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Abstract There are billions of photographs on the Inter-

net, comprising the largest and most diverse photo collec-

tion ever assembled. How can computer vision researchers

exploit this imagery? This paper explores this question from

the standpoint of 3D scene modeling and visualization. We

present structure-from-motion and image-based rendering

algorithms that operate on hundreds of images downloaded

as a result of keyword-based image search queries like

“Notre Dame” or “Trevi Fountain.” This approach, which

we call Photo Tourism, has enabled reconstructions of nu-

merous well-known world sites. This paper presents these

algorithms and results as a first step towards 3D modeling of

the world’s well-photographed sites, cities, and landscapes

from Internet imagery, and discusses key open problems and

challenges for the research community.

Keywords Structure from motion · 3D scene analysis ·

Internet imagery · Photo browsers · 3D navigation

1 Introduction

Most of the world’s significant sites have been photographed

under many different conditions, both from the ground and

from the air. For example, a Google image search for “Notre

Dame” returns over one million hits (as of September,

2007), showing the cathedral from almost every conceivable

viewing position and angle, different times of day and night,
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and changes in season, weather, and decade. Furthermore,

entire cities are now being captured at street level and from

a birds-eye perspective (e.g., Windows Live Local,1,2 and

Google Streetview3), and from satellite or aerial views (e.g.,

Google4).

The availability of such rich imagery of large parts of

the earth’s surface under many different viewing conditions

presents enormous opportunities, both in computer vision

research and for practical applications. From the standpoint

of shape modeling research, Internet imagery presents the

ultimate data set, which should enable modeling a signifi-

cant portion of the world’s surface geometry at high resolu-

tion. As the largest, most diverse set of images ever assem-

bled, Internet imagery provides deep insights into the space

of natural images and a rich source of statistics and priors for

modeling scene appearance. Furthermore, Internet imagery

provides an ideal test bed for developing robust and gen-

eral computer vision algorithms that can work effectively

“in the wild.” In turn, algorithms that operate effectively on

such imagery will enable a host of important applications,

ranging from 3D visualization, localization, communication

(media sharing), and recognition, that go well beyond tradi-

tional computer vision problems and can have broad impacts

for the population at large.

To date, this imagery is almost completely untapped and

unexploited by computer vision researchers. A major rea-

son is that the imagery is not in a form that is amenable to

processing, at least by traditional methods: the images are

1Windows Live Local, http://local.live.com.

2Windows Live Local—Virtual Earth Technology Preview, http://

preview.local.live.com.

3Google Maps, http://maps.google.com.

4Google Maps, http://maps.google.com.
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unorganized, uncalibrated, with widely variable and uncon-

trolled illumination, resolution, and image quality. Develop-

ing computer vision techniques that can operate effectively

with such imagery has been a major challenge for the re-

search community. Within this scope, one key challenge is

registration, i.e., figuring out correspondences between im-

ages, and how they relate to one another in a common 3D

coordinate system (structure from motion). While a lot of

progress has been made in these areas in the last two decades

(Sect. 2), many challenging open problems remain.

In this paper we focus on the problem of geometrically

registering Internet imagery and a number of applications

that this enables. As such, we first review the state of the

art and then present some first steps towards solving this

problem along with a visualization front-end that we call

Photo Tourism (Snavely et al. 2006). We then present a set

of open research problems for the field, including the cre-

ation of more efficient correspondence and reconstruction

techniques for extremely large image data sets. This paper

expands on the work originally presented in (Snavely et al.

2006) with many new reconstructions and visualizations of

algorithm behavior across datasets, as well as a brief dis-

cussion of Photosynth, a Technology Preview by Microsoft

Live Labs, based largely on (Snavely et al. 2006). We also

present a more complete related work section and add a

broad discussion of open research challenges for the field.

Videos of our system, along with additional supplementary

material, can be found on our Photo Tourism project Web

site, http://phototour.cs.washington.edu.

2 Previous Work

The last two decades have seen a dramatic increase in the

capabilities of 3D computer vision algorithms. These in-

clude advances in feature correspondence, structure from

motion, and image-based modeling. Concurrently, image-

based rendering techniques have been developed in the com-

puter graphics community, and image browsing techniques

have been developed for multimedia applications.

2.1 Feature Correspondence

Twenty years ago, the foundations of modern feature detec-

tion and matching techniques were being laid. Lucas and

Kanade (1981) had developed a patch tracker based on two-

dimensional image statistics, while Moravec (1983) intro-

duced the concept of “corner-like” feature points. Först-

ner (1986) and then Harris and Stephens (1988) both pro-

posed finding keypoints using measures based on eigenval-

ues of smoothed outer products of gradients, which are still

widely used today. While these early techniques detected

keypoints at a single scale, modern techniques use a quasi-

continuous sampling of scale space to detect points invari-

ant to changes in scale and orientation (Lowe 2004; Mikola-

jczyk and Schmid 2004) and somewhat invariant to affine

transformations (Baumberg 2000; Kadir and Brady 2001;

Schaffalitzky and Zisserman 2002; Mikolajczyk et al. 2005).

Unfortunately, early techniques relied on matching

patches around the detected keypoints, which limited their

range of applicability to scenes seen from similar view-

points, e.g., for aerial photogrammetry applications (Hannah

1988). If features are being tracked from frame to frame, an

affine extension of the basic Lucas-Kanade tracker has been

shown to perform well (Shi and Tomasi 1994). However, for

true wide baseline matching, i.e., the automatic matching of

images taken from widely different views (Baumberg 2000;

Schaffalitzky and Zisserman 2002; Strecha et al. 2003;

Tuytelaars and Van Gool 2004; Matas et al. 2004), (weakly)

affine-invariant feature descriptors must be used.

Mikolajczyk et al. (2005) review some recently devel-

oped view-invariant local image descriptors and experimen-

tally compare their performance. In our own Photo Tourism

research, we have been using Lowe’s Scale Invariant Fea-

ture Transform (SIFT) (Lowe 2004), which is widely used

by others and is known to perform well over a reasonable

range of viewpoint variation.

2.2 Structure from Motion

The late 1980s also saw the development of effective struc-

ture from motion techniques, which aim to simultaneously

reconstruct the unknown 3D scene structure and camera

positions and orientations from a set of feature correspon-

dences. While Longuet-Higgins (1981) introduced a still

widely used two-frame relative orientation technique in

1981, the development of multi-frame structure from mo-

tion techniques, including factorization methods (Tomasi

and Kanade 1992) and global optimization techniques (Spet-

sakis and Aloimonos 1991; Szeliski and Kang 1994; Olien-

sis 1999) occurred quite a bit later.

More recently, related techniques from photogrammetry

such as bundle adjustment (Triggs et al. 1999) (with related

sparse matrix techniques, Szeliski and Kang 1994) have

made their way into computer vision and are now regarded

as the gold standard for performing optimal 3D reconstruc-

tion from correspondences (Hartley and Zisserman 2004).

For situations where the camera calibration parameters

are unknown, self-calibration techniques, which first esti-

mate a projective reconstruction of the 3D world and then

perform a metric upgrade have proven to be successful

(Pollefeys et al. 1999; Pollefeys and Van Gool 2002). In

our own work (Sect. 4.2), we have found that the simpler

approach of simply estimating each camera’s focal length

as part of the bundle adjustment process seems to produce

good results.



Int J Comput Vis

The SfM approach used in this paper is similar to that

of Brown and Lowe (2005), with several modifications to

improve robustness over a variety of data sets. These in-

clude initializing new cameras using pose estimation, to

help avoid local minima; a different heuristic for selecting

the initial two images for SfM; checking that reconstructed

points are well-conditioned before adding them to the scene;

and using focal length information from image EXIF tags.

Schaffalitzky and Zisserman (2002) present another related

technique for reconstructing unordered image sets, concen-

trating on efficiently matching interest points between im-

ages. Vergauwen and Van Gool have developed a similar

approach (Vergauwen and Van Gool 2006) and are hosting a

web-based reconstruction service for use in cultural heritage

applications5. Fitzgibbon and Zisserman (1998) and Nistér

(2000) prefer a bottom-up approach, where small subsets of

images are matched to each other and then merged in an

agglomerative fashion into a complete 3D reconstruction.

While all of these approaches address the same SfM prob-

lem that we do, they were tested on much simpler datasets

with more limited variation in imaging conditions. Our pa-

per marks the first successful demonstration of SfM tech-

niques applied to the kinds of real-world image sets found

on Google and Flickr. For instance, our typical image set

has photos from hundreds of different cameras, zoom levels,

resolutions, different times of day or seasons, illumination,

weather, and differing amounts of occlusion.

2.3 Image-Based Modeling

In recent years, computer vision techniques such as structure

from motion and model-based reconstruction have gained

traction in the computer graphics field under the name of

image-based modeling. IBM is the process of creating three-

dimensional models from a collection of input images (De-

bevec et al. 1996; Grzeszczuk 2002; Pollefeys et al. 2004).

One particular application of IBM has been the cre-

ation of large scale architectural models. Notable exam-

ples include the semi-automatic Façade system (Debevec

et al. 1996), which was used to reconstruct compelling fly-

throughs of the University of California Berkeley campus;

automatic architecture reconstruction systems such as that

of Dick et al. (2004); and the MIT City Scanning Project

(Teller et al. 2003), which captured thousands of calibrated

images from an instrumented rig to construct a 3D model of

the MIT campus. There are also several ongoing academic

and commercial projects focused on large-scale urban scene

reconstruction. These efforts include the 4D Cities project

(Schindler et al. 2007), which aims to create a spatial-

temporal model of Atlanta from historical photographs; the

5Epoch 3D Webservice, http://homes.esat.kuleuven.be/~visit3d/

webservice/html/.

Stanford CityBlock Project (Román et al. 2004), which uses

video of city blocks to create multi-perspective strip images;

and the UrbanScape project of Akbarzadeh et al. (2006).

Our work differs from these previous approaches in that

we only reconstruct a sparse 3D model of the world, since

our emphasis is more on creating smooth 3D transitions be-

tween photographs rather than interactively visualizing a 3D

world.

2.4 Image-Based Rendering

The field of image-based rendering (IBR) is devoted to the

problem of synthesizing new views of a scene from a set

of input photographs. A forerunner to this field was the

groundbreaking Aspen MovieMap project (Lippman 1980),

in which thousands of images of Aspen Colorado were cap-

tured from a moving car, registered to a street map of the

city, and stored on laserdisc. A user interface enabled in-

teractively moving through the images as a function of the

desired path of the user. Additional features included a navi-

gation map of the city overlaid on the image display, and the

ability to touch any building in the current field of view and

jump to a facade of that building. The system also allowed

attaching metadata such as restaurant menus and historical

images with individual buildings. Recently, several compa-

nies, such as Google6 and EveryScape7 have begun creating

similar “surrogate travel” applications that can be viewed in

a web browser. Our work can be seen as a way to automati-

cally create MovieMaps from unorganized collections of im-

ages. (In contrast, the Aspen MovieMap involved a team of

over a dozen people working over a few years.) A number

of our visualization, navigation, and annotation capabilities

are similar to those in the original MovieMap work, but in

an improved and generalized form.

More recent work in IBR has focused on techniques

for new view synthesis, e.g., (Chen and Williams 1993;

McMillan and Bishop 1995; Gortler et al. 1996; Levoy and

Hanrahan 1996; Seitz and Dyer 1996; Aliaga et al. 2003;

Zitnick et al. 2004; Buehler et al. 2001). In terms of appli-

cations, Aliaga et al.’s (2003) Sea of Images work is perhaps

closest to ours in its use of a large collection of images taken

throughout an architectural space; the same authors address

the problem of computing consistent feature matches across

multiple images for the purposes of IBR (Aliaga et al. 2003).

However, our images are casually acquired by different pho-

tographers, rather than being taken on a fixed grid with a

guided robot.

In contrast to most prior work in IBR, our objective is

not to synthesize a photo-realistic view of the world from

all viewpoints per se, but to browse a specific collection of

6Google Maps, http://maps.google.com.

7Everyscape, http://www.everyscape.com.
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photographs in a 3D spatial context that gives a sense of

the geometry of the underlying scene. Our approach there-

fore uses an approximate plane-based view interpolation

method and a non-photorealistic rendering of background

scene structures. As such, we side-step the more challenging

problems of reconstructing full surface models (Debevec et

al. 1996; Teller et al. 2003), light fields (Gortler et al. 1996;

Levoy and Hanrahan 1996), or pixel-accurate view inter-

polations (Chen and Williams 1993; McMillan and Bishop

1995; Seitz and Dyer 1996; Zitnick et al. 2004). The bene-

fit of doing this is that we are able to operate robustly with

input imagery that is beyond the scope of previous IBM and

IBR techniques.

2.5 Image Browsing, Retrieval, and Annotation

There are many techniques and commercial products for

browsing sets of photos and much research on the subject

of how people tend to organize photos, e.g., (Rodden and

Wood 2003). Many of these techniques use metadata, such

as keywords, photographer, or time, as a basis of photo or-

ganization (Cooper et al. 2003).

There has recently been growing interest in using geo-

location information to facilitate photo browsing. In particu-

lar, the World-Wide Media Exchange (WWMX) (Toyama et

al. 2003) arranges images on an interactive 2D map. Photo-

Compas (Naaman et al. 2004) clusters images based on time

and location. Realityflythrough (McCurdy and Griswold

2005) uses interface ideas similar to ours for exploring video

from camcorders instrumented with GPS and tilt sensors,

and Kadobayashi and Tanaka (2005) present an interface

for retrieving images using proximity to a virtual camera. In

Photowalker (Tanaka et al. 2002), a user can manually au-

thor a walkthrough of a scene by specifying transitions be-

tween pairs of images in a collection. In these systems, loca-

tion is obtained from GPS or is manually specified. Because

our approach does not require GPS or other instrumentation,

it has the advantage of being applicable to existing image

databases and photographs from the Internet. Furthermore,

many of the navigation features of our approach exploit the

computation of image feature correspondences and sparse

3D geometry, and therefore go beyond what has been possi-

ble in these previous location-based systems.

Many techniques also exist for the related task of retriev-

ing images from a database. One particular system related to

our work is Video Google (Sivic and Zisserman 2003) (not

to be confused with Google’s own video search), which al-

lows a user to select a query object in one frame of video and

efficiently find that object in other frames. Our object-based

navigation mode uses a similar idea, but extended to the 3D

domain.

A number of researchers have studied techniques for au-

tomatic and semi-automatic image annotation, and annota-

tion transfer in particular. The LOCALE system (Naaman

et al. 2003) uses proximity to transfer labels between geo-

referenced photographs. An advantage of the annotation ca-

pabilities of our system is that our feature correspondences

enable transfer at much finer granularity; we can transfer

annotations of specific objects and regions between images,

taking into account occlusions and the motions of these ob-

jects under changes in viewpoint. This goal is similar to that

of augmented reality (AR) approaches (e.g., Feiner et al.

1997), which also seek to annotate images. While most AR

methods register a 3D computer-generated model to an im-

age, we instead transfer 2D image annotations to other im-

ages. Generating annotation content is therefore much eas-

ier. (We can, in fact, import existing annotations from pop-

ular services like Flickr.) Annotation transfer has been also

explored for video sequences (Irani and Anandan 1998).

Finally, Johansson and Cipolla (2002) have developed a

system where a user can take a photograph, upload it to a

server where it is compared to an image database, and re-

ceive location information. Our system also supports this

application in addition to many other capabilities (visual-

ization, navigation, annotation, etc.).

3 Overview

Our objective is to geometrically register large photo col-

lections from the Internet and other sources, and to use

the resulting 3D camera and scene information to facili-

tate a number of applications in visualization, localization,

image browsing, and other areas. This section provides an

overview of our approach and summarizes the rest of the

paper.

The primary technical challenge is to robustly match and

reconstruct 3D information from hundreds or thousands of

images that exhibit large variations in viewpoint, illumina-

tion, weather conditions, resolution, etc., and may contain

significant clutter and outliers. This kind of variation is what

makes Internet imagery (i.e., images returned by Internet

image search queries from sites such as Flickr and Google)

so challenging to work with.

In tackling this problem, we take advantage of two recent

breakthroughs in computer vision, namely feature-matching

and structure from motion, as reviewed in Sect. 2. The back-

bone of our work is a robust SfM approach that reconstructs

3D camera positions and sparse point geometry for large

datasets and has yielded reconstructions for dozens of fa-

mous sites ranging from Notre Dame Cathedral to the Great

Wall of China. Section 4 describes this approach in detail,

as well as methods for aligning reconstructions to satellite

and map data to obtain geo-referenced camera positions and

geometry.

One of the most exciting applications for these recon-

structions is 3D scene visualization. However, the sparse



Int J Comput Vis

points produced by SfM methods are by themselves very

limited and do not directly produce compelling scene ren-

derings. Nevertheless, we demonstrate that this sparse SfM-

derived geometry and camera information, along with mor-

phing and non-photorealistic rendering techniques, is suffi-

cient to provide compelling view interpolations as described

in 5. Leveraging this capability, Section 6 describes a novel

photo explorer interface for browsing large collections of

photographs in which the user can virtually explore the 3D

space by moving from one image to another.

Often, we are interested in learning more about the con-

tent of an image, e.g., “which statue is this?” or “when was

this building constructed?” A great deal of annotated image

content of this form already exists in guidebooks, maps, and

Internet resources such as Wikipedia8 and Flickr. However,

the image you may be viewing at any particular time (e.g.,

from your cell phone camera) may not have such annota-

tions. A key feature of our system is the ability to transfer

annotations automatically between images, so that informa-

tion about an object in one image is propagated to all other

images that contain the same object (Sect. 7).

Section 8 presents extensive results on 11 scenes, with

visualizations and an analysis of the matching and recon-

struction results for these scenes. We also briefly describe

Photosynth, a related 3D image browsing tool developed by

Microsoft Live Labs that is based on techniques from this

paper, but also adds a number of interesting new elements.

Finally, we conclude with a set of research challenges for

the community in Sect. 9.

4 Reconstructing Cameras and Sparse Geometry

The visualization and browsing components of our system

require accurate information about the relative location, ori-

entation, and intrinsic parameters such as focal lengths for

each photograph in a collection, as well as sparse 3D scene

geometry. A few features of our system require the absolute

locations of the cameras, in a geo-referenced coordinate

frame. Some of this information can be provided with GPS

devices and electronic compasses, but the vast majority of

existing photographs lack such information. Many digital

cameras embed focal length and other information in the

EXIF tags of image files. These values are useful for ini-

tialization, but are sometimes inaccurate.

In our system, we do not rely on the camera or any other

piece of equipment to provide us with location, orientation,

or geometry. Instead, we compute this information from the

images themselves using computer vision techniques. We

first detect feature points in each image, then match feature

points between pairs of images, and finally run an iterative,

8Wikipedia, http://www.wikipedia.org.

robust SfM procedure to recover the camera parameters. Be-

cause SfM only estimates the relative position of each cam-

era, and we are also interested in absolute coordinates (e.g.,

latitude and longitude), we use an interactive technique to

register the recovered cameras to an overhead map. Each of

these steps is described in the following subsections.

4.1 Keypoint Detection and Matching

The first step is to find feature points in each image. We

use the SIFT keypoint detector (Lowe 2004), because of its

good invariance to image transformations. Other feature de-

tectors could also potentially be used; several detectors are

compared in the work of Mikolajczyk et al. (2005). In addi-

tion to the keypoint locations themselves, SIFT provides a

local descriptor for each keypoint. A typical image contains

several thousand SIFT keypoints.

Next, for each pair of images, we match keypoint descrip-

tors between the pair, using the approximate nearest neigh-

bors (ANN) kd-tree package of Arya et al. (1998). To match

keypoints between two images I and J , we create a kd-tree

from the feature descriptors in J , then, for each feature in

I we find the nearest neighbor in J using the kd-tree. For

efficiency, we use ANN’s priority search algorithm, limiting

each query to visit a maximum of 200 bins in the tree. Rather

than classifying false matches by thresholding the distance

to the nearest neighbor, we use the ratio test described by

Lowe (2004): for a feature descriptor in I , we find the two

nearest neighbors in J , with distances d1 and d2, then accept

the match if d1
d2

< 0.6. If more than one feature in I matches

the same feature in J , we remove all of these matches, as

some of them must be spurious.

After matching features for an image pair (I, J ), we

robustly estimate a fundamental matrix for the pair us-

ing RANSAC (Fischler and Bolles 1981). During each

RANSAC iteration, we compute a candidate fundamental

matrix using the eight-point algorithm (Hartley and Zis-

serman 2004), normalizing the problem to improve robust-

ness to noise (Hartley 1997). We set the RANSAC outlier

threshold to be 0.6% of the maximum image dimension, i.e.,

0.006 max(image width, image height) (about six pixels for

a 1024×768 image). The F-matrix returned by RANSAC is

refined by running the Levenberg-Marquardt algorithm (No-

cedal and Wright 1999) on the eight parameters of the F-

matrix, minimizing errors for all the inliers to the F-matrix.

Finally, we remove matches that are outliers to the recov-

ered F-matrix using the above threshold. If the number of

remaining matches is less than twenty, we remove all of the

matches from consideration.

After finding a set of geometrically consistent matches

between each image pair, we organize the matches into

tracks, where a track is a connected set of matching key-

points across multiple images. If a track contains more than
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Fig. 1 Photo connectivity

graph. This graph contains a

node for each image in a set of

photos of the Trevi Fountain,

with an edge between each pair

of photos with matching

features. The size of a node is

proportional to its degree. There

are two dominant clusters

corresponding to day (a) and

night time (d) photos. Similar

views of the facade cluster

together in the center, while

nodes in the periphery, e.g., (b)

and (c), are more unusual (often

close-up) views

one keypoint in the same image, it is deemed inconsistent.

We keep consistent tracks containing at least two keypoints

for the next phase of the reconstruction procedure.

Once correspondences are found, we can construct an im-

age connectivity graph, in which each image is a node and

an edge exists between any pair of images with matching

features. A visualization of an example connectivity graph

for the Trevi Fountain is Fig. 1. This graph embedding was

created with the neato tool in the Graphviz toolkit.9 Neato

represents the graph as a mass-spring system and solves for

an embedding whose energy is a local minimum.

The image connectivity graph of this photo set has sev-

eral distinct features. The large, dense cluster in the cen-

ter of the graph consists of photos that are all fairly wide-

angle, frontal, well-lit shots of the fountain (e.g., image (a)).

Other images, including the “leaf” nodes (e.g., images (b)

and (c)) and night time images (e.g., image (d)), are more

loosely connected to this core set. Other connectivity graphs

are shown in Figs. 9 and 10.

4.2 Structure from Motion

Next, we recover a set of camera parameters (e.g., rotation,

translation, and focal length) for each image and a 3D lo-

cation for each track. The recovered parameters should be

consistent, in that the reprojection error, i.e., the sum of dis-

tances between the projections of each track and its corre-

sponding image features, is minimized. This minimization

problem can formulated as a non-linear least squares prob-

lem (see Appendix 1) and solved using bundle adjustment.

Algorithms for solving this non-linear problem, such as No-

cedal and Wright (1999), are only guaranteed to find lo-

cal minima, and large-scale SfM problems are particularly

prone to getting stuck in bad local minima, so it is important

9Graphviz—graph visualization software, http://www.graphviz.org/.

to provide good initial estimates of the parameters. Rather

than estimating the parameters for all cameras and tracks at

once, we take an incremental approach, adding in one cam-

era at a time.

We begin by estimating the parameters of a single pair

of cameras. This initial pair should have a large number

of matches, but also have a large baseline, so that the ini-

tial two-frame reconstruction can be robustly estimated. We

therefore choose the pair of images that has the largest num-

ber of matches, subject to the condition that those matches

cannot be well-modeled by a single homography, to avoid

degenerate cases such as coincident cameras. In particular,

we find a homography between each pair of matching im-

ages using RANSAC with an outlier threshold of 0.4% of

max(image width, image height), and store the percentage

of feature matches that are inliers to the estimated homogra-

phy. We select the initial image pair as that with the lowest

percentage of inliers to the recovered homography, but with

at least 100 matches. The camera parameters for this pair are

estimated using Nistér’s implementation of the five point al-

gorithm (Nistér 2004),10 then the tracks visible in the two

images are triangulated. Finally, we do a two frame bundle

adjustment starting from this initialization.

Next, we add another camera to the optimization. We

select the camera that observes the largest number of

tracks whose 3D locations have already been estimated,

and initialize the new camera’s extrinsic parameters using

the direct linear transform (DLT) technique (Hartley and

Zisserman 2004) inside a RANSAC procedure. For this

RANSAC step, we use an outlier threshold of 0.4% of

max(image width, image height). In addition to providing

an estimate of the camera rotation and translation, the DLT

technique returns an upper-triangular matrix K which can

10We only choose the initial pair among pairs for which a focal length

estimate is available for both cameras, and therefore a calibrated rela-

tive pose algorithm can be used.
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be used as an estimate of the camera intrinsics. We use K

and the focal length estimated from the EXIF tags of the

image to initialize the focal length of the new camera (see

Appendix 1 for more details). Starting from this initial set of

parameters, we run a bundle adjustment step, allowing only

the new camera, and the points it observes, to change; the

rest of the model is held fixed.

Finally, we add points observed by the new camera into

the optimization. A point is added if it is observed by at least

one other recovered camera, and if triangulating the point

gives a well-conditioned estimate of its location. We esti-

mate the conditioning by considering all pairs of rays that

could be used to triangulate that point, and finding the pair

of rays with the maximum angle of separation. If this max-

imum angle is larger than a threshold (we use 2.0 degrees

in our experiments), then the point is triangulated. Note that

this check will tend to reject points at infinity. While points

at infinity can be very useful for estimating accurate camera

rotations, we have observed that they can sometimes cause

problems, as using noisy camera parameters to triangulate

points at infinity can result in points at erroneous, finite 3D

locations. Once the new points have been added, we run a

global bundle adjustment to refine the entire model. We find

the minimum error solution using the sparse bundle adjust-

ment library of Lourakis and Argyros (2004).

This procedure is repeated, one camera at a time, until no

remaining camera observes enough reconstructed 3D points

to be reliably reconstructed (we use a cut-off of twenty

points to stop the reconstruction process). Therefore, in gen-

eral, only a subset of the images will be reconstructed. This

subset is not selected beforehand, but is determined by the

algorithm while it is running in the form of a termination

criterion.

For increased robustness and speed, we make a few mod-

ifications to the basic procedure outlined above. First, af-

ter every run of the optimization, we detect outlier tracks

that contain at least one keypoint with a high reprojec-

tion error, and remove these tracks from the optimiza-

tion. The outlier threshold for a given image adapts to the

current distribution of reprojection errors for that image.

In particular, for a given image I , we compute d80, the

80th percentile of the reprojection errors for that image,

and use clamp(2.4d80,4.0,16.0) as the outlier threshold

(where clamp(x, a, b) = min(max(x, a), b)). The effect of

this clamping function is that all points with a reprojection

error above 16.0 pixels will be rejected as outliers, and all

points with a reprojection error less than 4.0 will be kept

as inliers, with the exact threshold lying between these two

values. After rejecting outliers, we rerun the optimization,

rejecting outliers after each run, until no more outliers are

detected.

Second, rather than adding a single camera at a time into

the optimization, we add multiple cameras. To select which

Fig. 2 Estimated camera locations for the Great Wall data set

cameras to add, we first find the camera with the greatest

number of matches, M , to the existing 3D points, then add

any camera with at least 0.75M matches to the existing 3D

points.

We have also found that estimating radial distortion pa-

rameters for each camera can have a significant effect on

the accuracy of the reconstruction, because many consumer

cameras and lenses produce images with noticeable distor-

tion. We therefore estimate two radial distortion parameters

κ1 and κ2, for each camera. To map a projected 2D point

p = (px,py) to a distorted point p′ = (x′, y′), we use the

formula:

ρ2 =

(

px

f

)2

+

(

py

f

)2

,

α = κ1ρ
2 + κ2ρ

4,

p′ = αp

where f is the current estimate of the focal length (note that

we assume that the center of distortion is the center of the

image, and that we define the center of the image to be the

origin of the image coordinate system). When initializing

new cameras, we set κ1 = κ2 = 0, but these parameters are

freed during bundle adjustment. To avoid undesirably large

values of these parameters, we add a term λ(κ2
1 + κ2

2 ) to the

objective function for each camera (we use a value of 10.0

for λ in our experiments). This term discourages values of

κ1 and κ2 which have a large magnitude.

Figure 2 shows an example of reconstructed points and

cameras (rendered as frusta), for the Great Wall data set, su-

perimposed on one of the input images, computed with this

method. Many more results are presented in Sect. 8. For the

various parameter settings and thresholds described in this

section, we used the same values for each of the image sets

in Sect. 8, and the reconstruction algorithm ran completely

automatically for most of the sets. Occasionally, we found
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that the technique for selecting the initial image pair would

choose a pair with insufficient baseline to generate a good

initial reconstruction. This usually occurs when the selected

pair has a large number of mismatched features, which can

appear to be outliers to a dominant homography. When this

happens, we specify the initial pair manually. Also, in some

of our Internet data sets there are a small number of “bad”

images, such as fisheye images, montages of several differ-

ent images, and so on, which our camera model cannot han-

dle well. These images tend to be have very poor location

estimates, and in our current system these must be identified

manually if the user wishes to remove them.

The total running time of the SfM procedure for the

data sets we experimented with ranged from about three

hours (for the Great Wall collection, 120 photos processed

and matched, and 82 ultimately reconstructed) to more than

12 days (for Notre Dame, 2,635 photos processed and

matched, and 598 photos reconstructed). Sect. 8 lists the

running time for the complete pipeline (feature detection,

matching, and SfM) for each data set. The running time is

dominated by two steps: the pairwise matching, and the in-

cremental bundle adjustment. The complexity of the match-

ing stage is quadratic in the number of input photos, but

each pair of images can be matched independently, so the

running time can be improved by a constant factor through

parallelization. The speed of the bundle adjustment phase

depends on several factors, including the number of pho-

tos and points, and the degree of coupling between cameras

(e.g., when many cameras observe the same set of points, the

bundle adjustment tends to become slower). In the future, we

plan to work on speeding up the reconstruction process, as

described in Sect. 9.

4.3 Geo-Registration

The SfM procedure estimates relative camera locations. The

final step of the location estimation process is to optionally

align the model with a geo-referenced image or map (such

as a satellite image, floor plan, or digital elevation map) so

as to determine the absolute geocentric coordinates of each

camera. Most of the features of the photo explorer can work

with relative coordinates, but others, such as displaying an

overhead map require absolute coordinates.

The estimated camera locations are, in theory, related

to the absolute locations by a similarity transform (global

translation, rotation, and uniform scale). To determine the

correct transformation the user interactively rotates, trans-

lates, and scales the model until it is in agreement with a

provided image or map. To assist the user, we estimate the

“up” or gravity vector using the method of Szeliski (2006).

The 3D points, lines, and camera locations are then ren-

dered superimposed on the alignment image, using an or-

thographic projection with the camera positioned above the

Fig. 3 Example registration of cameras to an overhead map. Here,

the cameras and recovered line segments from the Prague data set are

shown superimposed on an aerial image. (Aerial image shown here and

in Fig. 4 courtesy of Gefos, a.s.11 and Atlas.cz)

scene, pointed downward. If the up vector was estimated

correctly, the user needs only to rotate the model in 2D,

rather than 3D. Our experience is that it is fairly easy,

especially in urban scenes, to perform this alignment by

matching the recovered points to features, such as building

façades, visible in the image. Figure 3 shows a screenshot of

such an alignment.

In some cases the recovered scene cannot be aligned to

a geo-referenced coordinate system using a similarity trans-

form. This can happen if the SfM procedure fails to obtain a

fully metric reconstruction of the scene, or because of low-

frequency drift in the recovered point and camera locations.

These sources of error do not have a significant effect on

many of the navigation controls used in our explorer inter-

face, as the error is not usually locally noticeable, but are

problematic when an accurate model is desired.

One way to “straighten out” the recovered scene is to pin

down a sparse set of ground control points or cameras to

known 3D locations (acquired, for instance, from GPS tags

attached to a few images) by adding constraints to the SfM

optimization. Alternatively, a user can manually specify cor-

respondences between points or cameras and locations in

an image or map, as in the work of Robertson and Cipolla

(2002).

4.3.1 Aligning to Digital Elevation Maps

For landscapes and other very large scale scenes, we can

take advantage of Digital Elevation Maps (DEMs), used for

example in Google Earth12 and with coverage of most of

12Google Earth, http://earth.google.com.
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the United States available through the U.S. Geological Sur-

vey.13 To align point cloud reconstructions to DEMs, we

manually specify a few correspondences between the point

cloud and the DEM, and estimate a 3D similarity trans-

form to determine an initial alignment. We then re-run the

SfM optimization with an additional objective term to fit the

specified DEM points. In the future, as more geo-referenced

ground-based imagery becomes available (e.g., through sys-

tems like WWMX (Toyama et al. 2003) or Windows Live

Local14), this manual step will no longer be necessary.

4.4 Scene Representation

After reconstructing a scene, we optionally detect 3D line

segments in the scene using a technique similar to that of

Schmid and Zisserman (1997). Once this is done, the scene

can be saved for viewing in our interactive photo explorer.

In the viewer, the reconstructed scene model is represented

with the following data structures:

• A set of points P = {p1,p2, . . . , pn}. Each point consists

of a 3D location and a color obtained from one of the

image locations where that point is observed.

• A set of cameras, C = {C1,C2, . . . ,Ck}. Each camera Cj

consists of an image Ij , a rotation matrix Rj , a translation

tj , and a focal length fj .

• A mapping, Points, between cameras and the points they

observe. That is, Points(C) is the subset of P containing

the points observed by camera C.

• A set of 3D line segments L= {l1, l2, . . . , lm} and a map-

ping, Lines, between cameras and the set of lines they

observe.

We also pre-process the scene to compute a set of 3D

planes for each camera or pair of cameras:

• For each camera Ci , we compute a 3D plane, Plane(Ci),

by using RANSAC to robustly fit a plane to Points(Ci).

• For each pair of neighboring cameras (i.e., cameras

which view at least three points in common), Ci,Cj ,

we compute a 3D plane, CommonPlane(Ci,Cj ) by us-

ing RANSAC to fit a plane to Points(Ci) ∪ Points(Cj ).

5 Photo Explorer Rendering

Once a set of photographs of a scene has been registered,

the user can browse the photographs with our photo explorer

interface. Two important aspects of this interface are how we

render the explorer display, described in this section, and the

navigation controls, described in Sect. 6.

13U.S. Geological Survey, http://www.usgs.com.

14Windows Live Local—Virtual Earth Technology Preview, http://

preview.local.live.com.

5.1 User Interface Layout

Figure 4 (left-hand image) shows a screenshot from the main

window of our photo exploration interface. The components

of this window are the main view, which fills the window,

and three overlay panes: an information and search pane on

the left, a thumbnail pane along the bottom, and a map pane

in the upper-right corner.

The main view shows the world as seen from a virtual

camera controlled by the user. This view is not meant to

show a photo-realistic rendering of the scene, but rather to

display photographs in spatial context and give a sense of

the geometry of the true scene.

The information pane appears when the user visits a pho-

tograph. This pane displays information about that photo,

including its name, the name of the photographer, and the

date and time when it was taken. In addition, this pane con-

tains controls for searching for other photographs with cer-

tain geometric relations to the current photo, as described in

Sect. 6.2.

The thumbnail pane shows the results of search opera-

tions as a filmstrip of thumbnails. When the user mouses

over a thumbnail, the corresponding image Ij is projected

onto Plane(Cj ) to show the content of that image and how

it is situated in space. The thumbnail panel also has con-

trols for sorting the current thumbnails by date and time and

viewing them as a slideshow.

Finally, the map pane displays an overhead view of scene

that tracks the user’s position and heading.

5.2 Rendering the Scene

The main view displays a rendering of the scene from the

current viewpoint. The cameras are rendered as frusta. If

the user is visiting a camera, the back face of that camera

frustum is texture-mapped with an opaque, full-resolution

version of the photograph, so that the user can see it in de-

tail. The back faces of the other cameras frusta are texture-

mapped with a low-resolution, semi-transparent thumbnail

of the photo. The scene itself is rendered with the recovered

points and lines.

We also provide a non-photorealistic rendering mode that

provides more attractive visualizations. This mode uses a

washed-out coloring to give an impression of scene appear-

ance and geometry, but is abstract enough to be forgiving

of the lack of detailed geometry. To generate the rendering,

we project a blurred, semi-transparent version of each im-

age Ij onto Plane(Cj ) and use alpha blending to combine

the projections. An example rendering using projected im-

ages overlaid with line segments is shown in Fig. 4.

5.3 Transitions between Photographs

An important element of our user interface is the method

used to generate transitions when the user moves between
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Fig. 4 Screenshots from the

explorer interface. Left: when

the user visits a photo, that

photo appears at full-resolution,

and information about it appears

in a pane on the left. Right:

a view looking down on the

Prague dataset, rendered in a

non-photorealistic style

photos in the explorer. Most existing photo browsing tools

cut from one photograph to the next, sometimes smoothing

the transition by cross-fading. In our case, the geometric in-

formation we infer about the photographs allows us to use

camera motion and view interpolation to make transitions

more visually compelling and to emphasize the spatial rela-

tionships between the photographs.

5.3.1 Camera Motion

When the virtual camera moves from one photograph to an-

other, the system linearly interpolates the camera position

between the initial and final camera locations, and the cam-

era orientation between unit quaternions representing the

initial and final orientations. The field of view of the virtual

camera is also interpolated so that when the camera reaches

its destination, the destination image will fill as much of the

screen as possible. The camera path timing is non-uniform,

easing in and out of the transition.

If the camera moves as the result of an object selection

(Sect. 6.3), the transition is slightly different. Before the

camera starts moving, it orients itself to point at the mean

of the selected points. The camera remains pointed at the

mean as it moves, so that the selected object stays fixed in

the view. This helps keep the object from undergoing large,

distracting motions during the transition. The final orienta-

tion and focal length are computed so that the selected object

is centered and fills the screen.

5.3.2 View Interpolation

During camera transitions, we also display in-between im-

ages. We have experimented with two simple techniques for

morphing between the start and destination photographs: tri-

angulating the point cloud and using planar impostors.

Triangulated Morphs To create a triangulated morph be-

tween two cameras Cj and Ck , we first compute a 2D

Delaunay triangulation for image Ij using the projections

of Points(Cj ) into Ij . The projections of Lines(Cj ) into

Ij are imposed as edge constraints on the triangulation

(Chew 1987). The resulting constrained Delaunay triangu-

lation may not cover the entire image, so we overlay a grid

onto the image and add to the triangulation each grid point

not contained inside the original triangulation. Each added

grid point is associated with a 3D point on Plane(Cj ). The

connectivity of the triangulation is then used to create a 3D

mesh; we project Ij onto the mesh in order to texture map

it. We compute a mesh for Ck and texture map it in the same

way.

Then, to render the transition between Cj and Ck , we

move the virtual camera from Cj and Ck while cross-fading

between the two meshes (i.e., the texture-mapped mesh for

Cj is faded out while the texture-mapped mesh for Ck is

faded in, with the depth buffer turned off to avoid pop-

ping). While this technique does not use completely accu-

rate geometry, the meshes are often sufficient to give a sense

of the 3D geometry of the scene. For instance, this approach

works well for many transitions in the Great Wall data set

(shown as a still in Fig. 2, and as an animation in the video

on the project website). However, missing geometry and

outlying points can sometimes cause distracting artifacts.

Planar Morphs We have also experimented with using

planes, rather than 3D meshes, as our projection surfaces.

To create a morph between cameras Cj and Ck using a

planar impostor, we simply project the two images Ij and

Ik onto CommonPlane(Cj ,Ck) and cross-fade between the

projected images as the camera moves from Cj to Ck . The

resulting in-betweens are not as faithful to the underlying

geometry as the triangulated morphs, tending to stabilize

only a dominant plane in the scene, but the resulting arti-

facts are usually less objectionable, perhaps because we are

used to seeing distortions caused by viewing planes from

different angles. Because of the robustness of this method,

we prefer to use it rather than triangulation as the default

for transitions. Example morphs using both techniques are

shown in the video on our project website.15

15Photo tourism website, http://phototour.cs.washington.edu/.
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There are a few special cases which must be handled

differently during transitions. First, if the two cameras ob-

serve no common points, our system currently has no ba-

sis for interpolating the images. Instead, we fade out the

start image, move the camera to the destination as usual,

then fade in the destination image. Second, if the normal to

CommonPlane(Cj ,Ck) is nearly perpendicular to the aver-

age of the viewing directions of Cj and Ck , the projected im-

ages would undergo significant distortion during the morph.

In this case, we revert to using a plane passing through the

mean of the points common to both views, whose normal is

the average of the viewing directions. Finally, if the vanish-

ing line of CommonPlane(Cj ,Ck) is visible in images Ij or

Ik (as would be the case if this plane were the ground plane,

and the horizon were visible in either image), it is impossi-

ble to project the entirety of Ij or Ik onto the plane. In this

case, we project as much as possible of Ij and Ik onto the

plane, and project the rest onto the plane at infinity.

6 Photo Explorer Navigation

Our image exploration tool supports several modes for

navigating through the scene and finding interesting pho-

tographs. These modes include free-flight navigation, find-

ing related views, object-based navigation, and viewing

slideshows.

6.1 Free-Flight Navigation

The free-flight navigation controls include some of the stan-

dard 3D motion controls found in many games and 3D view-

ers. The user can move the virtual camera forward, back,

left, right, up, and down, and can control pan, tilt, and zoom.

This allows the user to freely move around the scene and

provides a simple way to find interesting viewpoints and

nearby photographs.

At any time, the user can click on a frustum in the main

view, and the virtual camera will smoothly move until it

is coincident with the selected camera. The virtual camera

pans and zooms so that the selected image fills as much of

the main view as possible.

6.2 Moving Between Related Views

When visiting a photograph Ccurr, the user has a snapshot

of the world from a single point of view and an instant in

time. The user can pan and zoom to explore the photo, but

might also want to see aspects of the scene beyond those

captured in a single picture. He or she might wonder, for

instance, what lies just outside the field of view, or to the

left of the objects in the photo, or what the scene looks like

at a different time of day.

To make it easier to find related views such as these, we

provide the user with a set of “geometric” browsing tools.

Icons associated with these tools appear in two rows in the

information pane, which appears when the user is visiting a

photograph. These tools find photos that depict parts of the

scene with certain spatial relations to what is currently in

view. The mechanism for implementing these search tools

is to project the points observed by the current camera,

Points(Ccurr), into other photos (or vice versa), and select

views based on the projected motion of the points. For in-

stance, to answer the query “show me what’s to the left of

this photo,” we search for a photo in which Points(Ccurr)

appear to have moved right.

The geometric browsing tools fall into two categories:

tools for selecting the scale at which to view the scene, and

directional tools for looking in a particular direction (e.g.,

left or right).

There are three scaling tools: (1) find details, or higher-

resolution close-ups, of the current photo, (2) find similar

photos, and (3) find zoom-outs, or photos that show more

surrounding context. If the current photo is Ccurr, these tools

search for appropriate neighboring photos Cj by estimating

the relative “apparent size” of set of points in each image,

and comparing these apparent sizes. Specifically, to estimate

the apparent size of a set of points P in a image I , we project

the points into I , compute the bounding box of the projec-

tions that are inside the image, and calculate the ratio of the

area of the bounding box (in pixels) to the area of the image.

We refer to this quantity as Size(P,C).

When one of these tools is activated, we classify each

neighbor Cj as:

• a detail of Ccurr if Size(Points(Cj ),Ccurr) < 0.75 and

most points visible in Ccurr are visible in Cj

• similar to Ccurr if

0.75 <
Size(Points(Ccurr),Cj )

Size(Points(Ccurr),Ccurr)
< 1.3

and the angle between the viewing directions of Ccurr and

Cj is less than a threshold of 10 degrees

• a zoom-out of Ccurr if Ccurr is a detail of Cj .

The results of any of these searches are displayed in the

thumbnail pane (sorted by increasing apparent size, in the

case of details and zoom-outs). These tools are useful for

viewing the scene in more detail, comparing similar views

of an object which differ in other respects, such as time of

day, season, and year, and for “stepping back” to see more

of the scene.

The directional tools give the user a simple way to “step”

left or right, i.e., to see more of the scene in a particular

direction. For each camera, we compute a left and right

neighbor, and link them to arrows displayed in the infor-

mation pane. To find a left and right image for camera Cj ,
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Fig. 5 Object-based

navigation. The user drags a

rectangle around Neptune in one

photo, and the system finds a

new, high-resolution photograph

we compute the average 2D motion mjk of the projections

of Points(Cj ) from image Ij to each neighboring image Ik .

If the angle between mjk and the desired direction (i.e., left

or right), is small, and the apparent sizes of Points(Cj ) in

both images are similar, Ck is a candidate left or right image

to Cj . Out of all the candidates, we select the left of right

image to be the image Ik whose motion magnitude ‖mjk‖ is

closest to 20% of the width of image Ij .

6.3 Object-Based Navigation

Another search query our system supports is “show me pho-

tos of this object,” where the object in question can be di-

rectly selected in a photograph or in the point cloud. This

type of search, applied to video in (Sivic and Zisserman

2003), is complementary to, and has certain advantages over,

keyword search. Being able to select an object is especially

useful when exploring a scene—when the user comes across

an interesting object, direct selection is an intuitive way to

find a better picture of that object.

In our photo exploration system, the user selects an object

by dragging a 2D box around a region of the current photo

or the point cloud. All points whose projections are inside

the box form the set of selected points, S. Our system then

searches for the “best” photo of S by scoring each image in

the database based on how well it represents the selection.

The top scoring photo is chosen as the representative view,

and the virtual camera is moved to that image. Other images

with scores above a threshold are displayed in the thumb-

nail pane, sorted in descending order by score. An example

object selection interaction is shown in Fig. 5.

Our view scoring function is based on three criteria:

(1) the visibility of the points in S, (2) the angle from which

the points in S are viewed, and (3) the image resolution. For

each image Ij , we compute the score as a weighted sum of

three terms, Evisible, Eangle, and Edetail. Details of the com-

putation of these terms can be found in Appendix 2.

The set S can sometimes contain points that the user did

not intend to select, especially occluded points that happen

to project inside the selection rectangle. If we had complete

knowledge of visibility, we could cull such hidden points.

Because we only have a sparse model, however, we use a

set of heuristics to prune the selection. If the selection was

made while visiting an image Ij , we can use the points that

are known to be visible from that viewpoint (Points(Cj )) to

refine the selection. In particular, we compute the 3 × 3 co-

variance matrix for the points in S ∩Points(Cj ), and remove

all from S all points with a Mahalanobis distance greater

than 1.2 from the mean. If the selection was made while not

visiting an image, we instead compute a weighted mean and

covariance matrix for the entire set S. The weighting favors

points which are closer to the virtual camera, the idea be-

ing that those are more likely to be unoccluded than points

which are far away. Thus, the weight for each point is com-

puted as the inverse of its distance from the virtual camera.

6.4 Creating Stabilized Slideshows

Whenever the thumbnail pane contains more than one im-

age, its contents can be viewed as a slideshow by pressing

the “play” button in the pane. By default, the virtual camera

will move through space from camera to camera, pausing

at each image for a few seconds before proceeding to the

next. The user can also “lock” the camera, fixing it to the its

current position, orientation, and field of view. When the im-

ages in the thumbnail pane are all taken from approximately

the same location, this mode stabilizes the images, making

it easier to compare one image to the next. This mode is use-

ful for studying changes in scene appearance as a function

of time of day, season, year, weather patterns, etc. An exam-

ple stabilized slideshow from the Yosemite data set is shown

in the companion video.16

6.5 Photosynth

Our work on visualization of unordered photo collections

is being used in the Photosynth Technology Preview17 re-

leased by Microsoft Live Labs. Photosynth is a photo vi-

sualization tool that uses the same underlying data (camera

16Photo tourism website, http://phototour.cs.washington.edu/.

17Microsoft Live Labs, Photosynth technology preview, http://labs.

live.com/photosynth.
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positions and points) as in our work and has a user inter-

face with many similarities to Photo Tourism, but also has

several important differences. In Photosynth, rather than the

user dragging a box around an object to see a detailed photo

of it, the system suggests different photos as the user moves

the mouse cursor around the screen. If a close-up of the

object that the cursor is hovering over is available, a semi-

transparent quadrilateral appears, highlighting that region of

the screen. When the user clicks on a quadrilateral the vir-

tual view moves to the selected photo. Photosynth also sup-

ports a “splatter” mode, in which the photos are viewed in

a 2D arrangement. The currently selected photo is placed in

the center of the arrangement, and the other photos are or-

dered by similarity in a spiral around the center photo. In the

2D mode, when a new photo is selected it becomes the new

center image, and the photos are rearranged smoothly. Tran-

sitions between 2D and 3D modes involve similarly fluid

rearrangement of the photos.

In order to support interactive browsing of large collec-

tions of high-resolution photos over a network connection,

Photosynth efficiently streams image data using a system

called Seadragon, which computes which parts of which

photos are visible on the screen, and at what resolution each

photo (or part of a photo) is viewed. Only the required data

is then sent over the network, and higher-resolution data is

smoothly blended onto the screen as it is received.

7 Enhancing Scenes

Our system allows users to add content to a scene in sev-

eral ways. First, the user can register their own photographs

to the scene at run-time, after the initial set of photos has

been registered. Second, users can annotate regions of im-

ages, and these annotations can be propagated to other im-

ages.

7.1 Registering New Photographs

New photographs can be registered on the fly, as follows.

First, the user switches to a mode where an overhead map

fills the view, opens a set of images, which are displayed in

the thumbnail panel, and drags and drops each image onto

its approximate location on the map. After each image has

been dropped, the system estimates the location, orientation,

and focal length of each new photo by running an abbrevi-

ated version of the SfM pipeline described in Sect. 4 at a

local level. First, SIFT keypoints are extracted and matched

to the keypoints of the twenty cameras closest to the ini-

tial location; the matches to each other camera are pruned to

contain geometrically consistent matches; the existing 3D

points corresponding to the matches are identified; and fi-

nally, these matches are used to refine the pose of the new

camera. After a set of photos has been dragged onto the map,

it generally takes around ten seconds to optimize the para-

meters for each new camera on our test machine, a 3.80 GHz

Intel Pentium 4.

7.2 Annotating Objects

Annotations are supported in other photo organizing tools,

but a unique feature of our system is that annotations can

be automatically transferred from one image to all other im-

ages that contain the same scene region(s).

In the photo explorer, the user can select a region of an

image and enter a textual annotation. The annotation is then

stored, along with the 3D points Sann which lie in the se-

lected area, and appears as a semi-transparent box around

the selected points. Once annotated, an object can be linked

to other sources of information, such as web sites, guide-

books, and video and audio clips.

When an annotation is created, it is automatically trans-

ferred to all other relevant photographs. To transfer an an-

notation to another image Ij , we first check whether the an-

notation is visible in Ij , and whether it is at an appropriate

scale for the image—that it neither fills the image entirely

nor labels a very small region of the image. To determine

visibility, we simply test that at least one of the annotated

points Sann is in Points(Cj ). To check whether the annota-

tion is at an appropriate scale, we compute the apparent size,

Size(Sann,Cj ), of the annotation in image Ij . If the annota-

tion is visible and 0.05 < Size(Sann,Cj ) < 0.8, we transfer

the annotation to Cj . When the user visits Cj , the annotation

is displayed as a box around the annotated points, as shown

in Fig. 7.

Besides quickly enhancing a scene with semantic infor-

mation, the ability to transfer annotations has several ap-

plications. First, it enables a system in which a tourist can

take a photo (e.g., from a camera phone that runs our soft-

ware) and instantly see information about objects in the

scene super-imposed on the image. In combination with a

head-mounted display, such a capability could offer a highly

portable, computer-vision-based augmented reality system

(Feiner et al. 1997). Second, it makes labeling photographs

in preparation for keyword search more efficient. If an object

is annotated with a set of keywords in one photo, transfer-

ring the annotation to other photos enables multiple images

to be added to a keyword search database based on a single

annotation.

We can also leverage the many existing images that have

already been annotated. There are several sources of exist-

ing annotations. On Flickr, for instance, users can attach

notes to rectangular regions of photos. Tools such as the ESP

Game (von Ahn and Dabbish 2004) and LabelMe (Russell

et al. 2005) encourage users to label images on the web, and

have accumulated a database of annotations. By registering
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Fig. 6 Photosynth technology

preview. This screenshot shows

a user exploring photos of

Piazza San Marco in Venice

(left) and St. Peter’s Basilica in

the Vatican (right)

Fig. 7 Example of annotation

transfer. Three regions were

annotated in the photograph on

the left; the annotations were

automatically transferred to the

other photographs, a few of

which are shown on the right.

Our system can handle partial

and full occlusions

such labeled images with an existing collection of photos

using our system, we could transfer the existing labels to

every other relevant photo in the system. Other images on

the web are implicitly annotated: for instance, an image on

a Wikipedia page is “annotated” with the URL of that page.

By registering such images, we could link other photos to

the same page.

8 Results

We have applied our system to several input photo collec-

tions, including “uncontrolled” sets consisting of images

downloaded from Flickr. In each case, our system detected

and matched features on the entire set of photos and auto-

matically identified and registered a subset corresponding

to one connected component of the scene. The uncontrolled

sets we have tested are as follows:

1. Notre Dame, a set of photos of the Notre Dame Cathe-

dral in Paris.

2. Mount Rushmore, a set of photos of Mount Rushmore

National Monument, South Dakota.

3. Trafalgar Square, a set of photos from Trafalgar Square,

London.

4. Yosemite, a set of photos of Half Dome in Yosemite Na-

tional Park.

5. Trevi Fountain, a set of photos of the Trevi Fountain in

Rome.

6. Sphinx, a set of photos of the Great Sphinx of Giza,

Egypt.

7. St. Basil’s, a set of photos of Saint Basil’s Cathedral in

Moscow.

8. Colosseum, a set of photos of the Colosseum in Rome.

Three other sets were taken in more controlled settings

(i.e., a single person with a single camera and lens):

1. Prague, a set of photos of the Old Town Square in

Prague.

2. Annecy, a set of photos of a street in Annecy, France.

3. Great Wall, a set of photos taken along the Great Wall

of China.

More information about these data sets (including the

number of input photos, number of registered photos, run-

ning time, and average reprojection error), is shown in Ta-

ble 1. The running times reported in this table were gen-

erated by running the complete pipeline on one or more

3.80 GHz Intel Pentium 4 processors. The keypoint detec-

tion and matching phases were run in parallel on ten proces-

sors, and the structure from motion algorithm was run on a

single processor.

Visualizations of these data sets are shown in Figs. 9

and 10. Please see the video and live demo on the project

website18 for a demonstration of features of our photo ex-

18Photo tourism website, http://phototour.cs.washington.edu/.
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Fig. 8 A registered historical

photo. Left: Moon and Half

Dome, 1960. Photograph by

Ansel Adams. We registered this

historical photo to our Half

Dome model. Right: rendering

of DEM data for Half Dome

from where Ansel Adams was

standing, as estimated by our

system. The white border was

drawn manually for comparison

(DEM and color texture

courtesy of the U.S. Geological

Survey)

Table 1 Data sets. Each row lists information about each data set used

Collection Search term # photos # registered # points runtime error

Notre Dame notredame AND paris 2635 598 305535 12.7 days 0.616

Mt. Rushmore mount rushmore 1000 452 133994 2.6 days 0.444

Trafalgar Sq. trafalgar square 1893 278 27224 3.5 days 1.192

Yosemite halfdome AND yosemite 1882 678 264743 10.4 days 0.757

Trevi Fountain trevi AND rome 466 370 114742 20.5 hrs 0.698

Sphinx sphinx AND egypt 1000 511 206783 3.4 days 0.418

St. Basil’s basil AND red square 627 220 25782 23.0 hrs 0.816

Colosseum colosseum AND (rome OR roma) 1994 390 188306 5.0 days 1.360

Prague N/A 197 171 38921 3.1 hrs 0.731

Annecy N/A 462 424 196443 2.5 days 0.810

Great Wall N/A 120 81 24225 2.8 hrs 0.707

Collection, the name of the set; search term the search term used to gather the images; # photos, the number of photos in the input set; # registered

the number of photos registered; # points, the number of points in the final reconstruction; runtime, the approximate total time for reconstruction;

error, the mean reprojection error, in pixels, after optimization. The first eight data sets were gathered from the Internet, and the last three were

each captured by a single person

plorer, including object selection, related image selection,

morphing, and annotation transfer, on several data sets.

For the Half Dome data set, after initially constructing

the model, we aligned it to a digital elevation map using

the approach described in Sect. 4.3.1. We then registered a

historical photo, Ansel Adam’s “Moon and Half Dome,” to

the data set, by dragging and dropping it onto the model

using the method described in Sect. 7.1. Figure 8 shows a

synthetic rendering of the scene from the estimated position

where Ansel Adams took the photo.

8.1 Discussion

The graphs shown in the third column of Figs. 9 and 10

contain edges between pairs of photos with matching fea-

tures, as in Fig. 1. These connectivity graphs suggest that

many of the uncontrolled datasets we tested our reconstruc-

tion algorithm on consist of several large clusters of photos

with a small number of connections spanning clusters, and a

sparse set of photos hanging off the main clusters. The large

clusters usually correspond to sets of photos from similar

viewpoints. For instance, the large cluster that dominates

the Mount Rushmore connectivity graph are all frontal-

view photos taken from the observation terrace or the trails

around it, and the two large clusters on the right side of

the Colosseum connectivity graph correspond to the inside

and the outside of the Colosseum. Sometimes clusters cor-

respond not to viewpoint but to different lighting conditions,

as in the case of the Trevi Fountain collection (see Fig. 1),

where there is a “daytime” cluster and a “nighttime” clus-

ter.
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Fig. 9 Sample reconstructed scenes. From top to bottom: Notre

Dame, Mount Rushmore, Trafalgar Square, Yosemite, Trevi

Fountain, and Sphinx. The first column shows a sample im-

age, and the second column shows a view of the reconstruction.

The third and fourth columns show photo connectivity graphs, in

which each image in the set is a node and an edge links each

pair of images with feature matches. The third column shows

the photo connectivity graph for the full image set, and the

fourth for the subset of photos that were ultimately reconstructed
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Fig. 10 More sample reconstructed scenes. From top to bottom: St. Basil’s, Colosseum, Annecy, Prague and Great Wall. The last three photo

collections were each taken by a single person

Inside of a cluster, the neato19 mass-spring system used

to embed the graph into the plane tends to pull together the

most similar photos and push apart the least similar ones.

This behavior can result in photos being laid out along intu-

19Graphviz—graph visualization software, http://www.graphviz.org/.

itive dimensions. For instance, in the large cluster at the top

of the connectivity graph for the Trevi Fountain dataset, as

well as the sparser cluster on the bottom, the x-axis roughly

corresponds to the angle from which the fountain is viewed.

The photos that span clusters tend to be those that happen

to see two parts of a scene (for instance, both the inside and
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outside of a building), or those that are sharp, in focus, and

well-lit, in the case of clusters taken at different times of

day. The “leaf” nodes in the graph generally correspond to

images that are at extremes along some dimension, such as

photos that are very zoomed in, photos taken from a sig-

nificantly different viewpoint, or photos taken under very

different lighting.

While the graphs in the third column of Figs. 9 and 10

represent the connectivity of entire photo sets, the fourth

column shows the part of the graph our algorithm was able

to reconstruct (the reconstruction graph). As described in

Sect. 4, in general, our algorithm does not reconstruct all

input photos, because the input set may form separate con-

nected components, or clusters that are too weakly con-

nected to be reliable reconstructed (during reconstruction,

photos are added until no remaining photo observes enough

3D points to reliably add it to the scene). These reconstruc-

tion graphs suggest that for unstructured datasets, our recon-

struction algorithm tends to reconstruct most of one of the

main clusters, and can sometimes bridge gaps between clus-

ters with enough connections between them. For instance,

in the Sphinx collection, our algorithm reconstructed two

prominent clusters, one on the right side of the graph, and

one on the bottom. These clusters correspond to two sides

of the Sphinx (the front and the right side) which are com-

monly photographed; a few photos were taken from inter-

mediate angles, allowing the two clusters to be connected. In

the Colosseum collection, only the outside of the structure

was successfully reconstructed, and therefore only a single

cluster in the connectivity graph is represented in the recon-

struction graph. More images would be needed to bridge the

other clusters in the graph. In general, the more “connected”

the image graph is, the more images can successfully be reg-

istered.

For the controlled datasets (Annecy, Prague, and Great

Wall), the photos were captured with the intention of gen-

erating a reconstruction from them, and the connectivity

graphs are less clustered, as they were taken, for the most

part, while walking along a path. In the Prague photo set,

for instance, most of the photos were taken all around the

Old Town Square, looking outward at the buildings. A few

were taken looking across the square, so a few longer range

connections between parts of the graph are evident. Our re-

construction algorithm was able to register most of the pho-

tos in these datasets.

9 Research Challenges

A primary objective of this paper is to motivate more re-

search in the computer vision community on analyzing the

diverse and massive photo collections available on the In-

ternet. While this paper presented some initial steps towards

processing such imagery for the purpose of reconstruction

and visualization, huge challenges remain. Some of the open

research problems for our community include:

• Scale. As more and more of the world’s sites and cities

are captured photographically, we can imagine using SfM

methods to reconstruct a significant portion of the world’s

urban areas. Achieving such a goal will require Internet-

scale matching and reconstruction algorithms that oper-

ate on millions of images. Some recent matching algo-

rithms (Grauman and Darrell 2005; Nistér and Stewénius

2006) have demonstrated the ability to operate effectively

on datasets that approach this scale, although more work

is needed to improve the accuracy of these methods, es-

pecially on Internet photo collections. Furthermore, the

large redundancy in online photo collections means that

a small fraction of images may be sufficient to produce

high quality reconstructions. These and other factors lead

us to believe that Internet-scale SfM is feasible.

• Variability. While SIFT and other feature matching tech-

niques are surprisingly robust with respect to appearance

variation, more significant appearance changes still pose a

problem. More robust matching algorithms could enable a

number of exciting capabilities, such as matching ground-

based to aerial/satellite views, aligning images of natural

sites through changes in seasons and weather conditions,

registering historical photos and artistic renderings with

modern-day views (rephotography20), and robust match-

ing using low-quality (e.g., cell phone camera) devices

and imagery.

• Accuracy. Accuracy is an important concern for ap-

plications such as localization (e.g., figuring out where

you are by taking a photograph), navigation, and sur-

veillance. Most SfM methods operate by minimizing re-

projection error and do not provide guarantees on met-

ric accuracy. However, satellite images, maps, DEMs,

surveys, and similar data provide a rich source of met-

ric data for a large percentage of world sites; such data

could be used to obtain more accurate metric SfM re-

sults. There is also a need for evaluation studies, in the

spirit of (Scharstein and Szeliski 2002; Seitz et al. 2006;

Szeliski et al. 2006), that benchmark the best-of-breed

SfM algorithms against ground truth datasets and encour-

age the development of more accurate techniques.

• Shape. While SfM techniques provide only sparse geom-

etry, the ability to compute accurate camera parame-

ters opens the door for techniques such as multi-view

stereo that compute dense surface shape models. In turn,

shape enables computing scene reflectance properties

(e.g., BRDFs) and illumination. We therefore envision a

new breed of shape and reflectance modeling techniques

20Rephotography, http://en.wikipedia.org/wiki/Rephotography.
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that operate robustly on the free-form imagery typical in

Internet photo collections (see Goesele et al. 2007 for ex-

citing initial steps along these lines).

• Online algorithms. Imagine pointing your cell phone

camera at a scene of interest, and have it instantly recog-

nize where you are and annotate the image in real time

with information about objects visible in the image. This

and a number of other applications become feasible only

with online algorithms that produce results in real time.

Similarly, one can imagine highlighting areas of the world

that are not sufficiently covered with photographs, and

provide a way for users to take photos of these areas, up-

load the results, and see the resulting refinement to the

model. (The Geograph British Isles project21 uses man-

ual geotagging to get at least one representative photo-

graph for each square kilometer of the British Isles.) This

is, in effect, a form of active vision (Aloimonos 1993;

Blake and Yuille 1993) but on a massive scale, where peo-

ple in the world population are the active agents filling in

the missing data.

In conclusion, we believe Internet imagery provides very

fertile ground for computer vision research. The massive

amount of data available on the Internet is starting to be used

to address several problems in computer graphics and com-

puter vision, including object category recognition, (Fergus

et al. 2005), scene completion (Hays and Efros 2007), and

object insertion (Lalonde et al. 2007). We expect to see ma-

jor advances in this area over the next few years.

Appendix 1: Structure from Motion Optimization

A perspective camera can be parameterized by an eleven-

parameter projection matrix. Making the common additional

assumptions that the pixels are square and that the center of

projection is coincident with the image center, the number

of parameters is reduced to seven: the 3D orientation (three

parameters), the camera center c (three parameters), and the

focal length f (one parameter). In our system, we also solve

for two radial distortion parameters, κ1 and κ2, so the total

number of parameters per camera is nine.

To parameterize the rotations, we use an incremental ro-

tation, ω, where

R(θ, n̂) = I + sin θ [n̂]× + (1 − cos θ)[n̂]2
×, ω = θn̂

is the incremental rotation matrix applied to an initial rota-

tion, and

[n̂]× =

⎡

⎣

0 −n̂z n̂y

n̂z 0 −n̂x

−n̂y n̂x 0

⎤

⎦ .

21Geograph British Isles project website, http://www.geograph.org.

uk/.

We group the nine parameters into a vector, Θ = [ω,c,f,

κ1, κ2]. Each point is parameterized by a 3D position, X.

Recovering the parameters can be formulated as an opti-

mization problem. In particular, we have a set of n cameras,

parameterized by Θi . We also have a set of m tracks, pa-

rameterized by Xj , and a set of 2D projections, qij , where

qij is the observed projection of the j -th track in the i-th

camera.

Let P(Θ,X) be the equation mapping a 3D point X to

its 2D projection in a camera with parameters Θ . P trans-

forms X to homogeneous image coordinates and performs

the perspective division, that applies radial distortion:

X′ = R(X − c),

P0 =
[

−f X′
x/X′

z −f X′
y/X′

z

]T
,

P = grd(P0)

where grd(p) is the distortion equation given in Sect. 4.2.

We wish to minimize the sum of the reprojection errors:

n
∑

i=1

m
∑

j=1

wij‖qij − P(Θi,Xj )‖

(wij is used as an indicator variable where wij = 1 if camera

i observes point j , and wij = 0 otherwise).

When initializing a new camera, we have one or two in-

dependent estimates of the focal length. One estimate, f1,

is 1
2
(K11 + K22), where K is the intrinsic matrix estimated

using DLT. The other, f2, is calculated from the EXIF tags

of an image, and is undefined if the necessary EXIF tags

are absent. This estimate is usually good, but can occasion-

ally be off by more than a factor of two. We prefer to use

f2 as initialization when it exists, but first we check that

0.7f1 < f2 < 1.4f1 to make sure f2 does not disagree to

much with the DLT estimate. If this test fails, we use f1.

Otherwise, we use f2, and add the term γ (f − f2)
2 to the

objective function, in order to keep the focal length of the

camera close to the initial estimate. We used γ = 0.001 for

each of our tests.

Appendix 2: Image Selection Criteria

When determining how well an image Ij represents a point

set S during an object selection, the score is computed as a

weighted sum of three terms, Evisible + αEangle + βEdetail

(we use α = 1
3

and β = 2
3

).

To compute the visibility term Evisible, we first check

whether S ∩ Points(Cj ) is empty. If so, the object is deemed

not to be visible to Cj at all, and Evisible = −∞. Otherwise,

Evisible = ninside

|S|
, where ninside denotes the number of points

in S that project inside the boundary of image Ij .
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The term Eangle is used to favor head-on views of a set of

points over oblique views. To compute Eangle, we first fit a

plane to the points in S using a RANSAC procedure. If the

percentage of points in S which are inliers to the recovered

plane is above a threshold of 50% (i.e., there appears to be a

dominant plane in the selection), we favor cameras that view

the object head-on by setting Eangle = V (Cj ) · n̂, where V

indicates viewing direction, and n̂ the normal to the recov-

ered plane. If fewer than 50% of the points fit the plane, we

set Eangle = 0.

Finally, Edetail favors high-resolution views of the object.

Edetail is defined to be the area, in pixels, of the bounding

box of the projections of S into image Ij (considering only

points that project inside the boundary of Ij ). Edetail is nor-

malized by the area of the largest such bounding box, so the

highest resolution available view will have a score of 1.0.

Appendix 3: Photo Credits

We would like to thank the following people for allowing us

to reproduce their photographs:

Holly Ables, of Nashville, TN

Rakesh Agrawal

Pedro Alcocer

Julien Avarre (http://www.flickr.com/photos/eole/)

Rael Bennett (http://www.flickr.com/photos/spooky05/)

Loïc Bernard

Nicole Bratt

Nicholas Brown

Domenico Calojero (mikuzz@gmail.com)

DeGanta Choudhury (http://www.flickr.com/photos/

deganta/)

dan clegg

Claude Covo-Farchi

Alper Çuğun

W. Garth Davis

Stamatia Eliakis

Dawn Endico (endico@gmail.com)

Silvana M. Felix

Jeroen Hamers

Caroline Härdter

Mary Harrsch

Molly Hazelton

Bill Jennings (http://www.flickr.com/photos/mrjennings),

supported by grants from the National Endowment for

the Humanities and the Fund for Teachers

Michelle Joo

Tommy Keswick

Kirsten Gilbert Krenicky

Giampaolo Macorig

Erin K Malone (photographs copyright 2005)

Daryoush Mansouri

Paul Meidinger

Laurete de Albuquerque Mouazan

Callie Neylan

Robert Norman

Dirk Olbertz

Dave Ortman

George Owens

Claire Elizabeth Poulin

David R. Preston

Jim Sellers and Laura Kluver

Peter Snowling

Rom Srinivasan

Jeff Allen Wallen Photographer/Photography

Daniel West

Todd A. Van Zandt

Dario Zappalà

Susan Elnadi

We also acknowledge the following people whose pho-

tographs we reproduced under Creative Commons licenses:

Shoshanah

http://www.flickr.com/photos/shoshanah22

Dan Kamminga

http://www.flickr.com/photos/dankamminga1

Tjeerd Wiersma http://www.flickr.com/photos/tjeerd1

Manogamo

http://www.flickr.com/photos/se-a-vida-e23

Ted Wang http://www.flickr.com/photos/mtwang24

Arnet http://www.flickr.com/photos/gurvan3

Rebekah Martin http://www.flickr.com/photos/rebekah3

Jean Ruaud http://www.flickr.com/photos/jrparis3

Imran Ali http://www.flickr.com/photos/imran3

Scott Goldblatt http://www.flickr.com/photos/goldblatt3

Todd Martin http://www.flickr.com/photos/tmartin25

Steven http://www.flickr.com/photos/graye4

ceriess http://www.flickr.com/photos/ceriess1

Cory Piña http://www.flickr.com/photos/corypina3

mark gallagher

http://www.flickr.com/photos/markgallagher1

Celia http://www.flickr.com/photos/100n30th3

Carlo B. http://www.flickr.com/photos/brodo3

Kurt Naks http://www.flickr.com/photos/kurtnaks4

Anthony M. http://www.flickr.com/photos/antmoose1

Virginia G http://www.flickr.com/photos/vgasull3

Collection credit and copyright notice for Moon and Half

Dome, 1960, by Ansel Adams: Collection Center for Cre-

1http://creativecommons.org/licenses/by/2.0/.

2http://creativecommons.org/licenses/by-nd/2.0/.

3http://creativecommons.org/licenses/by-nc-nd/2.0/.

4http://creativecommons.org/licenses/by-nc/2.0/.
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ative Photography, University of Arizona, © Trustees of The

Ansel Adams Publishing Rights Trust.
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