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Abstract— Realistic mobility models are important to under-
stand the performance of routing protocols in wireless ad hoc
networks, especially when mobility-assisted routing schemes are
employed, which is the case, for example, in delay-tolerant
networks (DTNs). In mobility-assisted routing, messages are
stored in mobile nodes and carried across the network with nodal
mobility. Hence, the delay involved in message delivery is tightly
coupled with the properties of nodal mobility.

Currently, commonly used mobility models are simplistic
random i.i.d. model that do not reflect realistic mobility charac-
teristics. In this paper we propose a novel time-variant community
mobility model. In this model, we define communities that are
visited often by the nodes to capture skewed location visiting
preferences, and use time periods with different mobility pa-
rameters to create periodical re-appearance of nodes at the same
location. We have clearly observed these two properties based on
analysis of empirical WLAN traces. In addition to the proposal
of a realistic mobility model, we derive analytical expressions
to highlight the impact on the hitting time and meeting times if
these mobility characteristics are incorporated. These quantities
in turn determine the packet delivery delay in mobility-assisted
routing settings. Simulation studies show our expressions have
error always under 20%, and in 80% of studied cases under
10%.

I. INTRODUCTION

In recent years, there has been an exponential growth in

the popularity of portable computation and communication

devices. Advances in wireless communication technologies

and standards have made ubiquitous communication an emerg-

ing reality. With the ever expanding deployment of these

wireless-capable devices, there is an increasing interest in a

new communication paradigm and applications that are made

possible through the new opportunities.

Ad hoc networks are self-organized, infrastructure-less net-

works consist of only wireless devices. In traditional ad hoc

networks, it is generally assumed, albeit implicitly, that com-

munications between nodes occur through multi-hop, complete

paths in space. However, this assumption is in question for

several reasons. First, multi-hop spatial routing increases the

number of transmissions and channel contention, and hence

reduces the capacity of scarce wireless bandwidth [6]. Second,

such end-to-end paths may not always exist, given the wide

variation of potential adverse settings (e.g., low node den-

sity, unpredictable mobility) in which wireless communication

may take place. Due to the fore-mentioned reasons, routing

schemes falling under the general framework of mobility-
assisted routing have been proposed recently, as a measure to

improve the wireless network capacity[7] and increase the fea-

sibility of communication in more challenged environments[1].

Mobility-assisted routing schemes, as opposed to path-based

ad hoc routing protocols, utilize nodal mobility to dissemi-

nate messages in the network. In mobility-assisted routing,

transmissions from the senders to the receivers are not always

completed immediately through a connected, complete multi-

hop path. Rather, when a sender moves to close proximity of

some other nodes in the network, the packet is forwarded to

and stored in these intermediate nodes for potentially long

time periods, waiting for the transmission opportunities to

other nodes in the network. Instead of being considered as a

detrimental factor that makes reliable communication difficult,

mobility provides communication opportunities in mobility-

assisted routing. Hence, in these settings, mobility and nodal

encounter are crucial components to understand the network

performance.

However, most research studies on mobility-assisted rout-

ing assume simplistic mobility models, such as the random

walk[3], [4], [5] (in general, i.i.d. models), or a priori knowl-

edge of future mobility[2]. These assumptions provide sce-

narios amenable to mathematical analysis that provides good

insights to system performance. However, these simple mobil-

ity models do not address the complexity of nodal mobility in

real-life settings. In all these models, all mobile nodes behave

statistically identical to each other, and their behaviors do not

change with respect to time. As the underlying mobility model

is an important factor of the performance of mobility-assisted

routing schemes, there is an increasing need for mobility

models that capture the realistic mobility characteristics and
remain mathematically manageable.

Our main contribution in this paper is the proposal of a

time-variant community mobility model. The model captures

several important mobility characteristics we observed from

empirical wireless LAN (WLAN) traces. Specifically, we

utilize the WLAN traces from the archives at [22] and [23]

to understand the prominent mobility characteristics of current

wireless network users in university campuses and corporate

buildings. We have identified skewed location visiting prefer-
ences and periodical re-appearance at the same location as

two prominent trends existing in multiple traces[12]. These
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mobility characteristics are central in our daily activities but

have not been addressed by existing mobility models. In the

proposed model, we create communities to serve as popular

locations for the nodes, and implement time periods in which

the nodes move differently to induce periodical behavior.

To our best knowledge, this is the first mobility model that

captures non-homogeneous behavior in both space and time.

Moreover, the proposed time-variant community model can

be mathematically treated to derive analytical expressions

for two important quantities of interest that determine the

performance of mobility-assisted routing schemes: the hitting
time and the meeting time. Starting from stationary nodal

distribution, the hitting time is the average time before a

node moves towards the vicinity of a randomly chosen ge-

ographical location, and the meeting time is the average time

before two nodes move to the vicinity of each other. These

quantities capture the time between available communication

opportunities under the mobility model, and can be used as

building blocks to analyze the performance of more complex

packet forwarding schemes [4], [5]. We further show that our

theoretical derivation is accurate through simulation cases with

a wide range of parameter sets. In all cases, the error between

simulation results and theoretical values is less than 15% for

the hitting time and 20% for the meeting time, and for 80%
of studied cases the error is below 10%.

The remaining of the paper is organized as follows: In

section II we discuss related work. For clarity, a simplified

version of our time-variant community mobility model is

introduced in section III, and the expressions for the hitting
time and the meeting time are derived in section IV-A and

IV-B, respectively, and validated with simulation in section

IV-C. In section V, we show a good matching between the

mobility characteristics of our model and the real WLAN

traces and further discuss about the possible extensions of

the time-variant community model. We conclude the paper in

section VI.

II. RELATED WORK

Mobility-assisted routing has been proposed for various

purposes in the literature. In [7], a two-hop routing scheme

has been shown to improve the network capacity. In [1],

it is proposed to overcome the intermittent communication

opportunity in challenged network settings (generally known

as delay-tolerant networks (DTNs)), with low node density

or unpredictable mobility. So far, most studies on mobility

assisted-routing in the literature assume either a complete

knowledge of future mobility and encounters[2] or an i.i.d.
mobility pattern[7] with each individual node following simple

mobility models, such as a random walk[3], [4], [5], mainly

for the sake of theoretical tractability. In [17] the authors

assume a constant meeting rate between the mobile nodes to

derive the inter-meeting times. These previous works focus

on deriving the performance of mobility-assisted routing with

mathematical analysis. In this work we extend the scope of

the analysis by proposing a time-variant community model, in

which the nodal movement preferences are not i.i.d. in space

and not homogeneous across time.

Along a different line of research, to understand mobil-

ity empirically, there has been WLAN measurement works

which reveal the important mobility characteristics of the

real-world wireless network users [9], [10], [11]. Large-scale

deployments of WLANs in university and corporate campuses

provide an excellent platform in which huge amount of user

data can be collected and analyzed. Communities for WLAN

trace-related study are available at [23] and [22].

We combine the two streams of research in this paper by

taking into account the mobility properties observed in WLAN

users and proposing a mathematical manageable mobility

model. In [12] we identified several prominent properties that

are common in multiple WLAN traces collected from vari-

ous environments, including on-off behavior, skewed location

visiting preferences, and periodical re-appearing behavior of

nodes. Hence, we believe a good mobility model for wireless

network users should preserve these characteristics. In this

paper we extend the concept of community model proposed in

our previous paper [16] further to include time-variant, non-

i.i.d. behavior of mobile nodes.

There are several previous attempts to build models

for WLAN users with the properties observed in WLAN

traces[13], [14], [15]. These models match the preference and

the pause duration with the users in observed traces. They fall

into the category of the WLAN association model, in which

currently associated access points are used as the indicator for

mobile node locations. Hence the applicability of the models

is specific to WLANs. However, in the case of mobility-

assisted routing, nodes communicate not only when they are

associated with fixed network infrastructure (such as WLAN),

but also when they meet when moving between places. Hence

we abstract the mobility characteristics from WLAN traces,

and propose a continuous mobility model (i.e., node locations

are given by (x, y) coordinates) which has wider applicability.

Note that it would be more relevant to compare our model to

such continuous human mobility traces. However, due to the

unavailability of such traces, our best choice is WLAN-based

ones. Moreover, modeling the exact trajectory may not be as

crucial to our goal as providing a continuum in the mobility

process.

There are several other efforts to collect mobile node

encounter traces with hand-held devices [20], [21]. In these

works the performances of routing protocols are directly ob-

tained by finding the inter-encounter time distribution, instead

of being derived from a mobility model. This approach is

different but complementary to our approach. However, note

that it is possible to derive encounter patterns from mobility

models, but not verse visa, so we choose to focus on the more

fundamental task (i.e., formulate a realistic mobility model).

We are interested in comparing the inter-meeting times of our

model with these traces in the future.

The concept of community is also mentioned in [19].

However, the authors assume the attraction of a community

to a mobile node is derived from the number of friends of this
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Fig. 1. Two important mobility features observed from WLAN traces.

node currently residing in the community. In our paper we as-

sume that the nodes follow location-based preference to make

movement decisions, and each node moves independently

of the others. Mobility models with inter-node dependency

require a solid understanding for the social network structure,

which is an important area under development. We choose to

leave this as future work.

III. DESCRIPTION OF TIME-VARIANT MOBILITY MODEL

A. Mobility Characteristics Observed in WLAN Traces

The main objective of the paper is to propose a mobility

model that captures the important mobility characteristics

observed from daily lives. To understand mobility realistically,

we consult with the wireless LAN traces collected by several

research groups (e.g., traces available at [22] or [23]). We

acknowledge that these observations are made from WLAN

traces, which do not register continuous movement of the

devices. In particular, the devices are not always on, and

typically there are some gaps in the coverage of access points

(APs) in these networks. Nonetheless, we believe that two

important features we observed from the traces[12], skewed
location visiting preferences and periodical re-appearance at
the same location, should remain in our proposed mobility

model. This belief is based on the observations of typical

daily activities of human beings: Most of us tend to spend

most of the time at a handful of frequently visited locations,

and a recurrent daily or weekly schedule is an inseparable part

of our lives. In Fig. 1(a) we display skewed location visiting
preferences property observed from WLAN traces, where a

node on average spends more than 65% of its online time

with one AP, and more than 95% of online time at as few

as 5 APs. In Fig. 1(b) we display periodical re-appearance
at the same location property, where a node re-appears at the

same AP with higher probability after a time-gap of integer

multiples of days. These are the two major features we wish to

retain in the proposed time-variant community mobility model.
In order to capture skewed location visiting preferences,

we need to define popular location(s) for the nodes in the

continuous mobility model. We achieve so by defining the

communities for each node and making a node visits its own

community more often than other areas. Note that the notion of

community is created to describe the most visited geographical

area of a node (e.g., most visited building on campus), and

different nodes can pick different communities and hence do

not behave identical to one another (i.e., non-i.i.d. behavior

timeTn Tc

Normal movement
periods

Concentration
movement periods

cycle

Fig. 2. Alternating normal movement periods and concentration movement
periods in the time-variant community mobility model.

in space). In order to capture periodical re-appearance at the
same location, we establish structures in time, by defining time

periods during which nodes go to their communities with even

higher probability. Note that such structure in time not only

creates periodicity, but also naturally captures the omnipresent

time-dependent behavior in our daily lives, e.g., people go to

offices during working hour, restaurants for lunch during noon

time, and home after work with higher probability. This is

along the same line suggested in [18]: Time-variant behavior

has to be explicitly modeled in order to capture the changes

of behavior across time.

B. Time-variant Community Mobility Model

In this section we describe a simplified version of the time-
variant community mobility model which consists of two types

of time periods and a single community in each time period,

for the sake of clear presentation. In spite of its simplicity,

it is sufficient to capture the major trends of the two fore-

mentioned mobility features. The model can be extended to

model more complex mobility, as we show in section V.

To implement time structure, in our model time is divided

into two types of periods: Normal movement periods (NMP)
of fixed lengths Tn, and concentration movement periods
(CMP) of fixed lengths Tc. The later is created to capture

the periodical re-appearance behavior shown in Fig. 1(b): We

can assign high probability for a node to visit its community

during the CMP, so it re-appears at its community with high

probability with period (Tn + Tc). These two types of time

periods occur alternatively, as illustrated in Fig. 2. In the

following discussion, we assume that the mobility model starts

from the starting boundary of normal movement period at

t = 0. Within each time period, we assign a community to

each node. The community serves as an abstraction of the

frequently visited location for the node during this period of

time. The communities are much smaller than the N -by-N
simulation area. We denote the community size in the NMP

as a Cn-by-Cn square and the community size in the CMP as

a Cc-by-Cc square. We assume that the community locations

are chosen at random within the simulation area. Note that, the

detailed parameters chosen for our model depend heavily on

the targeted scenario, while we focus on proposing a generic
model in the following derivations.

In each time period, a node has two different modes of

movement: local epoch and roaming epoch. In a local epoch,

the mobility of the node is confined within its community.

In a roaming epoch, the node is free to move in the whole

simulation area. At the beginning of each epoch, the node

picks a speed uniformly distributed between [vmin, vmax] and
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Fig. 3. Illustration of the 2-state Markov chain model of local/roaming epoch.

TABLE I

PARAMETERS OF THE TIME-VARIANT COMMUNITY MOBILITY MODEL

N Edge length of simulation area

C Edge length of community

vmin, vmax, v Minimum, maximum, and average of movement speed

Tmax, T Maximum and average pause time after each epoch

L Average epoch length

pr(pl)
Probabilities of choosing a roaming (local)

epoch after a local (roaming) epoch

πl(πr)
Stationary distribution of percentage

of local (or roaming) epoch among all epochs

Pmove(Ppause)
Stationary distribution of fraction of time
the node is in moving (or pause) status

K Transmission range of nodes

HTcase Expected hitting time under the given ”case”

MTcase Expected meeting time under the given ”case”

a movement angle uniformly between [0, 2π], and performs

a constant speed, random direction movement in the corre-

sponding area. The movement length of each epoch is drawn

from an exponential distribution with average epoch length of

L. If the node hits the boundary of the simulation area in a

roaming epoch, or hits the community boundary in a local

epoch, it is re-inserted from the other end of the area (i.e., the

boundaries are ”torus” boundaries). At the end of the epoch,

the node picks a pause time at the end point uniformly from

[0, Tmax], and picks the movement mode for the next epoch

according to a two-state Markov model, as shown in Fig. 3.

For example, if the node has just finished a local epoch, it

chooses the next epoch to be roaming with probability pr or

local with probability 1 − pr. These probabilities can be set

differently in NMP and CMP, hence we denote them as prn

and prc, respectively. Note that in the remainder of the paper

we may append subscript l or r to indicate the parameters for

local or roaming epochs and subscript n or c to indicate the

parameters for NMP or CMP. We summarize the notations we

used to describe the mobility model in Table I. Also note that

these parameters can be set differently for different nodes to

induce heterogeneous nodal behavior. However, for simplicity,

we leave the details as future work.

Lemma 3.1: At any given time instant, the node is in one
of the following four states: (a) moving in a local epoch, (b)
moving in a roaming epoch, (c) pause after a local epoch, (d)
pause after a roaming epoch. The stationary distribution of
probability in each state is:

Pmove,l =
πl(Ll/vl)

πl(Ll/vl + Tl) + πr(Lr/vr + Tr)
, (1)

Pmove,r =
πr(Lr/vr)

πl(Ll/vl + Tl) + πr(Lr/vr + Tr)
, (2)

Ppause,l =
πlTl

πl(Ll/vl + Tl) + πr(Lr/vr + Tr)
, (3)

Ppause,r =
πrTr

πl(Ll/vl + Tl) + πr(Lr/vr + Tr)
, (4)

where πr = pr/(pr + pl) and πl = pl/(pr + pl). The above
stationary probabilities can be calculated for NMP and CMP
independently.

Proof: The derivation follows easily from calculating the

stationary distribution of the local and the roaming epochs

using basic Markov chain theory[8], and from taking into

account the average duration of each epoch.

IV. DERIVATION OF THEORETIC EXPRESSIONS

In this section we derive the theoretic expressions of the

hitting and the meeting times under the time-variant com-

munity model and validate it with simulation. The expected

hitting time is the average time for a node, starting from the

stationary distribution, to move into the transmission range

of a fixed, randomly chosen target coordinate (i.e., ”hits” the

target) in the simulation area. The expected meeting time is

the expected time for two mobile nodes, both starting from the

stationary distribution, to move into the transmission range of

each other. Note that this definition is different from inter-
meeting time used in [17], [20], which accounts for the time

duration between a meeting event and the subsequent one.

Both quantities have important implications for the message

delivery time in mobility-assisted routing scenarios. The hit-

ting time is important when we have some fixed points in

the network for the mobile nodes to collect information (e.g.,

moving sensors find an event of interest occurring at random

location) or deliver information (e.g., drop of its readings to

fixed sink). The meeting time is especially important if store-

and-carry message forwarding across multiple mobile nodes

is an application of interest. It is the average time before

two given nodes encounter with each other, and hence it is

closely related to the packet delivery delay in sparse networks

where nodal encounters are the main opportunities for message

delivery.

A. Derivation of the Hitting Time

The sketch of the derivation of the hitting time is as follows:

We first derive the probability of hitting the target in a unit-

time slice, Ph, under the mobility model. Since the node

is performing random direction movements and the target is

also chosen at random, each time unit can be considered as

an independent Bernoulli trial with success probability Ph.

We can then calculate the expected hitting time using the

geometric distribution. The details are given below.

With the existence of communities, whether the chosen

target is in one of the communities changes the expected

hitting time value significantly. The hitting times for four

possible cases are hence calculated separately, and then take

weighted average. In the following, the first and the second

subscripts in HTi,j , where i, j ∈ {in, out}, correspond to
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whether the target is in the community during the NMP and the

CMP, respectively. Pi,j is the probability of the corresponding

HTi,j .

Lemma 4.1:
HToverall = Pin,inHTin,in + Pin,outHTin,out

+Pout,inHTout,in + Pout,outHTout,out,
(5)

where Pin,in = (C2
n/N2)(C2

c /N2), Pin,out = (C2
n/N2)(1 −

C2
c /N2), Pout,in = (1 − C2

n/N2)(C2
c /N2), and Pout,out =

(1 − C2
n/N2)(1 − C2

c /N2).
Proof: The proof follows from basic probability and sim-

ple geometric arguments. Note that communities are chosen

independently at random for both the NMP and the CMP.

In order to calculate the expected hitting time for each

case, the unit-time hitting probability should be calculated

separately. For the sake of simplicity, we only show the details

of deriving HTout,in in the following Lemma 4.2 and Theorem

4.4. The hitting time for the other three cases can be derived

in a similar manner.

Lemma 4.2: The unit-time hitting probabilities for the case
{out, in} in NMP and CMP are:

Ph,n = Pmove,r,n(2Kvr/N
2) and (6)

Ph,c = Pmove,r,c(2Kvr/N
2) + Pmove,l,c(2Kvl,c/N

2
c ). (7)

Proof: The hitting event can only occur when the node

is physically moving, as a non-moving node cannot encounter

the fixed target which is not in its transmission range. Since

the target location is chosen out of the community for the

NMP, it can only be hit during roaming epochs in the NMP.

We neglect the small probability that the target is chosen out

of the community but close to it, so the node can actually

hit the target during a local epoch. When a node moves with

average speed vr, on average it covers a new area of 2Kvr

in unit time. Since random direction movement covers the

whole simulation area with equal probability [16], and the

target coordinate is chosen at random, it falls in this newly

covered area with probability 2Kvr/N
2, and hence the unit-

time hitting probability is Ph,n = Pmove,r,n(2Kvr/N
2), i.e.,

when the node performs a roaming movement and the target

is in the newly covered area in the time-unit.

The target location is chosen in the community for the CMP,

so it can be hit during both roaming and local epochs. The

hitting probability is the sum of these two cases. For roaming

epochs the argument is the same as in the last paragraph,

and for local epochs, the node covers randomly chosen new

area of 2Kvl,c in the community, hence it hits the target with

probability 2Kvl,c/N
2
c .

Note that the movement made in each time unit does not

increase or decrease the probability of hitting the target in

subsequent time units, therefore each time unit can be consid-

ered as an independent Bernoulli trial with success probability

given in Lemma 4.2. The corollary below immediately follows.

Corollary 4.3: The probability for at least one hitting event
to occur in the whole NMP and CMP, respectively, are:

PH,n = 1 − (1 − Ph,n)Tn , PH,c = 1 − (1 − Ph,c)Tc . (8)

Theorem 4.4: The expected hitting time for the {out, in}
case can be calculated as:

HTout,in = Prob(hit in NMP )HTout,in,hit in NMP

+ Prob(hit in CMP )HTout,in,hit in CMP

=
PH,n

P
(Tn + Tc)(1/P − 1)

+
PH,n

P

1 − (1 + TnPh,n)(1 − Ph,n)Tn

Ph,n(1 − (1 − Ph,n)Tn)

+
(1 − PH,n)PH,c

P
(
Tn + Tc

P
− Tc)

+
(1 − PH,n)PH,c

P

1 − (1 + TcPh,c)(1 − Ph,c)
Tc

Ph,c(1 − (1 − Ph,c)Tc)
,

(9)

where P = PH,n + PH,c − PH,nPH,c is the probability for at
least one hitting event to occur in one full cycle of NMP and
CMP.

Proof: The expected hitting time for the {out, in} case

can be calculated as the weighted average of two separate sub-

cases: The first hitting event occurs during NMP or CMP. We

can view the occurrence of hitting events in two types of time

periods as independent coin toss trials, which give head with

probability PH,n and PH,c, respectively. We want to calculate

the number of flips needed until we get the first head, when

we flip these two coins alternatively, starting from the NMP.

The success probability for each full cycle (containing one

NMP and the subsequent CMP) is P = PH,n + PH,c −
PH,nPH,c. The probabilities for the first hitting event to occur

in NMP and CMP are PH,n/P and (1 − PH,n)PH,c/P ,

respectively, as in each cycle of time periods NMP precedes

CMP, and the time period structure is repetitive in itself.

For each sub-case, the time until the first hitting event

can be further divided into two parts: The complete time

periods before the last time period in which the hitting event

occurs, and the fraction of the last time period until the

hitting event occurs. If the hitting event occurs during the

NMP, the expected duration of whole periods before that is

(Tn + Tc)(1/P − 1), since it takes 1/P full cycles for one

success event to occur if the success probability is P . The

time until the first hitting event occurs in the last NMP is

Tn∑

i=1

i
Ph,n(1 − Ph,n)i−1

1 − (1 − Ph,n)Tn

=
1 − (1 + TnPh,n)(1 − Ph,n)Tn

Ph,n(1 − (1 − Ph,n)Tn)
≈ 1

Ph,n
.

(10)

The last approximation holds if Tn is large.

If the first hitting event occurs in the CMP, the expected

duration of whole periods before that is (Tn + Tc)(1/P −
1) + Tn, and the remaining fraction of the last CMP can

be calculated in a similar fashion to (10). Putting all these

components together, we arrive at (9).

Finally, the overall expected hitting time is derived by

solving all four cases in (5) following the procedure outlined

in Lemma 4.2 and Theorem 4.4. Note that the last equation

for the expected hitting time, (9), applies to all four cases. The
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N

N

C
C+2K

Fig. 4. Illustration of the expansion of the ”footage” of community.

only difference is in the unit-time hitting probability, Ph,n and

Ph,c. The general expression for Ph,n is

Ph,n = I(target in comm. in NMP )Pmove,l,n2Kvl,n/C2
n

+ Pmove,r,n2Kvr/N
2,

(11)

where I(·) is the indicator function. The expression for Ph,c

can be derived similarly.

B. Derivation of the Meeting Time

The derivation of the meeting time is similar to the hitting

time detailed in the last section. In the following derivation,

again we first arrive at the meeting probability between two

nodes in a unit-time slice and the meeting probability of each

time period. Then, in a very similar fashion to Theorem 4.4,

we derive the meeting time by separating the sub-cases of

meeting in the NMP or the CMP, and adding up the time

components of whole periods and fraction of the last period

in which the meeting event occurs.

The meeting time calculation heavily depends on the relative

location of the communities of the involved nodes. Since

nodes move within their corresponding communities more

often than roaming out of the communities, it is obvious that

two nodes with overlapping communities should meet each

other much faster. We first derive the probability of nodes

having overlapped communities, and then derive the meeting

probabilities for both cases, overlapped or non-overlapped

communities.

Lemma 4.5: For a specific type of time period, the commu-
nities of two nodes overlap with probability

Px =
(C + 2K)2

N2
. (12)

Proof: As shown in Fig. 4, when a mobile node moves

within its community, the area covered by the node (i.e., the

area that could fall in the communication range of the node)

actually extends out of the community by the transmission

range of the node. The ”footage” of the community is hence

larger than C2. We approximate this area by (C + 2K)2,

ignoring the small differences at the corners.

If the other node has its community chosen within this area,

the meeting probability between the nodes would be much

larger. Since each node selects its community at random within

the simulation area, the probability that part of the footage of

the community of node 1 is chosen as part of the community

of node 2 is simply
(C+2K)2

N2 .

We now move on to derive the unit-time meeting probability.

The meeting probability for nodes with overlapped communi-

ties and non-overlapped communities are derived separately.

Lemma 4.6: The unit-time meeting probability for nodes
with non-overlapped communities is

Pm,no ov =
2Kvr × 2Pmove,r(Ppause,r + Ppause,l)

N2

+
2Kvl × 2Pmove,lPpause,r

C2
× C2

N2

+
2Kvv̂((Pmove,r + Pmove,l)2 − P 2

move,l)
N2

,

(13)

and the unit-time meeting probability for nodes with over-
lapped communities is

Pm,ov =
2Kvlv̂P 2

move,l

C2
+

2Kvl × 2Pmove,lPpause,l

C2

+
2Kvr × 2Pmove,r(Ppause,r + Ppause,l)

N2

+
2Kvl × 2Pmove,lPpause,r

C2
× C2

N2

+
2Kvv̂((Pmove,r + Pmove,l)2 − P 2

move,l)
N2

.

(14)

Proof: If the communities do not overlap, the nodes

can only meet when at least one of them is out of the

community (i.e., roaming). The first and the second terms in

(13) correspond to the scenario when one node is moving

and the other is not. In the first term, the moving node is in

roaming state and the non-moving node can be in either local

or roaming state. The moving node covers 2Kvr new area each

time unit. Since it performs a roaming movement, it meets

with the other node with probability 2Kvr/N
2 as it does not

have a priori knowledge about where the paused node is. In

the second term the moving node performs a local movement

and the paused node in roaming epoch happens to pause

within the community of the moving node, which happens with

probability C2/N2. Since the moving node moves locally, it

meets with the other node with probability 2Kvl/C2.

The third term corresponds to the scenario when both nodes

are moving. We make use of the fact that when both nodes

move according to the random direction model, the effective

extra area covered can be captured by the multiplicative factor

of relative speed, v̂, which is 1.27 [16]. Note that the two

nodes cannot meet if they both perform local movement, hence

we have to multiply the meeting probability by the factor of

((Pmove,r + Pmove,l)2 −P 2
move,l) (i.e., at least one of them is

moving in roaming epoch).

If the communities overlap, the nodes meet with higher

probability when they both perform local movements. Here

we make the simplifying assumption that the two communities

are perfectly overlapped. As we will show in section IV-C,

the theory is reasonably close to the simulation despite such

simplification. The first two terms in (14) correspond to the

scenario when both nodes are in local epochs. Under such

scenario, the new area covered by a moving node contains the
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other node with probability 2Kvl/C2. The first term captures

the scenario when both nodes move locally and the second

term captures the scenario when only one node moves, with

similar reasonings as above. The remaining terms correspond

to the scenario when at least one of the nodes is in roaming

epoch. They are exactly the same as in the sub-cases with

non-overlapped communities.

Following the unit-time meeting probability for the sub-

cases of overlapped or non-overlapped communities in Lemma

4.6 and the probability for community overlap derived in

Lemma 4.5, we have:

Corollary 4.7: The probability for at least one meeting
event to occur during NMP and CMP, respectively, are

PM,n = 1−Px,n(1−Pm,ov,n)Tn−(1−Px,n)(1−Pm,no ov,n)Tn ,
(15)

PM,c = 1−Px,c(1−Pm,ov,c)Tc −(1−Px,c)(1−Pm,no ov,c)Tc .
(16)

In an almost parallel fashion to Theorem 4.4, the expected

meeting time can be calculated using the results in the Lemmas

in this section.

Theorem 4.8: The expected meeting time is:

MT = Prob(meet in NMP )MTmeet in NMP

+ Prob(meet in CMP )MTmeet in CMP

=
PM,n

Q
(Tn + Tc)(1/Q − 1)

+
PM,n

Q

1 − (1 + TnPm,n)(1 − Pm,n)Tn

Pm,n(1 − (1 − Pm,n)Tn)

+
(1 − PM,n)PM,c

Q
(
Tn + Tc

Q
− Tc)

+
(1 − PM,n)PM,c

Q

1 − (1 + TcPm,c)(1 − Pm,c)
Tc

Pm,c(1 − (1 − Pm,c)Tc)
,

(17)

where Q = PM,n + PM,c − PM,nPM,c is the probability for
at least one meeting event to occur in one full cycle of NMP
and CMP.

Proof: The proof is parallel to the proof of Theorem 4.4

and we omit it due to space constraints.

C. Validation of Theory with Simulations

In this section we compare the theoretical values of the

hitting time and the meeting time to the corresponding simula-

tion results, under various parameter settings. We summarize

the parameters for tested models in Table II. Among them,

model 1 is the case when the model behaves similar to the

MIT WLAN trace (details in the next section). Model 2 is

a scenario that communities have strong attraction. Model 3
is a scenario that communities are not very attractive and the

nodes have equal probability to perform local and roaming

movements in the NMP. Model 4 features large communities.

We perform simulations for the hitting and the meeting

times for 50, 000 independent iterations and compare the

average results with theoretical values derived from (5) and

(17). Our discrete-time simulator is written in C, and nodes

move as per descriptions in section III. To find out the hitting
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Fig. 6. Relative error between theory and simulation values.

or the meeting time, we move the nodes in the simulator

indefinitely until they hit the target or meet with each other,

respectively. As shown in Fig. 5 for model 1, the simulation

results and theoretical values are very close to each other. The

relative error between theory and simulation results is between

4.62% to 10.38% for the hitting time and between 0.59% to

4.27% for the meeting time. Note that the simulator is not a

repetition of theoretical calculations and hence the matching

results validate each other. More details about the simulator

and the codes can be found at [24].

We show the relative errors between the theoretical val-

ues and the simulation results for other models in Fig. 6.

The relative error is calculated as Error = (Theory −
Simulation)/Simulation. Hence a positive error indicates

the theoretical value is larger than the simulation result, while

a negative error indicates the converse. From Fig. 6 we see that

for all four models, the relative errors are within acceptable

range. The absolute values for the error are within 15% for

the hitting time and within 20% for the meeting time. For

80% of the tested parameter sets, the error is below 10%.

These results display the accuracy of our theory under a wide

parameter settings, especially when the communities are small

compared to the simulation area.

V. MATCHING REAL AND SYNTHETIC TRACES

We have shown in the previous section that the hitting time

and the meeting time can be derived for the proposed time-

variant community mobility model. In this section we in turn

show that in addition to theoretical tractability, the model is

also generic enough to be fine-tuned and display matching

mobility characteristics with the WLAN traces, in terms of

both skewed location visiting preferences and periodical re-
appearance at the same location.

To tally location preferences and re-appearance probability
for the continuous time-variant community mobility model, we

first create a synthetic WLAN trace from the mobility model.
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TABLE II

PARAMETERS FOR THE SCENARIOS IN THE SIMULATION

Model name Description N Cn Cc vmax, vmin Tmax,n Tmax,c Lr Ll pl,n pr,n pl,c pr,c Tn Tc

Model 1 Match with the MIT trace 1000 100 100 15, 5 100 50 520 80 0.5 0.2 0.8 0.2 5760 2880
Model 2 Highly attractive communities 1000 200 50 15, 5 100 200 520 52 0.6 0.3 0.8 0.1 3000 2000
Model 3 Not attractive communities 1000 100 100 15, 5 50 200 800 80 0.5 0.5 0.6 0.3 2000 1000
Model 4 Large-size communities 1000 200 250 15, 5 50 100 800 200 0.7 0.3 0.8 0.1 2000 1000
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We do so by introducing the notion of virtual access points in

the simulation area and defining when the mobile nodes are

associated with these virtual APs. Note that the behavior of

mobile nodes do not change from the description in section III

by the introduction of these virtual APs. They are introduced

solely for the purpose of tallying mobility characteristics. We

divide the whole simulation area into 100 regular, equal-sized

grids. Each grid is covered by one virtual AP. Since devices

are usually turned off when users start moving them in the real

WLANs, we make a similar assumption that the mobile nodes

are considered associated with the virtual AP in the current

grid they reside in only when they are not moving. We then

tally the mobility characteristics from the synthetic trace by

the same way as we treat real WLAN traces.

We use the MIT WLAN trace (presented in [9]) as an

example to show that our model, with parameters carefully

adjusted, could generate a synthetic trace that mimics the be-

havior of real WLAN traces. We also achieved good matching

with the USC[22] or the Dartmouth[11] traces, but do not

show it here due to space constraints. In Fig. 7, we show

the skewed location visiting preferences property. In both the

MIT trace and the synthetic trace from our simple model (the

curve labeled as model-simplified, using parameters of Model

1 in Table II), the nodes stay within their favorite locations

(i.e., the communities) for high probability. However, for the

WLAN trace the curve shows a fast decaying tail, while for

our model the tail of the curve levels off. This is because the

node roams within the whole simulation area and pauses at

any location with equal probability in roaming epochs. We

will show a method to extend our simple model to resolve

this issue below.

In Fig. 8, we show the periodical re-appearance property.

In the MIT trace, the nodes re-appear at the same AP with

higher probability if the time gap between the considered

time instants is an integer multiple of days. As shown in the

figure (model-simplified), we can set the time periods, such

that the CMP captures the working hours (i.e., nodes go to

office with very high probability) and the NMP models off-

work hours. The synthetic trace mimics the peaks of the re-

appearance probability. However, since we have only two types

of time periods in the model, the peaks repeat itself with the

same value, while in the WLAN trace we also observe weekly
periodicity: the probability for nodes to re-appear at the same

AP is higher if the time gap is seven days.

Our simplified model, as described in section III, makes

the theoretical derivation of the hitting time and the meeting

time cleaner to handle. But, on the other hand, it may be

insufficient to fully capture complex user behavior, as shown

by comparing curves of model-simplified and MIT in Fig.

7 and 8. To resolve the mismatch, we introduce more fine-

grained model both in space and time. In the space domain,

we introduce multi-tier communities, as illustrated in Fig.

9 with a three-tier example. The node visits each tier of

the community with decreasing probability. This extension is

suggested by the intuition that we move locally close to homes

and offices more than go far from these places. This way, we

allow a smooth decaying tail rather than the horizontal tail

in the simple model. In the time domain, we add more time

periods with different mobility parameters. These additional

time periods can be used to capture either more detailed

mobility behavior for different time periods within a day or

differences of mobility in weekdays and weekends. Finally,

we use a more complex model with six-tier communities

and three distinct time periods to model weekday work hour,

weekend day time, and night time separately. The synthetic

trace derived from this model matches well with the MIT trace

in terms of both location visiting preferences and periodical
re-appearance. The curves labeled as Model-complex in Fig. 7

and Fig. 8 show the mobility characteristics for this complex

model.

Fine-tuning our model to match with the mobile node

behavior in the WLAN trace is more of a trial and error
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process. We first adjust the attraction from each tier of the

community (i.e., the likelihood of having an epoch in the tier)

and the pause times of the node in each tier to shape a decaying

tail of location visiting preference. This is typically achieved

by a power-law decaying attraction and pause time at each

community tier. The time ratio nodes spend on moving and

pausing is then adjusted to change the peaks in the curve

of periodical re-appearance. The key point is, once these

properties are collected from the targeted environment, our

model provides a flexible platform which can be tuned to

match with the desired scenario.

Note that the theory derivations of the hitting time and the

meeting time with these extensions are technically feasible

by simply adding more sub-cases. For the hitting time, we

split the sub-cases that the target falls in each tier of the

community in (5). For the meeting time, we need to add

more sub-cases that the communities of two nodes overlap

with various degrees (i.e., up to a certain tier), in addition to

(13) and (14). Due to lack of space, we do not present this

analysis in detail here.

Currently we assume that each node randomly picks its own

community from the simulation area. However, in realistic

settings there should be points of common interest in the envi-

ronment, at least during certain time periods (e.g., restaurants

on campus during lunch time, hotels in an amusement park

during nights). To capture such common attraction points, we

could use an alternative way to set up communities: We can

fix the locations of multiple communities serving as known

point-of-interest in the targeted scenario, and let the nodes

choose one of them at random with given probabilities during

concentration periods. This set up captures that nodes will

meet at these attraction points with higher probability during

CMP. The only change needed in the theory is the probability

of community overlap in the derivation of the meeting time.

Instead of using (12), the probability of community overlap,

Px, is simply the probability of choosing the same attraction

point to visit during CMP, which can be easily derived.

VI. CONCLUSION AND FUTURE WORK

We have proposed a time-variant community mobility
model for wireless mobile networks. Our model preserves

two characteristics of mobility observed in current WLANs,

namely skewed location visiting preferences and periodical
re-appearance at the same location. In addition to providing

realistic mobility patterns, the proposed model can be math-

ematically analyzed to derive two quantities of interest, the

hitting time and the meeting time. These two quantities are

closely related to the routing performance in delay-tolerant

networks or mobility-assisted packet forwarding. Through

extensive simulation studies, we have verified the accuracy

of our theory - the error is always below 20% and under 10%
for most cases.

In the future we would like to extend our theory to the

scenario in which nodes display more heterogeneous behavior.

Nodes may have different set of parameters and the time period

structure can be different for the nodes. With these extensions,

we will have a mobility model to describe an environment

including users with diverse mobility characteristics. We be-

lieve such a model is a very important building block for

understanding protocol performances in real-life settings.
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