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Abstract 

Security vulnerabilities in servers and operating 

systems are software defects that represent great risks. 

Both software developers and users are struggling to 
contain the risk posed by these vulnerabilities. The 

vulnerabilities are discovered by both developers and 

external testers throughout the life-span of a software 

system. A few models for the vulnerability discovery 

process have just been published recently. Such models 

will allow effective resource allocation for patch 

development and are also needed for evaluating the 

risk of vulnerability exploitation. Here we examine 

these models for the vulnerability discovery process. 

The models are examined both analytically and using 

actual data on vulnerabilities discovered in three 
widely-used systems. The applicability of the proposed 

models and significance of the parameters involved are 

discussed. The limitations of the proposed models are 

examined and major research challenges are 

identified. 

1. Introduction 

The vulnerability discovery process is analogous to 

the process of finding defects in software during 

testing. Vulnerabilities are, after all, a class of software 

defects [20]. However, there are some remarkable 

differences.  

Software testing conducted within an organization 

is a reasonably well-defined process. At the same time, 

the effort that goes into finding vulnerabilities can 

depend on the rising and falling share of the installed 

base. A significant fraction of the vulnerabilities are 

found externally. Some of the finders are experts in 

commercial security organizations. However, some of 

the finders may be potential “black-hat” individuals 

who may be tempted to use the vulnerabilities 

discovered for their own gain. It is considered 

acceptable for some known bugs to be present in the 

software; they are often not fixed until the next release. 

Nonetheless, the presence of a known and unremedied 

vulnerability is highly undesirable. The system 

developers need to release patches as soon as possible 

after a vulnerability is discovered. The presence of 

known vulnerabilities in operating systems and servers 

can represent an extremely high risk for some 

organizations such as banks, investment and brokerage 

houses and web-based merchants.  

Just as it is not feasible for a software to be certified 

defect-free, it is not possible to identify and fix every 

vulnerability present in an operating system. The 

software developers and users need to be able to assess 

the risk posed by the vulnerabilities and must invest in 

effective counter-measures. It is now recognized that 

the risk can depend on the delay involved in 

developing and releasing a patch [6, 10]. A developer 

needs to allocate sufficient resources for continuous 

vulnerability testing and patch development to stay 

ahead of the hackers. The users need to invest in data 

safeguard mechanisms, intrusion detection and damage 

control. This investment must be proportional to level 

of risk involved. 

Software reliability growth models [13, 17] have 

been used for characterizing the defect-finding process. 

Such models are used to assess the test resources 

needed to achieve the desired reliability level by the 

target date and are needed for evaluating the reliability 

level achieved. They can also be used to estimate the 

number of residual defects that are likely to be present.  

There is a need to develop similar models for 

quantitative characterization of the security aspects of 

the software. There are two separate processes to be 

considered. The first is the vulnerability discovery 

process, while the second is exploitation of individual 

vulnerabilities discovered. In this paper we examine 

modeling the first process. While the two processes are 

distinct, evaluation of the overall risk should involve a 
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joint consideration of both processes. Obviously a 

vulnerability needs to be discovered before it can be 

exploited. While those who attempt to exploit 

vulnerabilities may often be amateurs, those who 

discover vulnerabilities must have significant technical 

expertise. 

In the security field, the vulnerability exploitation 

models (VEMs) were the first to be considered. 

Browne et al. [9] have examined the exploitation of 

some specific vulnerabilities and have presented a 

modeling scheme. Investigations on the modeling of 

the vulnerability finding process have recently been 

examined by a few researchers. We examine and 

evaluate these models, termed vulnerability discovery 

models (VDMs), in this paper. An evaluation of the 

risk would involve both characterization of 

vulnerability discovery process was well as their 

potential exploitation. This evaluation of the risk 

involves both VEMs and VDMs. 

The first VDM model proposed by Anderson [5] is 

here termed the Anderson Thermodynamic (AT) 

model. The second termed the AML model, is a 

logistic model proposed by Alhazmi and Malaiya in [2] 

and investigated in [3]. Two trend models were 

examined by Rescola in [19]; a linear model and an 

exponential model; these are termed RL and RE 

respectively. Finally, we try to fit and test a new model 

LP, which is an application of a traditional Logarithmic 

Poisson reliability growth model [18] proposed by 

Musa and Okumoto. All of these can be termed time-

based models since they consider calendar time as the 

main factor. An effort-based model has also been 

proposed by Alhazmi and Malaiya in [2]. It will not be 

considered in this paper since it uses a different 

approach that attempts to use test-effort as the main 

factor instead of calendar time.  

Alhazmi and Malaiya [2] have examined 

applicability of the AML model to the Windows 98 

and NT 4.0 cumulative vulnerability data and found the 

fit to be acceptable. On the other hand, Rescorla [19], 

using the non-cumulative vulnerability rate data, found 

the fit for the two models considered to be insignificant 

for three of the four systems under consideration and 

significant for Red hat Linux 6.2. The applicability of 

the model proposed by Anderson  [5] has not yet been 

considered. No comparison of the VDMs has yet been 

done.  This paper examines and compares all the 

proposed models in a uniform manner, using the same 

data sets. 

Ideally a time-based model such as an SRGM or a 

VDM should fit the available data perfectly. However, 

a model is an approximation of actual behavior that 

may be subject to some minor factors which are not 

modeled, in addition to some statistical fluctuations. A 

model should be useful for making future projections 

and for identifying the current trends. Thus, it should 

attempt to model the longer term trend. It is desirable 

that a model have a simple interpretation of the 

parameters; however, such an interpretation is not 

always easily found. If a parameter has an 

interpretation, it may be possible to estimate the 

general range in which its value should lie. When 

curve fitting is iterative, it can be quite useful to start 

with a preliminary estimate of the parameters as an 

initial value. In this paper we briefly examine the basis 

of proposed models and evaluate the applicability of 

the models using actual vulnerability data. 

Just as static models for defect density and fault 

exposure ratio can assist in use of the SRGMs, the 

metrics vulnerability density and vulnerability/defect 

ratio can be applied to complement and support VDMs. 

Alhazmi and Malaiya [2] have shown that for similar 

systems, the values of these attributes tend to fall 

within a range. Static metrics can be used to constrain 

parameter estimation during fitting [4]. 

This paper examines the proposed models and 

presents a comparison using actual data for 

vulnerabilities in three major operating systems. 

Statistical goodness of fit tests are used to examine 

how well models track the actual discovery process. In 

the next section we discuss the proposed models. In 

section 3 the data-sets used for evaluation and the 

methodology is described. In Section 4, the models’ 

adequacy is examined; the section evaluates measures 

for goodness of fit and presents the findings. In Section 

5, the results are further discussed. Finally the 

conclusions are presented and the future work is 

identified in the last section. 

2. Vulnerability Discovery Models 

Here we present a summary of the main features of 

the vulnerability discovery models (VDMs) proposed. 

Although some of them were not formally termed a 

“model,” they are appropriate candidates for further 

examination. For uniformity, the models are presented 

in such a way as to give the cumulative number of 

vulnerabilities with time as the independent variable. A 

vulnerability is defined as “a defect which enables an 

attacker to bypass security measures” [20]. VDMs can 

describe the rate of vulnerability discovery, denoted by 

(t), or the cumulative number of vulnerabilities 

discovered, denoted by (t). Note that (t) is obtained 

by integrating (t) with respect to time.

Anderson Thermodynamic Model (AT): This 

model was originally proposed for software reliability 

in [8]. Later, Anderson applied it to vulnerabilities in 

[5]; Figure 1 shows a hypothetical plot of AT model 

for different values of k/ and C. Let us suppose that 
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there are N(t) vulnerabilities left after t tests, and let the 

probability that a test fails be (t). The model assumes 

that encountering a vulnerability causes it to be 

removed and also that no bugs are reintroduced. Using 

an analogy from thermodynamics, Anderson argues 

that (t) ≤ k / t, where k is a constant. Arguing that 

equality should be a reasonable approximation, he 

finally arrives at the model 

t

k
t

γ
ω =)( ,    (1)

where γ  is a factor that takes into account the lower 

failure rate during beta testing by the users compared 

with alpha testing. Since we want to compare 

cumulative models we integrate equation 3 to get the 

model in terms of the cumulative number of 

vulnerabilities given by the function (t) as follows: 
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represents the integration constant. 

Simplifying we get, 

)ln()( Ct
k

t
γ

=Ω ,   (2) 

where C is a constant introduced by the integration. 

Note that this (t) in this model is not defined when 

t=0; hence we will only consider its applicability when 

t 1. As t grows, (t) grows with logarithmic increase. 

It should be noted that this model has a relationship to 

the well-known Logarithmic Poisson SRGM and the 

failure rate bound proposed Bishop and Bloomfield 

[7].

Alhazmi-Malaiya Logistic Model (AML): This 

model was proposed by Alhazmi and Malaiya in [2]. 

They have also proposed an effort-based model 

(AMEB); however, it is not comparable to the other 

models examined here. The AML model is based on 

the observation that the attention given to an operating 

system increases after its introduction, peaks at some 

time and then drops because of the introduction of a 

newer competing version; Figure 2 shows a 

hypothetical plot of AML model for different values of 

A, B and C. Thus the vulnerability discovery rate 

increases at the beginning, reaches a steady rate and 

then starts declining. The cumulative number of 

vulnerabilities thus shows an increasing rate at the 

beginning as the system starts attracting an increasing 

share of the installed base. After some time, a steady 

rate of vulnerability finding yields a linear curve. 

Eventually, as the vulnerability discovery rate starts 

dropping, there is saturation due both to reduced 

attention and a smaller pool of remaining 

vulnerabilities. 

Anderson Thermodynamic Model
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Figure 1 –Anderson Thermodynamic (AT) 

model  

The model assumes that the rate of change of the 

cumulative number of vulnerabilities  is governed by 

two factors, as given in Equation 3 below.  One of 

these factors declines as the number of remaining 

undetected vulnerabilities declines. The other factor 

increases with the time needed to take into account the 

rising share of the installed base. The saturation effect 

is modeled by the first factor. While it is possible to 

obtain a more complex model, this model provides a 

good fit to the data, as shown below.  

Let us assume that the vulnerability discovery rate 

is given by the differential equation:- 

)( Ω−Ω=Ω
BA

dt

d
,   (3) 

where  is the cumulative number of vulnerabilities, t 

is the calendar time, and initially t=0. A and B are 

empirical constants determined from the recorded data. 

By solving the differential equation we obtain 

1
)(

+
=Ω − ABtBCe

B
t  , (4) 

where C is a constant introduced while solving 

Equation 1. It is thus a three-parameter model given by 

the logistic function. In Equation 4, as t approaches 

infinity, y approaches B. Thus, the parameter B 

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05) 

1071-9458/05 $20.00 © 2005 IEEE 



4

represents the total number of accumulated 

vulnerabilities that will eventually be found. The 

model given by Equation 4 will be referred to as the 

Alhazmi-Malaiya Logistic (AML) model [2].   

Alhazmi-Malaiya Logistic Model

A=.0024,B=60,

C=190

A=.052,B=60,

C=50

A=.003,B=60

C=120

Time

C
u

m
u

la
ti

v
e
 V

u
le

ra
b

il
it

ie
s

Figure 2 – Alhazmi-Malaiya Logistic (AML) 
model 

This model addresses the fact that the 

vulnerabilities found in an operating system depend on 

its own usage environment. It should be noted that the 

saturation phase may not be seen in an OS which has 

not been present for a sufficiently long time. Also, if 

the initial adaptation is quick due to better prior 

publicity, in some cases early learning phase (when the 

slope gradually rises) may not be significant. 

A non-linear regression may require an initial 

estimate of the parameter values. An initial estimate of 

B may be obtained by noting the size of the software 

and using the typical vulnerability density values of 

similar software. Using Equation 2, we can show that 

the maximum slope is given by AB
2
/4, which occurs at 

y = B/2. It can also be mathematically shown that the 

two inflexion points in the derivative of Ω are 2.63/AB 

time period apart.  This fact can be used guide 

parameter estimation during fitting [4]. 

Rescola Linear Model (RL): Rescola has 

attempted to identify trends in the vulnerability 

discovery data by applying some statistical tests. We 

here refer to these tests as the linear model and 

exponential model [19]; Figure 3 shows a hypothetical 

plot of RL model for different values of B and K.

First, we examine Rescorla linear model that 

attempts to fit the vulnerability finding rate linearly 

with time, rather than using the cumulative data. 

Vulnerabilities were grouped in 3-months-periods of 

time. The linear fit for the failure rate (t) implies the 

model: 

KBtt +=)(ω  ,  (5) 

where B is the slope and K is a constant, while both are 

regression coefficients. The cumulative vulnerability 

discovery model can be derived by integrating (5): 

          +=Ω dtKBtt )()(        

Kt
Bt

t +=Ω
2

)(
2

,    (6) 

here the integration constant is taken to be zero to 

allow (t) to be zero at t =0. In this model as t grows, 

 grows polynomially, as given by the squared term. 

Rescorla's Linear
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Figure 3 –Rescorla linear (RL) model 

Rescorla's Exponential
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Figure 4 –Rescorla exponential (RE) model 

Rescorla Exponential Model (RE): Rescorla [19] 

has also used Goel-Okumoto SRGM [11] to fit the 

data. This exponential model can be given as:  

ω(t) = N e- t,   (7)

where N is the total number of vulnerabilities in the 

system and λ is a rate constant. Again, we here 

integrate (7) to get the cumulative number of 

vulnerabilities.  Figure 4 shows some plots of RE 

model for different values of λ, and N.
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(t) = tNeNdt λλλ −− −=teN

(t) = )1( teN λ−− ,   (8) 

where the integration constant has been equated to 

N to allow the initial value of Ω to be zero. Note that 

as time grows, Ω approaches N.  

Logarithmic Poisson Model (LP): This model is 

also known as the Musa-Okomoto model [18]. A 

physical interpretation of the model and its parameters 

is complex.  An interpretation in terms of the 

variability of the fault exposure ratio is given in [14]. 

Figure 5 shows various plots of LP model for different 

values of 0 and 1.

)1ln()( 10 tt ββ +=Ω ,   (9) 

where 0 and 1 are regression coefficients. At t=0, 

(t) = 0;  (t) grows indefinitely as the system ages 

with a logarithmic growth. In spite of the fact that the 

parameters have a complex interpretation, the model 

has been found to be among the better fitting SRGMs 

in many cases. 

Logarithmic Poisson Model
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Figure 5 –Logarithmic Poisson (LP) model 

Some of the models are somewhat related. The AT 

and LP models are given by rather similar expressions, 

with the significant difference that AT is undefined at t 

= 0. It can be shown that RE and LP may yield similar 

short term projections, but they differ significantly for 

very large values of t.   

3. Methodology for Model Evaluation 

Here we discuss how the data was collected and 

prepared for fitting, and then we describe how the 

goodness of fit was evaluated. 

The data sources: Compared to data that has been 

used for SRGMS in the past, vulnerability data 

demonstrates some different characteristics. One of the 

main differences is that generally no information is 

available concerning the faults in SRGM data, whereas 

for vulnerabilities the data bases identify the specific 

vulnerability. The vulnerability data comes from well-

known products, since the data for every operating 

system and server, both commercial and open-source, 

are available. The SRGM data comes only from some 

selected projects where the management has permitted 

disclosure of the data. On the other hand, vulnerability 

data has some limitations—namely, that it comes from 

a limited number of sources, and the number of 

vulnerabilities typically represents only a small 

fraction of the total number of defects.  

Table 1: The data sets used 
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95
15
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cial client 50 0.0033 
Aug 

1995 

Windows 

XP 
40

Commer-

cial client 88 0.0022 
Oct

2001 

R H Linux 

6.2
17

Open-

source 

server
118 0.00694 

Mar 

2000 

Vulnerability data needs to be manually extracted 

from data bases. Our major sources of data are the 

Mitre Corporation [16] website and the ICAT [12] 

metabase. ICAT is an easily searchable data base with 

the option of downloading an ACCESS database.  

Evaluation of goodness of fit: We will apply two 

goodness-of-fit tests. The first is the chi-square 

goodness of fit test. The chi-square (
2
) statistic is 

calculated as follows: 

=

−
=

n

i i

ii

e

eo

1

2
2 )(χ ,    (10) 

where oi is the observed value and ei is the model’s 

expected value. 

For fit to be acceptable, the chi-square statistic 

should be less than the critical value for a given alpha 

level and the degrees of freedom. The P-value is the 

probability that a value of the 
2
 statistic at least as 

high as the value calculated by the above formula 

could have happened by chance. We use an alpha level 
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of 5%; i.e., if the P-value of the chi-square test is 

below 0.05 then the fit will be rejected. A P-value 

closer to 1 indicates a better fit. P-value is calculated 

by using the number of degrees of freedom of the data 

set and chi-square distribution. 

For model adequacy testing Akaike Information 

Criteria (AIC) [1] is also frequently used. AIC is used 

to make a fair comparison between the models. AIC is 

formally defined as  

AIC= (-2 × log likelihood) + 2M

An equivalent way to compute AIC is 

  AIC=T ln(RSS) + 2M,    (11) 

where M is the number of free parameters of the 

examined model, T the number of observations, and 

RSS the residual sum of squares. We use the 

formulation of AIC given by Equation 11.  The Akaike  

In our analysis, we have used the data sets for three 

significantly different operating systems. The 

vulnerability data of Windows 95 is for a client 

operating system that has existed for several years. It 

has gone through nearly a complete life-cycle and its 

remaining installed base is now very small. The data 

set for Windows XP represents a relatively new 

operating system which may be near the peak of its 

popularity. We have also included data for Linux Red 

Hat 6.2 which represents an open-source operating 

system. Some of the key attributes of the three systems 

are given in Table 1, [3, 12, 15, 16]. Windows XP is 

much bigger than Windows 95; however, its 

vulnerability density is comparable. It is likely that 

significant number of yet undiscovered vulnerabilities 

is present in Windows XP. The higher number of 

vulnerabilities in RH Linux 6.2 may be due to the fact 

that a larger fraction of the software’s functionality 

may be devoted to access control.   

4. Fitting Data to Proposed Models 

The results of fitting the models to the data is 

presented graphically in the plots given in Figures 6,7 

and 8, which show the fitted plots along with actual 

cumulative data. The parameter values obtained during 

the fit, and the corresponding measures of goodness of 

fit for the three operating systems’ sets, are given in 

Tables 2, 3 and 4. First we discuss the results for each 

model individually and afterwards each software 

system’s datasets.  

The Windows 95 data (Figure 6) has a distinct s-

shape due to the fact that vulnerability detection 

reached saturation some time ago. As we would 

expect, the AML model fits quite well. The fitted AT 

model gives negative values at the beginning and 

significantly diverges from the actual data, except near 

the end, that is why AT’s chi-square value is 

incomparable with the other models. The fitted RE, RL 

and the LP models generate linear plots and thus show 

considerable divergence at the end. 

The Linux Red Hat 6.2 data (Figure 7) shows a 

milder s-shape, permitting most models except AT to 

fit reasonably well. The data for Windows XP (Figure 

8) show a very linear trend, allowing LP, RE and RL to 

fit quite well. This is likely to change when the 

vulnerability discovery rate for Windows XP 

eventually saturates. The AT model again has a 

problem with fitting during the initial stage and again 

in the last stage. 

For the Linux Red Hat 6.2 data, LP, RL, RE and 

AML models successfully fitted with P-values ranging 

from 0.915 to 0.998 (Table 3). However, AML gave a 

better AIC test score of 429.89, while the others 

yielded values close to 469. 

Table 4 shows that for the Windows XP dataset LP, 

RE, RL and AML successfully fit the data with P-

values ranging between 0.918 to 0.99997. However, 

the AT model did not fit the dataset. The RL model has 

the lowest AIC of 249.4, while for the other models the 

value ranged from 273.4 and 373.19. The reason that 

the AML model was not better for Windows XP is that 

it is relatively new operating system and the saturation 

phase has not yet been reached. The RL model fits the 

Windows XP data very well.  
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Figure 6 –Fitted VDMs with actual Windows 95 
data 

Comparative performance of the models: Here 

we examine the performance of each individual model. 

The Anderson Thermodynamic (AT) model was 

unable to fit any of the data, exhibiting the highest AIC 

scores and lowest P-values. For the Windows 95 data, 

with an AIC of (947) it is 100 points away from the 
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nearest model. For Linux 6.2 it has demonstrated an 

AIC of (572.79), which is 103 points. For Windows 

XP it was about 85 points higher than the closest 

model. 

Rescorla linear (RL) model was able to fit two out 

of three of the datasets under consideration. RL was 

not able to fit the Windows 95 data (see Figure 6) 

because of the strong S-shaped trend of the data; at 

best, the model was stretched as linear as possible. 

Thus, it scored poorly in the chi-square test with a P-

value of only 0.0035, whereas it should have been at 

least 0.05 to be acceptable. For Linux 6.2 it achieved a 

P-value of 0.915, which is a very good fit. It fits the 

Windows XP data very well with a P-value of 0.99997. 

Table 2- Windows 95 goodness of fit results 
2 –test Mode

l
Parameters 

2 P-Value 
RSS AIC

K/  C 
*AT

17.795 2.36 
222.3 

2.14 

×10-12 7961.2
947.1

4

0 1LP 
157.63 4.14×10-3 144.72 1×10-5 3095 

847.9

4

 N 
RE

0.0001 5629.7 
135.82 0.00198 3300.3

854.6

9

S K 
RL 

-0.00137 0.674 
147.07 0.0035 3006.2

844.8

8

A B C 
AML 

0.002 49.15 1.41 
48.4 .999999 416.27 639.3

*Chi-square test was applied to the positive values for 

the AT model. 

Linux Red Hat 6.2
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Figure 7 – Fitted VDMs with actual Red Hat 
Linux 6.2 data 

The Rescorla Exponential (RE) model was able to 

fit two out of three of the data sets considered. RE was 

not able to fit the Windows 95 data (see Figure 6) 

because of the prominent S-shape of the data set curve, 

the fit was judged to be poor in the chi-square test with 

a P-value of only 0.0198, which is significantly less 

than the 0.05 that is considered acceptable. For Linux 

6.2 and Windows XP the P-values were 0.925 and 0.97 

respectively, a very good fit in both cases. However, 

RE scored 854.69 in the AIC test for Windows 95, 

which is higher than other models except AT. For 

Linux Red Hat 6.2, the AIC was 469.82 which is close 

to the values for LP and RL, although larger than the 

value for AML. For Windows XP, again it was with a 

high AIC of 288.58. 

The Alhazmi-Malaiya Logistic Model (AML) is the 

only model that fits all three data sets well. The fit was 

especially superior for the Windows 95 and Linux Red 

Hat 6.2 data sets, where it gave the best AIC results. 

For Windows 95, AML has an AIC value of 639.3, 

which is much less than the other models which have 

scored between 844 and 947.14. The AML model fits 

the data with an excellent P-value very close to 1. The 

other four models failed the goodness of fit test for 

Windows 95, since they generated unacceptably high 

chi-square values and consequently low P-values 

below 0.02. AML was the best model in RedHat Linux 

6.2 data set, with a low 429.89 on AIC with a 40 points 

better than the nearest model. Although AML fits well 

with Windows XP data, it is able to score only a 

modest 273.34 on the AIC. The RL model fit the 

Windows XP data better due to the fact that the 

Windows XP data has is very linear, which gives it an 

advantage over the AML model. We would, however, 

expect the Windows XP data to eventually saturate. 

The results show that the AML is the most consistent 

model for the three data sets. 

Table 3- Fitting Results for Red Hat Linux 6.2 
2 –test 

Model Parameters 
2 P-Value 

RSS AIC 

K/  C 
*AT 38.3 9.39 

173.6 1.1×10-20 18156.6572.79

0 1
LP 

6999.9 3.2×10-4 38.9 0.998 3077.6 469.85

 N 
RE

0.0004 5629.7 
38.98 0.925 3076.18469.82

S K 
RL 

-0.0013 2.2816 
40.02 0.915 3069.8 469.7

A B C 
AML 

0.0008125.2 0.128
32.43 0.996 1492.96429.89

*Chi-square test was applied to the positive values for 

the AT model  

The Logarithmic Poisson (LP) model was able to fit 

the Linux 6.2 data with a P-value of 0.998 and 

Windows XP with a P-value equal to 0.9654. 

However, it failed to fit the Windows 95 data set with a 

low P-value of 1x10
-5

. On the AIC scale for Linux 6.2, 

it scored 469.85, which is close to the score of the RL 

and RE models and better than the AT model. For 
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Windows XP, the AIC was 284.49, better than the RE 

model and worse than the RL and AML models.  

Both RE and RL demonstrate a good fit for a short 

term. Both the models are flexible and can adjust to a 

linear trend with an adjustment of their regression 

parameters. However, they may not work very well for 

the long term. The RE model is somewhat better than 

RL with the ability to capture the saturation in the later 

phase. On the other hand, the S-shaped AML model 

has shown excellent fit, especially for the long term. 

Furthermore, the AML model is flexible enough to 

also fit short term data.  

Windows XP
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Figure 8 – Fitted VDMs with actual Windows 
XP data 

Table 4- Fitting results for Windows XP 
2 –test 

Model Parameters 
2 P-Value 

RSS AIC 

K/  C 
*AT

27.1 7.61 
115 1.1×10-9 6568.3373.19

0 1LP 
7211.85 0.000277 

26.15 0.9654 757.9 284.49

 N 
RE

0.00035 5628.8 
26.44 0.955 761.8 284.7

S K 
RL 

0.0162 1.482 
13.82 0.99997 328.7 249.4

A B C 
AML 

0.001 107.5 0.144 
29.12 0.918 581.69273.37

*Chi-square test was applied to the positive values for 

the AT model 

5. Results and Observations

Of the five models examined, three of them—RL, 

RE and LP, appear to do a good job of following the 

shorter-term trends, especially when the cumulative 

vulnerabilities show a linear trend. The AT model 

generally does not appear to fit the actual data well. 

The AML model often provides the best fit since it can 

follow the S-shaped trend that is observed in some 

cases. 

The AML model uses three parameters, while the 

others are two-parameter models. However, both the 

measures, the P-value and AIC, take the number of 

parameters into account and thus provide a fair basis 

for comparison. 

Among the five models, the parameters of the RE 

and AML models have some simple interpretations. 

One of the parameters in both is related to the total 

number of vulnerabilities present in the software. If the 

expected range of vulnerability density values can be 

estimated based on past experience, a preliminary 

estimate of the total number of vulnerabilities may be 

empirically obtained [3]. However, empirical 

estimation of other parameters requires further 

investigation. 

The evaluation presented here is based on three 

operating systems that represent two commercial 

systems in different life-cycle phases and one open-

source software system. These observations need to be 

further validated using data from other systems.  

The vulnerability data is generally of higher quality 

than that used for evaluating SRGMs in the past. 

However, there are some significant issues to keep in 

mind. One is that vulnerabilities are sometimes 

reported in batches, which affects the accuracy of the 

time a vulnerability is recorded. If cumulative data is 

being used for analysis, this will cause some 

fluctuations but should not change the longer-term 

trend present in the data. 

ICAT metabase can have some ambiguity in 

identifying a specific version of a software system. 

Consequently, researchers need to check details of 

vulnerabilities and use some of the ICAT references 

for additional verification. Sometimes duplicate entries 

are encountered. Rescorla has mentioned some of these 

irregularities in [19]. 

Since data bases only include the publicly known 

vulnerabilities, for proprietary software systems we 

may not know about unpublished vulnerabilities. 

However, with external experts competing to discover 

vulnerabilities, it is likely that disclosure of 

vulnerabilities will be carried out as soon as a patch is 

available. For open-source systems, the discovered 

vulnerabilities are usually available in the public 

domain. 

Vulnerabilities are shared among successive 

versions due to code reuse. This can raise the question 

of where the vulnerability was discovered—in the new 

version or in the older version. Sometimes 

vulnerabilities in the ICAT metabase are discovered 

prior to the specified version’s release date, a problem 

that can be overcome by filtering omitted pre-release 

date vulnerabilities. 
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The AT, RL, RE and LP models assume a stable 

level of testing effort over time. However, it would be 

reasonable to assume that the extent of the testing 

effort is driven by the cost/reward factors. Finding 

vulnerabilities in a widely-installed system should be 

more rewarding to internal testers, who would put in 

extra effort into minimizing the probability of 

exploitation in the popular systems. The external 

experts and hackers would find it more rewarding to 

find vulnerabilities in systems that are currently 

popular. Thus the testing effort varies with changes in 

the market share of software systems. This variability 

of effort was addressed in [2] by developing an 

equivalent effort model. The model addresses changes 

in the usage environment, which affects the discovery 

process. The model considered the time spent by the 

number of workstations using the software systems. 

The equivalent effort model fit very well but the model 

requires data that can be very hard to collect. The AML 

model attempts to implicitly model the effort variation. 

6. Conclusions and Discussion 

This paper presents an examination of the 

applicability of recently proposed quantitative 

vulnerability discovery models to actual data. 

Systematic software testing in a developing 

organization occurs prior to release and the bugs are 

found internally. On the other hand vulnerability 

discovery occurs throughout the product lifetime and 

the vulnerabilities are found both internally and 

externally. Moreover, compared with ordinary bugs, 

the number of vulnerabilities is very small. This raises 

a question about applicability of quantitative models, 

such as the SRGMs that have been successfully used. 

The results presented here show that some of the 

proposed models fit the actual vulnerability discovery 

process very well.  

Four vulnerability discovery models were examined 

using Akaike Information Criteria (AIC) and chi-

square (
2
) tests.  Results show that the AML model is 

generally the best for the longer term, performing 

better for Windows 95 and Linux 6.2. Because it 

captures the S-shape pattern in the data, it has better fit 

as determined by using AIC and the chi-square test. 

RL, RE, LP and AML all show very good fit for 

Windows XP, a system that has not yet shown signs of 

saturation. This can be attributed to the fact that they 

can fit trends that are largely linear. The AT model 

considered did not perform well in general.  

These vulnerability discovery models ignore the 

architecture of the software system. They assume that 

vulnerabilities are found in random places within 

software systems. In some specific modules, exploiting 

information concerning the architecture of the system 

can focus security testing to the code with higher 

chance of finding vulnerability, which will make 

security testers more productive. 

We have analyzed the models statistically and 

analytically. However since models with a good fit will 

not necessarily have good estimation capability, there 

is a need to examine the ability of the models to 

estimate the future vulnerability discovery rate. In a 

concurrent work [4], the prediction capabilities of two 

of the VDM models are examined. The results show 

that the prediction capability gets better as more data 

becomes available. The investigations show that 

putting some constraints on the models’ parameters 

based on previous observations significantly improves 

the prediction capability.  Examination of the 

prediction capabilities of the other models is still 

needed to show broader comparison of the other 

vulnerability discovery models. 

VDMs can be termed dynamic models. It is possible 

to define and use static metrics that impact the 

parameter values in such models. Metrics such as 

vulnerability density and vulnerability/defect ratios [3] 

can be used to check the projections made using VDMs 

during early phases when the available data is 

insufficient, or when a VDM is known to have some 

specific limitations. 

Vulnerability discovery models can be used by both 

the developers and the user community. Developers 

can assess the product readiness by projecting future 

vulnerability discovery trends. Developers need to 

allocate security maintenance resources to detect 

vulnerabilities, preferably before others do; and to   

release security patches as soon as possible. The users 

also need to assess the risk due to vulnerabilities before 

patches are applied. A patch may need to be tested for 

stability before it is applied as discussed by 

Brykczynski et al. [10] and Beattie et al. [6]. Effective 

security policy at an organization would require time 

and resources.  Vulnerability discovery models can be 

used to quantitatively guide such policies.   

 The models considered have some limitations, 

namely, that they treat all vulnerabilities equally, even 

though some vulnerabilities may represent higher 

severity levels. Moreover, the models do not address 

code re-use and overlap among consecutive versions of 

software systems. Vulnerability discovery models 

assume that each specific release of an operating 

system is independent, and can be separately modeled. 

In practice, a significant sharing of the code occurs 

between successive releases. Thus a vulnerability 

detected in a version may also exist in previous 

versions. Further research is needed to model the 

impact of such shared code.  
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