

assume that each specific release of an operating

system is independent, and can be separately modeled.

In practice, a significant sharing of the code occurs

between successive releases. Thus a vulnerability

detected in a version may also exist in previous

versions. Further research is needed to model the

impact of such shared code.

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05)

1071-9458/05 $20.00 © 2005 IEEE

10

7. References

[1] H. Akaike, Prediction and Entropy, MRC Technical

Summary Report #2397. NTIS, Springfield, VA., 1982.

[2] O. H. Alhazmi and Y.K. Malaiya,, “Quantitative

vulnerability assessment of systems software,” Proc. Annual

Reliability and Maintainability Symposium, 2005. pp. 615 –

620.

[3] O. H. Alhazmi, Y. K. Malaiya and I. Ray, “Security

Vulnerabilities in Software Systems: A Quantitative

Perspective,” Proc. Ann. IFIP WG11.3 Working Conference

on Data and Information Security, Aug. 2005.pp. 281-294.

[4] O. H. Alhazmi, Y. K. Malaiya, “Prediction Capability of

Vulnerability Discovery Models”, to appear in Proc.

Reliability and Maintainability Symposium, January 2006.

[5] R. J. Anderson, “Security in Opens versus Closed

Systems—The Dance of Boltzmann, Coase and Moore,”

Open Source Software: Economics, Law and Policy,

Toulouse, France, June 20-21, 2002.

[6] S. Beattie, S. Arnold, C. Cowan, P. Wagle and C.

Wright, “Timing the Application of Security Patches for

Optimal Uptime,” Proc. LISA XVI, November 2002. pp 233-

242.

[7] P. G. Bishop and R. E. Bloomfield, “A Conservative

Theory for Long-Term Reliability Growth Prediction,” IEEE

Trans. Reliability, Vol. 45, No. 4, Dec. 1996. pp

[8] R. M. Brady, R. J. Anderson, R. C. Ball, “Murphy's law,

the fitness of evolving species, and the limits of software

reliability”, Cambridge University Computer Laboratory

Technical Report No. 471 (September 1999), available at

http://www.cl.cam.ac.uk/ftp/users/rja14/babtr.pdf.

[9] H. K. Browne, W. A. Arbaugh, J. McHugh, W. L.

Fithen, “A Trend Analysis of Exploitation,” Proc. IEEE

Symposium on Security and Privacy, 2001, May 2001, pp.

214-229.

[10] B. Brykczynski and R. A. Small, “Reducing Internet-

Based Intrusions: Effective Security Patch Management,”,

IEEE Software, Vol. 20, No. 1, Jan-Feb 2003, pp. 50-57

[11] A. L. Goel and K. Okumoto, “Time-Dependent Error

Detection Rate Model for Software and Other Performance

Measures,” IEEE Trans. on Reliability, R-28, 3, August

1979, pp. 206-211.

[12] ICAT Metabase, http://icat.nist.gov/icat.cfm, February

2004.

[13] M. R. Lyu, Ed., Handbook of Software Reliability

Engineering, McGraw-Hill, 1995.

[14] Y.K. Malaiya, A. von Mayrhauser, P.K. Srimani, “An

Examination of Fault Exposure Ratio,” IEEE Trans. Software

Engineering, Nov. 1993, pp. 1087-1094.

[15] G. McGraw. “From the Ground Up: The DIMACS

Software Security Workshop,” IEEE Security & Privacy.

Volume 1, Number 2, March/April 2003, pp. 59-66.

[16] The MITRE Corporation, www.mitre.org, February

2005.

[17] J. D. Musa, Software Reliability Engineering, McGraw-

Hill, 1999.

[18] J.D. Musa and K. Okumoto, “A logarithmic Poisson

execution time model for software reliability measurement,”

Proc. 7th International Conference on Software Engineering,

Orlando, FL, 1984, pp. 230-238.

[19] E. Rescola, “Is finding security holes a good idea?”

Security and Privacy, Jan-Feb 2005. pp. 14-19.

[20] E. E. Schultz, Jr., D. S. Brown and T. A. Longstaff,

“Responding to Computer Security Incidents,” Lawrence

Livermore National Laboratory,

ftp://ftp.cert.dfn.de/pub/docs/csir/ihg.ps.gz, July 23, 1990.

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05)

1071-9458/05 $20.00 © 2005 IEEE

