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Abstract. Since solids are only sometimes seen en masse in a pure bulk form, and for liquids

other than water almost never, a capability to model reflectance spectra from analytes deposited

on various substrates would be highly advantageous. If available, the real, nðνÞ, and imaginary,

kðνÞ, components of the complex refractive index, n
∼
¼ nþ ik, can be used to simulate infrared

spectra, accounting for reflection, refraction, and absorption phenomena as a function of wave-

length. We focus on using the Pacific Northwest National Laboratory (PNNL) derived n∕k

vectors for solid and liquid analytes deposited as thin layers on different types of substrates

including conductors, such as aluminum, and inorganic dielectrics, such as glass. The model

is an adaptation of the Monte Carlo ray trace modeling program, TracePro, extended through

the use of its macrolanguage. The model is tested using thin films of organic liquids including

silicone oil and no. 2 diesel fuel, as well as organic solids such as caffeine and acetaminophen on

aluminum and glass. The predicted spectra for the solid films were compared to experimental

hemispherical reflectance data measured using a Fourier transform spectrometer with an inte-

grating sphere. The thickness of the calculated layer is a parameter for predicting the (transflec-

tance) spectra and is obtained using the areal density measured from gravimetric methods to

generate the thin-layer samples. Comparison of the calculated spectra with experimental hemi-

spherical reflectance data shows excellent agreement, indicating promise for the use of measured

n∕k data to synthesize reference spectral data. In particular, accounting for the inhomogeneity of

the deposits greatly improved the match with experimental data. Finally, the theoretical modeling

shows that for thicker layers (ca. 20 to 100 μm) of typical organics possessing moderately strong

k values, the longwave infrared features are often saturated and better spectral contrast is

obtained from the overtone/combination bands in the shortwave infrared. © The Authors.
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1 Introduction

Spectroscopy, especially infrared absorption and reflectance spectroscopy, is a valuable tool

to remotely detect and identify unknown gases,1–4 solids,5–7 and liquids.8,9 Identification of

unknown spectra from library endmembers makes use of techniques such as matched filtering,

generalized least squares, and mixture-tuned matched filtering.10 In all of these methods, it is

necessary to have a spectrum of the unknown material in the library for reliable identification.

Spectral libraries exist for the three phases of matter, with solid materials typically characterized

using reflectance spectroscopy, and gases and liquids identified predominantly using absorption

spectroscopy.10,11 Unlike gases, the ability to detect solids and liquids under various environ-

mental conditions using spectroscopic techniques can be challenging since morphological phe-

nomena such as layer thickness,12 substrate composition,13,14 or particle size15,16 are all known to

affect the infrared reflectance, emission, and transmission spectra. Generating a spectral library
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with all the different morphological conditions would require an infinite number of measure-

ments; modeling the solid or liquid spectrum to account for the different morphological con-

ditions is thus preferred but requires both the real (n) and imaginary (k) optical constants of the

complex refractive index where n
∼
¼ nðvÞ þ ikðvÞ.

Identification of endmembers obtained via imaging spectroscopy is traditionally accom-

plished by comparing the unknown library endmember spectra found via reflectance spectros-

copy using various algorithms.10,17 However, experience has shown there can be differences

between field-obtained data and laboratory-measured spectra of neat chemicals. Consequently,

there has been recent interest in obtaining the complex index of refraction of materials from

which reflectance versus wavelength (or wavenumber) data can be calculated by way of the

Fresnel equations for bulk materials or using ray tracing or thin film calculations. However,

for many materials of environmental or security interest, such as explosives, chemical agents,

or their precursors, the chemicals exist most often only as thin films either on metal or dielectric

substrates. The combination of thin films of either solids or liquids on surfaces can result in

complex spectra that contain attributes of both the film material and substrate.

In the complex index of refraction, the real part nðνÞ describes the material’s reflectance and

refraction properties, and the imaginary part kðνÞ describes the attenuation of light within the

medium.18 In the infrared, these properties are associated with the spectroscopic rotational–

vibrational features that are useful in identifying materials such as organic gases or liquids, espe-

cially within the molecular fingerprint region spanning 5.5 to 25 μm. Once the complex index of

refraction is found, the bulk reflectance from the first surface of the material can be calculated

using the Fresnel equations.18 Since liquids as well as most solid deposits will only rarely be seen

in pure bulk form, one is more likely to see the influence of the substrate combined with that of

the liquid or solid, and this composite signature may not necessarily strongly resemble either

signature. However, using the complex index of refraction for both the material and substrate,

reflectance spectra can be calculated and eventually matched to acquired endmember data with a

good degree of confidence. In the following, the methods used to model various liquid and solid

thin films are described, along with assumptions about the liquid, solid, and substrate. Finally,

modeling results of selected liquids and solids on metal and dielectric substrates are presented,

including rough (scattering) metallic substrates.

2 Experimental Methods

The theoretical calculations presented here are all based on using nðνÞ and kðνÞ vectors to per-

form the calculations, and in most cases the calculated spectra are compared to experimental

directional-hemispherical reflectance spectra recorded using an integrating sphere coupled to

a Fourier transform infrared spectrometer. The nðνÞ and kðνÞ vectors that are used in the models

described here were obtained from the PNNL database of optical constants.8,19,20 This database

consists of a set of n∕k spectra for a rather large collection of liquids of different chemical vari-

eties: organics, inorganics, polar, nonpolar viscous, etc. The liquids n∕k data8were derived using

improved methods originally developed by Bertie et al.,21,22 whereby a series of absorption spec-

tra are recorded from liquid cells of fixed path lengths, and the scalar refractive index n is also

measured using an Abbe refractometer. The Kramers–Kronig transform uses these data to iter-

atively generate the n∕k vectors. The PNNL data set also consists of a set of n∕k data for solids,

data which are, in general, much more difficult to obtain; most of the experimental details of the

methods to obtain the n∕k data for the solid samples have been previously reported as obtained

by any of three methods: single-angle reflectance spectroscopy,23,24 ellipsometry,25,26 or a more

economical method,27 whereby the k values are obtained from the absorbance data of KBr pellets

prepared using quantitative gravimetric analysis. In the KBr pellet method, the n values are cal-

culated from kðνÞ by Kramers–Kronig transformation along with an approximated scalar value

of n at the high wavenumber limit of kðνÞ. Both liquid and solid thin films are examined in

this paper.

To obtain the experimentally-derived results, it was necessary to record the directional–hemi-

spherical reflectance spectra.28 The measured total hemispherical reflectance (diffuse + specular)

is reported in many of the following examples. These data were recorded using a 75-mm sphere
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with a nominally matte gold interior surface (Bruker A 562) and a Fourier-transform infrared

(FTIR) spectrometer. The FTIR (typically either a Bruker Tensor 37 or Matrix IR cube) was used

with the infrared beam coupled to the inlet port of the sphere.28 Both FTIRs were operated in the

mid-IR using a SiC source, KBr beamsplitter, and an HgCdTe detector with a spectral resolution

of 4 cm−1.

The thin layer solid samples for the reference measurements were provided and prepared by

the Johns Hopkins University Applied Physics Laboratory (APL). Soda lime glass substrates

were used without any surface modification, but roughened aluminum substrates were prepared

via grit blasting with 150-mesh SiC. Solid analytes were deposited onto the substrates via robotic

airbrushing of the chemicals from solution.29 Final mass loading was controlled through solution

concentration and volume of the solution deposited onto the samples and verified by gravimetric

analysis. A Keyence VHX-1000 digital microscope was also used to record high-quality photo-

micrographs of the various samples to examine the uniformity of the layers. Images for the solid

samples on glass and polished aluminum are presented but not for samples on roughened alu-

minum since the surface roughness was too high (∼2 μm) compared to the film thickness, mak-

ing it impossible to yield information regarding the uniformity. For the liquids, spin coating was

used to apply thin films to the substrates but attempts to quantify the thickness of the analytes

were not successful;30 reference measurements are thus not presented for the liquids.

3 Modeling Approach

In this paper, a Monte Carlo ray tracing program (TracePro)31 is used to model liquid films on

substrates with nonsequential ray tracing using a substrate + thin layer model. The ray-tracing

approach treats light incoherently (i.e., phase is not considered), which is not unreasonable for

real-world data acquisition. TracePro, which can assign both material as well as surface proper-

ties of the substrate, can extend modeling into a regime where scattered light is detected from a

surface using either bidirectional reflectance distribution function (BRDF) models or measured

scattering data. However, scattering was not considered in any of the modeling results presented

in this paper. An additional consideration is that a ray-tracing approach such as that used in this

study has the ability to create more complex spatial models in which thin films with voids or

droplet models can be considered, as well as homogeneous but nonuniform thickness of thin

layers.

It is worth noting that traditional thin film modeling methods, such as the transfer matrix

method (TMM),32 have the ability to model basic systems by providing an exact solution to

Maxwell’s equations. However, TMM models require assumptions such as an infinite substrate,

and homogeneous, parallel film layers; TMM cannot address scattering from very rough surfaces

or model films with voids or droplets nor analyze nonuniformly thick layers, which TracePro®

can. We plan to pursue such studies in the future.

The liquids examined include no. 2 diesel fuel and silicone oil. Substrates considered include

aluminum and soda lime glass. These provide a small subset of organic liquids and substrates to

illustrate the challenges of detecting thin absorbing layers of liquids on either metallic or dielec-

tric surfaces. In addition, thin layers of solid materials are also considered for which n and k

values have been derived using the KBr pellet method.27 In the case of the solids, these materials

are applied to aluminum and glass substrates with known areal density (and hence, known film

thickness) in order to validate the modeling approach, or in some cases, show where there are

challenges in practice and more research is needed.

4 Reflectance of Liquid Films on Substrates

4.1 Substrates

Both aluminum33 and soda lime glass34 substrates are considered for these modeling efforts.

Figure 1 plots the complex index of refraction for both substrates. In comparison to aluminum,

significant variation in n and k for soda lime glass is evident throughout the wavelength region
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of interest. All reflectance plots shown in this paper are calculated with unpolarized illumination

at þ15 deg and light collected at the specular angle of −15 deg.

Once a researcher has access to the complex index of refraction, reflectance data can be

calculated; Fig. 2 displays the first surface or bulk reflection plots for both aluminum and soda

lime glass. Aluminum displays the high reflectance common to most metals and is relatively

featureless spectroscopically, while soda lime glass exhibits relatively low reflectance except

for the peak around 10 μm due to the Si–O antisymmetric stretch.

4.2 Liquid Layers on Metal Substrate

Next, the addition of liquid layers is examined on the aluminum and soda lime glass substrates.

The two liquids considered are silicone oil and no. 2 diesel fuel, whose complex index of refrac-

tion plots20 are shown in Fig. 3. The strongest feature for silicone oil occurs at 802 cm−1 with a

peak k-value of 0.9 and is due to the Si–C stretch. Weaker k-values are observed for no. 2 diesel

fuel in which the strongest features occur in the C–H stretching region with a smaller peak

k-value of ∼0.13 at 2925 cm−1.

Using the n and k values shown in Fig. 3, first surface or bulk reflectance values are com-

puted for infinitely thick layers of silicone oil and no. 2 diesel fuel. The reflectance values are

shown in Fig. 4. The bulk spectra resemble the real part of the refractive index since the illumi-

nation is completely attenuated by the liquid and the substrate has no influence on the spectral

response.

Fig. 1 Complex index of refraction plots for (a) aluminum and (b) soda lime glass. The real com-

ponent n is plotted in black on the left axis, the imaginary component k in red on the right axis.

Fig. 2 Modeled reflectance versus wavenumber (wavelength) is shown above for (a) bare alu-

minum and (b) bare soda lime glass.

Bernacki, Johnson, and Myers: Modeling thin layers of analytes on substrates for spectral analysis. . .

Optical Engineering 092005-4 September 2020 • Vol. 59(9)

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 16 Aug 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



When thin films of silicone oil having layer thicknesses of 1 and 100 μm, respectively, are

layered atop an aluminum substrate, the transflectance plots shown in Fig. 5 are determined. It is

worthy to note the marked difference in the two spectra: for the thin layer, the spectrum resem-

bles a double-pass absorption spectrum with near Beer–Lambert behavior, whereas for the

thicker 100-μm layer, as the film layer increases, those portions of the modeled response in the

Fig. 4 Modeled first surface reflectance of bulk liquid samples of (a) silicone oil and (b) no. 2 diesel

fuel versus wavenumber (wavelength).

Fig. 3 Experimental complex index of refraction plots for (a) silicone oil and (b) no. 2 diesel fuel

versus wavenumber (wavelength). The real component n is plotted in black on the left axis, the

imaginary component k in red on the right axis.

Fig. 5 Modeled reflectance versus wavenumber (wavelength) for (a) 1 μm of silicone oil on

aluminum and (b) 100 μm of silicone oil on aluminum.

Bernacki, Johnson, and Myers: Modeling thin layers of analytes on substrates for spectral analysis. . .

Optical Engineering 092005-5 September 2020 • Vol. 59(9)

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 16 Aug 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



longwave infrared (LWIR) saturate, and only first surface reflections from the film layer are

detected; these regions slightly resemble bulk reflectance of silicone oil [cf. Fig. 4(a)].

For the case of the 1-μm layer, distinguishable absorption features appear in the reflectance

data, but due to the transflectance behavior of the highly reflecting substrate, the response resem-

bles neither the first surface nor the bulk reflectance of silicone oil. As the layer increases to

100 μm, portions of the transflectance plot saturate. Namely, in the LWIR where the k values

are large due to allowed fundamental vibrational transitions, some of the incident light does not

reach the aluminum substrate, revealing portions of the spectrum that consequently display

only the first surface reflectance of silicone oil. By knowing the complex index of refraction of

both the substrate and liquid layers, one can recreate the liquid layer–substrate system and esti-

mate the thickness of the liquid layer. To make identification easier, the data in Fig. 5 suggest that

instead of searching in the LWIR where the strongest signatures reside, it may be more advanta-

geous to look for data signatures in the shortwave infrared (SWIR), for example, where greater

spectral contrast is observed.

Figure 6 shows modeled reflectance spectra for no. 2 diesel fuel for both 1 and 100 μm layer

thicknesses, with results similar to those shown for silicone oil, but with less pronounced effects

as its k values are nearly an order of magnitude smaller than those of silicone oil. The spectra of

the two layers as well as the bulk spectrum are still quite different, presenting a challenge for

material identification if only the spectrum for the bulk liquid were included in the spectral

library. By having the complex index of refraction along with modeling methods, one can inves-

tigate optimal regions for detection as well as avoid regions where complete saturation is

observed that would confound identification.

4.3 Liquid Layer on Dielectric Substrate

In this section, the behavior of thin liquid layers on dielectric substrates is examined. Unlike the

aluminum substrate, which has high reflectance and no substantial spectral features, the dielec-

tric medium considered here, soda lime glass, has significant spectral features in the same spec-

tral domain as those of the liquids under study. This results in both different and more complex

behavior than that of the liquid–metal systems for which modeling the substrate + layer system

using n and k values is well suited. Figure 7 shows the reflectances modeled for 1 and 100 μm

layers of silicone oil on a soda lime glass substrate.

For both the 1- and 100-μm layer plots shown in Fig. 7, the reflectance features of silicone oil

dominate, but for the thin 1-μm layer example, these features are interloped by features of the

soda lime glass. At 100-μm layer thickness, however, essentially only the bulk reflectance of

silicone oil is observed [cf. Fig. 4(a)].

Fig. 6 Modeled reflectance of no. 2 diesel fuel on aluminum for layer thicknesses of (a) 1 μm and

(b) 100 μm. As was seen in Fig. 5, as the film layer thickness increases, portions of the trans-

flectance spectrum become saturated in regions of high k values resulting in only first-surface

reflection from the film layer reaching the detector.
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In a similar fashion, the reflectance of no. 2 diesel fuel, which has smaller k values compared

to silicone oil, is explored for 1- and 100-μm layer thicknesses on soda lime glass, and the results

are shown in Fig. 8. In contrast to what was seen for silicone oil, for diesel oil with its smaller

k values, the soda lime glass reflectance features essentially dominate with minimal signature of

diesel oil in the 1-μm case. As the layer thickness is increased to 100 μm, the structured diesel

fuel features begin to become evident on top of the soda lime glass reflectance. The features of

the soda lime glass, however, are still evident for this thicker layer due to the weaker k values of

diesel fuel in contrast to silicone oil [vis-à-vis Fig. 7(b)].

5 Reflectance of Solid Films on Substrates

For the case of solid films, samples were provided by APL in which the analytes were deposited

on both polished and roughened aluminum substrates as well as soda lime glass.29 For the mate-

rials considered here, the areal density was known at the time of deposition, and with this knowl-

edge together with known volume densities, the thickness of the film layer was calculated and

used as input for the model. The substrate characteristics were shown in Sec. 4.1 and will not be

revisited. However, micrographs of the samples were recorded with an optical microscope to

examine the uniformity of the layers.

The two solids that were modeled include caffeine and acetaminophen. Figure 9 shows the

real (n) and imaginary components (k) of the complex index of refraction for these two analytes

Fig. 8 Modeled reflectance plots of (a) 1 μm of no. 2 diesel along with (b) 100 μmof no. 2 diesel on

top of a soda lime glass substrate. In the case of the 1-μm layer, the glass substrate features

dominate.

Fig. 7 Modeled reflectance plots of (a) 1 μm of silicone oil on soda lime glass and (b) 100 μm of

silicone oil on soda lime glass. Due to the strong absorption features of silicone oil in this wave-

length range, the reflectance plot for the 100-μm case is nearly only the bulk reflectance of silicone

oil and minimal signature from the soda lime glass substrate is evident.
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over the wavelength range of interest. These n∕k data were derived from the KBr pellet

method.27

5.1 Caffeine on Aluminum

For the first example, a thin film of caffeine having an areal density of 88.4 μg∕cm2 was applied

to polished aluminum. The model requires the physical thickness of the film, which is deter-

mined using the volume density35 of the material and solving for the thickness.

EQ-TARGET;temp:intralink-;e001;116;427thickness ¼
areal density

volume density
¼

88.4 × 10−6 g∕cm2

1.230 g∕cm3
¼ 7.187 × 10−5 cm ¼ 719 nm: (1)

In Fig. 10, the thin film model reflectance results are compared to experimental measure-

ments of the caffeine film having an areal density of 88.4 μg∕cm2. Good agreement is observed

between measured and modeled thin film reflectance when the film thickness is set to 719 nm.

Similar results (not shown) were also achieved for a caffeine film prepared with an areal density

of 207.2 μg∕cm2 and modeled with a film thickness of 1.685 μm. The good agreement is indica-

tive of homogeneous deposition of caffeine across the entire substrate without any significant

clumping or blank regions as verified by the micrograph image [see Fig. 10(b)], which indicates

Fig. 9 Experimental complex index of refraction values (n and k ) are plotted for (a) caffeine and

(b) acetaminophen versus wavenumber.

Fig. 10 (a) Reflectance for a caffeine film having an areal density of 88.4 μg∕cm2 on polished

aluminum comparing modeled reflectance (black trace) versus experimental measurements (red

trace) along with (b) an image of the deposit recorded with an optical microscope. This areal

density corresponds to film thickness of 719 nm.
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fairly uniform coverage. As was true for the liquid layer cases, transflectance behavior is seen,

but in this case, the layers for the solids were neither thick enough nor so absorptive to cause

saturation. For the liquids, saturation was not observed for the thinner 1 μm layers, which is

similar to the thicknesses for the solid films presented in this section.

Additional samples were created and applied in various areal densities to a roughened alu-

minum substrate created by sandblasting with 150 mesh of SiC grit. The measured reflectance is

shown in Fig. 11 for the case of an areal density of 106.4 μg∕cm2 caffeine (a film thickness of

865 nm) on the roughened aluminum substrate compared with the modeled reflectance using the

polished aluminum substrate model. The evident wavelength dependence of the reflectance of

roughened aluminum (as a substrate) is seen in Fig. 11; it may be due to the surface roughness

having an rms roughness of ∼2 μm.30 Two features are of note: (i) there is a wavelength depend-

ence to the reflectance of the roughened aluminum substrate and (ii) there is an offset between

the reflectance of the bare substrate and that of the roughened substrate coated with caffeine. The

additional reflective losses arise from the first and second surface reflective losses from the caf-

feine layer. In addition, the transflectance modulation depth is lower for the areal density than

one would obtain using a polished substrate. This may be caused by the reduced reflectance of

the aluminum substrate due its roughness, and hence, reduced transflectance.

To compare the modeled and measured data, the measured data had its continuum removed,36

and the continuum-removed data are compared to the normalized modeled data in Fig. 11. Ideally,

one would consider the spectroscopic BRDF of the substrate, but this information was not avail-

able, thus the continuum removal method was applied to permit comparison of the modeled and

experimental data on a common baseline. In general, the modeled data show greater reflectance

magnitude when compared to the measured spectra for this example. Agreement is good across

much of the spectrum, although the modeled values slightly overestimate reflectance in general.

5.2 Acetaminophen on Aluminum

A second solid material examined was acetaminophen with a density35 of 1.293 g∕cm3. It was

also applied to both aluminum and glass substrates with various areal density loadings that were

then measured in reflection mode, similar to the methods for caffeine.

The first example of acetaminophen on polished aluminum with an areal density

82.2 μg∕cm2 is shown below (636-nm film thickness). The discrepancy between the experimen-

tal and modeled values is stark, which is not surprising upon examining the micrograph of the

coated surface in Fig. 12(b). The large discrepancy between the model and experimental data

can be explained by the poor homogeneity of the film that exhibits large patches of uncoated

aluminum, which skew the measured reflectance data.

Fig. 11 (a) Measured reflectance for caffeine with an areal density loading of 106.4 μg∕cm2 on the

rough aluminum substrate (black trace) along with measurement of the bare roughened aluminum

surface (red trace). (b) To compare the modeled reflectance to the measured value, the measured

reflectance was continuum removed and plotted (red trace) against the modeled reflectance

(black trace) for the same film thickness.
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To demonstrate that this “patchy” nature of the coating is the cause of the discrepancy, the

above image was made binary and the black pixels counted in order to estimate coverage of the

acetaminophen on the aluminum substrate. When compared to the original 1600 × 1200-pixel

image, only 30% of the pixels were coated. Therefore, a cylindrical thin film layer was created in

the model having an appropriate thickness of 636 nm, but having a radius that covered an area of

only 30% of the illumination beam’s footprint. The results in Fig. 13 show the binarized image

along with the new model results compared with the experimental data, exhibiting good agree-

ment between the two cases except for the offset. This offset or reduced reflection from the

measured sample arises from scattering from the sample.

As a final example of coating on a metal, a solid thin film of acetaminophen with an areal

density of 189.4 μg∕cm2 was coated onto polished aluminum; it is modeled and compared to

experimentally measured data in Fig. 14.

As is evident in the image of the film and the experimental reflectance plot, the occurrence

of voids decreases the transflectance behavior of the film when compared to an ideal case of a

uniform film of 1.46 μm (corresponding to an areal density of 189 μg∕cm2). Similar to the case

shown in Fig. 13, the image of the film was analyzed and coverage or packing density was

Fig. 12 (a) Modeled and experimental reflectance versus wavenumber (wavelength) for an areal

density of 82.2 μg∕cm2 of acetaminophen on polished aluminum along with (b) an image of the

deposit recorded with an optical microscope. The acetaminophen analyte corresponds to the

white area in the image.

Fig. 13 (a) A binarized version of the image of the acetaminophen film micrograph from Fig. 12 is

used to determine the packing density of the analyte compared to the area illuminated by the

measurement beam. This information is used in the model to reduce the area of the acetamino-

phen thin film having the thickness specified by its areal density. This reduced area film is then

overfilled by the illumination beam in order to mimic the increased contribution in the experimental

data of the bare aluminum substrate in the measured reflectance. (b) This modeled reflectance

(black trace) data with a reduced area film is compared to the measured reflectance (red trace) for

a film of acetaminophen on polished aluminum.
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estimated at ∼45%, and a uniform film having an area 45% of the illumination beam footprint

was modeled and compared again to the measured reflectance. The final result shown in Fig. 15

shows good agreement between the experimental measurement of reflectance and model when

the reduced fill-factor thin film approach is used.

5.3 Acetaminophen on Glass

As seen in the earlier results for liquids, spectra rapidly become more complex when the sub-

strate also has substantial spectral features within the wavelength range of the measurement.

In addition to depositing on aluminum, acetaminophen was also deposited on glass substrates,

whose spectra have several spectral features. One such example is shown in Fig. 16 of aceta-

minophen with an areal density of 226.2 μg∕cm2 (1.750 μm thickness) on soda lime glass mod-

eled and compared with experimental results. The agreement between the modeled thin film

reflectance with experimental measurement is reasonable, except for a slight baseline offset.

(Prior measurements determined that a portion of the baseline offset, ca. 3%R, in the measured

Fig. 14 (a) Reflectance versus wavenumber is shown for modeled (black trace) and experimental

(red trace) data along with (b) an image of the coated aluminum substrate. In this example, aceta-

minophen is coated onto a polished aluminum substrate with an areal density of 189 μg∕cm2,

equaling a coating thickness of 1.46 μm.

Fig. 15 (a) Modeled (black trace) and measured (red trace) plots of reflectance versus wavenum-

ber for a film of acetaminophen having an areal density of 189.4 μg∕cm2 along (b) with an

enhanced image of the film surface. The experimental data are offset slightly to better compare

the similarity between the modeled and experimental data. The original image is recolor mapped

and plotted using an approach to help visualize the nonuniformity of the coating and void locations.

The fill factor is estimated at 45%, and the area of the uniform thin film surface is adjusted accord-

ingly compared to the illumination beam area to approximate the effect of the film voids in a simple

manner.
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spectrum is due to the transparency of the substrate such that light is reflected off the Delrin

sample holder and detected.) As was true for earlier results of liquid thin films on glass, the

spectral features of the soda lime glass dominate and are modulated by those of the analyte

acetaminophen. The rough texture of the film on the glass substrate does not seem to have the

same negative effect as the aluminum substrate shown in Fig. 12, perhaps because there is less

contrast in the reflectance of the analyte compared to the substrate material. Also, with reference

to the image in Fig. 16, although the film is patchy, no voids reaching the substrate are apparent.

6 Summary and Conclusions

Thin films of liquids or solids on various substrates present challenges to spectral identification

owing to the contribution of the substrate’s spectral signature combining in a nonlinear fashion

with those of the thin films. Historical approaches to spectral endmember identification for either

contact or standoff infrared detection10,17 relied on the application of various algorithms that first

removed the spectral effects due to interfering species and then compared the unknown species

with library spectra, typically of bulk solids or gases. In the case of thin films, bulk endmember

spectra are seldom encountered, and the complex spectra of the thin film/substrate systems

require new methods for identification. The availability of the complex index of refraction data

in combination with methods such as those described here offers (at the least) a more facile

method to compute the reflectance spectra for the bulk material via Fresnel equations, as well

as the option to iteratively compute potential spectra of film + substrate systems for multiple

candidate materials, including substrates.

Here, we have made initial attempts at modeling these more complex systems with an ulti-

mate goal of synthetically populating all the members of a spectral library using spectra calcu-

lated from the Fresnel equations and the associated n∕k values versus linear combinations of

the two endmembers, namely the pure substrate and the bulk (surface) analyte. Two major

classes of thin films were explored: liquids and solids, on both aluminum and glass substrates.

Two distinctly different responses were seen in the case of the transflectance that arises from

metallic substrates, and the more complex response of thin film materials on soda lime glass

substrates. For the case of the solid thin films for which film areal densities were known and

experimental reflectance data were available, model results showed good agreement with mea-

sured spectra for uniformly covered substrates. Those films for which homogeneous coverage

was not achieved showed a marked deviation from model results that assumed even coverage.

However, by analyzing images of the films and estimating the fill factor, a lumped model in

which the percent coverage was used to postulate a uniform film that incompletely covered the

area probed by the model’s illumination beam, good agreement could be demonstrated between

model and experimental results.

Fig. 16 (a) Modeled (black trace) and measured (red trace) reflectance versus wavenumber is

shown for acetaminophen on a soda lime glass substrate with areal density 226.2 μg∕cm2, which

corresponds to a film thickness of 1.750 μm. (b) An image of the film shows somewhat nonuniform

coating, but its effect is less pronounced than the aluminum substrate case.
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In the case of rough metallic substrates, reasonable agreement between modeled and exper-

imental results was shown when the experimental data had its continuum removed so that it

could be compared with the ideal modeled results on a common baseline. Clearly, more work

is needed for the treatment of scattering surfaces, but even with good BRDF models, the rough-

ness of the substrates used here was such that it entered the bulk scattering regime, which would

be challenging to model without foreknowledge of the substrate.

The modeled results for liquids also highlighted that for thicker layers (∼20 to 100 μm), the

LWIR features are often saturated and display the bulk reflectance in those regions for analytes

with moderate to strong k values. Better spectral contrast is obtained from the overtone and/or

combination bands in the SWIR. The methods reported here along with the complex index of

refraction data thus enable the possibility to optimize detection systems such as spectral range

based on the expected analyte, layer thickness, substrate, etc. In conclusion, the use of the com-

plex index of refraction for materials including substrates promises new possibilities for spectro-

scopic feature extraction, especially for the case of thin films that might be encountered in

environmental or defense applications such as the detection of chemical agents or their precur-

sors, or possibly civilian oversight of industrial processes and the detection of toxic industrial

chemicals.
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