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Abstract: Topic modeling is a machine learning algorithm based on statistics that follows unsuper‑
vised machine learning techniques for mapping a high‑dimensional corpus to a low‑dimensional
topical subspace, but it could be better. A topic model’s topic is expected to be interpretable as a
concept, i.e., correspond to human understanding of a topic occurring in texts. While discovering
corpus themes, inference constantly uses vocabulary that impacts topic quality due to its size. Inflec‑
tional forms are in the corpus. Since words frequently appear in the same sentence and are likely to
have a latent topic, practically all topic models rely on co‑occurrence signals between various terms
in the corpus. The topics get weaker because of the abundance of distinct tokens in languages with
extensive inflectional morphology. Lemmatization is often used to preempt this problem. Gujarati
is one of the morphologically rich languages, as a word may have several inflectional forms. This
paper proposes a deterministic finite automaton (DFA) based lemmatization technique for the Gu‑
jarati language to transform lemmas into their root words. The set of topics is then inferred from
this lemmatized corpus of Gujarati text. We employ statistical divergence measurements to identify
semantically less coherent (overly general) topics. The result shows that the lemmatized Gujarati
corpus learns more interpretable and meaningful subjects than unlemmatized text. Finally, results
show that lemmatization curtails the size of vocabulary decreases by 16% and the semantic coherence
for all three measurements—Log Conditional Probability, Pointwise Mutual Information, and Nor‑
malized Pointwise Mutual Information—from −9.39 to −7.49, −6.79 to −5.18, and −0.23 to −0.17,
respectively.

Keywords: topic models; Gujarati text lemmatization; Latent Dirichlet Allocation; poor quality
topics; overly general topics

1. Introduction
Topic modeling is statistical modeling for uncovering abstract “topics” hidden in a

massive text collection. For example, Latent Dirichlet Allocation (LDA) infers the topics
in a text collection [1]. Linguistic field researchers have shown great interest in techniques
for discovering a smaller set of word clusters (known as topics) that represents the whole
corpus without losing its significance. The set of techniques for modeling topics in domains
are Latent Semantic Analysis (LSA) [2], probabilistic Latent Semantic Analysis (pLSA) [3],
followed by LDA.

Sensors 2023, 23, 2708. https://doi.org/10.3390/s23052708 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052708
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0001-2267-5768
https://orcid.org/0000-0002-2375-5057
https://orcid.org/0000-0002-1776-4651
https://orcid.org/0000-0002-7277-4377
https://doi.org/10.3390/s23052708
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052708?type=check_update&version=1


Sensors 2023, 23, 2708 2 of 17

Practitioners have been using topic models to explore the semantic and statistical
properties of text corpora. They have successfully applied the technique to a variety of
text domains such as scientific and research article corpora [4–7], health and clinical ar‑
eas [8–11], software domains [12–19], etc. The application of topic models has also been ex‑
panded to non‑textual data such as (1) a video corpus for person re‑identification [20] and
human‑action recognition [21], (2) an image collection to reorganize images into groups
based on their quality [22], and (3) an audio dataset for retrieving audio using the features
of audio [23]. Additionally, in various research tasks, a hierarchy of topics has been mod‑
eled as opposed to flattened topic modeling [24–29]. Additionally, topic modelers have
also explored short texts, such as tweets on Twitter [30–36] or customer reviews [37–39],
for discovering hidden thematic structures. The topic model presupposes that each doc‑
ument in the collection is a combination of various topics and that each is a combination
of words. A probability distribution across the vocabulary words is subjective. Table 1
illustrates themes derived from a collection of English newspapers.

Table 1. Topics with top 10 words.

Topic 1 Topic 2 Topic 3 Topic 4

Word Prob. Word Prob. Word Prob. Word Prob.

Ballot 0.073 NYSE 0.104 Gym 0.064 Fire 0.081
Voting 0.071 Predict 0.082 Guideline 0.062 Fundamental 0.079
Poll 0.069 Profitability 0.082 Diet 0.060 Force 0.077
Booth 0.064 NASDAQ 0.073 Fitness 0.060 Galaxy 0.077
Campaign 0.062 Negotiable 0.073 Grains 0.059 Earth 0.077
Election 0.060 Profit 0.073 Growth 0.059 Experimental 0.075
Democracy 0.057 Peak 0.068 Doctor 0.057 Energy 0.069
Leadership 0.053 Portfolio 0.062 Yoga 0.055 Explosion 0.063
Elector 0.050 Price 0.061 Health 0.055 Star 0.063

One of the topic models’ byproducts—topics—can be used either directly in infor‑
mation extraction or as an intermediate output that serves as an input for the subsequent
task phase.

Despite numerous extensions worldwide, some areas of LDA still call for more re‑
flection. Preprocessing techniques like stopword removal, stemming, and lemmatization
must be created for many languages. Although they can seem like a straightforward com‑
ponent of text summarization, their existence or absence has a significant impact on the
output since a thorough evaluation of these preprocessing activities results in more mean‑
ingful topics in a shorter period of time. However, the enormous breadth of the vocabulary
may come from excluding such stages. The inference procedure consequently requires
greater processing resources. Furthermore, less emphasis has been placed on linguistic
features like synonyms, polysemy, homonymy, hyponymy, and so forth. These language
traits improve the issues’ semantic coherence. Also crucial to topic modeling are the pre‑
processing elements. Language‑specific preprocessing is frequently used in NLP research
assignments. Instead of getting rid of language‑specific stopwords, Schofield et al. sug‑
gested topic models preceded by corpus‑specific stopwords [40].

1.1. Motivation
Stochastic topic models uncover the latent topical structure, which is smaller in size

and easier to understand. However, they need to improve the output at times. The vo‑
cabulary size in the text collection of a morphologically rich language increases with the
increase in the size of the corpus. It is a fact that topic models transform a mammoth text
collection into a manageable topical subspace that is easier to interpret; however, the train‑
ing phase of LDA may prove itself computationally expensive in the case of the huge size
of the vocabulary. This phenomenon is because the statistical inference process continu‑
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ously refers to the vocabulary. If we reduce the vocabulary size without disturbing the
quality of the corpus, the inference process computation cost can be decreased. Moreover,
the semantic coherence of topics could also be increased remarkably.

1.2. Contribution of the Paper
The main lines of the contribution process of this paper consist of the following:

• We propose a DFA‑based lemmatization approach for Gujarati text.
• We show that lemmatization of Gujarati text reduces lemmas to their base words to

curtail the vocabulary size notably.
• The topic can be inferred quicker in a lemmatized Gujarati corpus, resulting in im‑

provement in the interpretability of the discovered topics at the same time.
• The semantic coherence measurement has been performed by three methods to ana‑

lyze it precisely.
• Additionally, we have used two different measurement methods to show the distance

between topics. We proved that meaningful and precise topics fall far from overly
general topics. The distance of the meaningful topics from the token distribution of
the entire corpus is also larger compared to that for overly general topics.

1.3. Organization of the Paper
The rest of the paper has been organized as follows: Section 2 covers the literature

study relevant to the proposed methodology. Then, Section 3 explains the DFA‑based ap‑
proach for lemmatization. Following this, Section 4 briefs about topic inference techniques
with their parameters. It depicts some relevant figures of automata. Additionally, a few
rules for the first word of the sentence and the rest of the sentences have been shown in
tabular format. Next, Section 5 discusses the experimental setup and measurement tech‑
niques. Finally, Section 6 displays the experimental findings and their comparison.

1.4. Scope of the Paper
The paper explains the effect of lemmatized text for modeling topics. The technique

applies to Gujarati text specifically and to the dataset under study; changes may be needed
for it to work more efficiently on another dataset of Gujarati text.

2. Related Work
Although preprocessing of the corpus has been considered a very obvious phase, it

exhibits challenges when dealing with languages that have a rich morphology. This is be‑
cause the stemming and lemmatization process differs from one language to another. Most
of the topic modeling research tasks target the corpus of English text, as the resources are
available for preprocessing. There are several earlier works about learning topic models
preceded by stemming or lemmatization. Brahmi et al. modeled the topics in stemmed
Arabic text [41]. They achieved two main objectives: first, to extract the stem from the
morphemes, and second, to infer topics from Arabic text using LDA. Lu et al. investigated
the impact of removing frequent terms from the vocabulary [42]. They measured the com‑
putational overhead for different numbers of topics. Designing lemmatization for many
languages has captured the attention of linguists. For languages like Hindi [43], academics
have created lemmatization of the Indian language, such as Bengali [44] and Tamil [45].
Likewise, Al‑Shammari et al. proposed Arabic lemmatization techniques [46] and stem‑
ming in another work [47]. Roth et al. also designed an Arabic lemmatizer with feature
ranking [48]. The European languages lemmatization approaches include French [49], Pol‑
ish [50], Finnish [51], Czech [52], German, Latin [53], and Greek [54]. Similarly, the Kazakh
language [55], Turkish [56], and Urdu [57,58] have also been considered for lemmatization.
Table 2 shows the lemmatization work for the different languages.
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Table 2. Lemmatization for different languages.

Author Language Application Pub. Year Approach Accuracy No. of Tokens

[59] Assamese Word Sense Disambiguation 2022 Rule‑based 82 50,000
[60] Arabic Annotation 2018 Dictionary‑based 98.6 46,018
[44] Bengali Word Sense Disambiguation 2016 Rule‑based 96.99 6341
[43] Hindi Time Complexity 2013 Rule‑based 89.02 2500
[49] French Pos Tagging 2010 Rule‑based 99.28 350,931
[55] Kazakh Information Retrieval 2019 Rule‑based N/A N/A
[46] Arabic Lexem Models 2018 Feature Ranking N/A N/A

3. Deterministic Finite Automata (DFA) Based Gujarati Lemmatizer
DFAs, also known as deterministic finite automata, are finite state machines that ac‑

cept or reject character strings by parsing them through a sequence specific to each string.
It is said to be “deterministic” when each string, and thus each state sequence, is distinct.
Each input symbol in a DFA moves to the next state that can be predicted as a string of
symbols is parsed via DFA. For example, if you want to parse all strings in the alphabet
a,b that end with ‘ab,’ then Figure 1 depicts the DFA that accepts only the correct strings.

Figure 1. A DFA accepting the strings ends with ‘ab’.

There are two approaches for generating a root word from its inflected word: stem‑
ming and lemmatization. Stemming is the method to remove the suffixes/prefixes of the
words to get the root words [61]. Lemmatization refers to deriving the root words from
the inflected words. A lemma is the dictionary form of the word(s) in the field of morphol‑
ogy or lexicography. To achieve the lemmatized forms of words, one must analyze them
morphologically and have the dictionary check for the correct lemma. As a result, the lem‑
matized word always conveys a proper meaning, while a stemmed word may come out
without any meaning. Table 3 explains the difference between stemming and lemmatiza‑
tion. It can be observed that a stemmed word may or may not be the dictionary word,
while a lemma must be a dictionary word.

Table 3. Stemming and lemmatization.

Word Stemming Lemmatization

Information Inform Information
Informative Inform Informative
Computers Comput Computer
Feet Feet Foot

For example, using the continuous bag‑of‑words model, word embedding applica‑
tions consider the N (size of windows) surrounding context words to predict the word.
Hence, before vocabulary building takes place, the words of the text collection must be
preprocessed in terms of stopwords removal, stemming, lemmatizing, etc. This results
in the shrinkage of vocabulary size and speeds up the model‑building process. Similarly,
morphologically, topic modeling in the text of the rich language needs to process a mas‑
sive vocabulary during the topic formation process. One must apply the lemmatization
technique to the corpus to have a reduced vocabulary size. This paper discusses this is‑
sue, considering Gujarati (the 26th most widely spoken language in India by the number
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of native speakers [62]) for examination. Tables 4 and 5 enlist rules for the lemmatization
of inflectional forms. Besides, Figure 2a,b depict rule 1 and rule 2 of Table 4 respectively.
Similarly, Figure 3a,b depict rule 3 and rule 4 of Table 4 respectively.

(a) (b)

Figure 2. Deterministic finite automata for lemmatization for rules 1 and 2. (a) Rule 1; (b) Rule 2.

(a) (b)

Figure 3. (a) Rule 3; (b) Rule 4. Deterministic finite automata for lemmatization for rules 3 and 4.

Table 4. Part 1: Rules for the first word of the sentence.

Sr. No Rule Name
HowMany Letters /
Characters to Check

Letters
What to Delete
fromWord

What to Add
after Deletion

Example

1
Check if the
last letter is '◌ો '

last 3 characters ' ◌ો ', 'ન', ' ◌ો ', last 3 characters NA મહાપુરુષોનો = મહાપુરુષ

2
Check if the
last letter is '◌ો '

last 4 characters ◌ો ', 'ન', 'ઓ’, '◌ા' last 4 characters ' ◌ો ' છોકરાઓનો = છોકરો

3
Check if the
last letter is '◌ો

last 4 characters ' ◌ો ', 'ન', 'ઓ’ not '◌ા' last 3 characters NA છોકરીઓનો = છોકરી

4
Check if the
last letter is '◌ો

last 2 characters ' ◌ો ', 'ન'

' ◌ો ' and check the
remaining word with
the words in the n‑ending
words file. If a match
occurs, then print the word;
else, remove ' ◌ો ', 'ન'

NA વાહનો = વાહન

5
Check if the
last letter is '◌ો

last 2 characters ' ◌ો ', 'ન' last 2 characters NA સીતાનો = સીતા

6
Check if the
last letter is '◌ી'

last 3 characters '◌ી', 'ન', ' ◌ો last 3 characters NA મહાપુરુષોની = મહાપુરુષ

7
Check if the
last letter is '◌ી'

last 4 characters '◌ી', 'ન', 'ઓ’, '◌ા' last 4 characters ‘ ◌ો ' છોકરાઓની = છોકરો

8
Check if the
last letter is '◌ી'

last 4 characters '◌ી', 'ન', 'ઓ’ and not '◌ા' last 3 characters NA છોકરીઓની = છોકરી

9
Check if the
last letter is '◌ી'

last 2 characters ‘◌ી', 'ન' last 2 characters NA સીતાની = સીતા

10
Check if the
last letter is '◌ી'

last 3 characters '◌ી', ' થ ', ' ◌ો ' last 3 characters NA મહાપુરુષોથી = મહાપુરુષ
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Table 5. Part 2: Rules for the rest of the words of the sentence.

Sr. No Rule Name HowMany Letters /
Characters to Check Letters What to Delete

fromWord
What to Add
after Deletion Example

1 Check if the
last letter is '◌ુ' : last 3 characters ‘◌ુ ' ,‘ ય’, ‘◌્’ last 3 characters ‘વ’, ‘◌ુ ' બન્યુ =બનવુ

2 Check if the
last letter is '◌ુ' : last 4 characters 'લ', '◌ે', 'ય', '◌ા' last 4 characters ‘વ’, ‘◌ુ ' સંતાડાયેલુ =સંતાડવુ

3 Check if the
last letter is '◌ુ' : last 2 characters ‘◌ુ ', ‘વ’ last 2 characters NA રમવુ= રમ

4 Check if the
last letter is '◌ુ' : last 2 characters ‘◌ુ ', ‘ત’ last 2 characters NA રમતુ= રમ

5 Check if the
last letter is '◌ુ' : last 2 characters ‘◌ુ ', ‘મ’ last 2 characters NA પાંચમુ = પાંચ

6 Check if the
last letter is '◌ુ' : last 2 characters ‘◌ુ ', ‘શ’ last 3 characters NA આવીશુ = આવ

7 Check if the
last letter is '◌ુ' : last 3 characters '◌ુ', 'ન', ' ◌ો ' last 3 characters NA મહાપુરુષોનુ = મહાપુરુષ

8 Check if the
last letter is '◌ુ' : last 4 characters '◌ુ', 'ન', 'ઓ’, '◌ા' last 4 characters ‘ ◌ો’ છોકરાઓનુ = છોકરો

9 Check if the
last letter is '◌ુ' : last 4 characters '◌ુ', 'ન', 'ઓ’ not '◌ા' last 3 characters NA છોકરીઓનુ = છોકરી

10 Check if the
last letter is '◌ુ' : last 2 characters '◌ુ', 'ન' last 2 characters NA સીતાનુ = સીતા

In previous work for normalizing the word forms in Gujarati, the stemming approach
has received attention from linguistic researchers. Patel et al. prepared a suffix list and
incorporated it into the stemming process. They targeted to get rid of only suffixes of the
inflectional words. Likewise, Suba et al. proposed an extended version of stemmer, which
is lightweight for suffix removal and a heavyweight rule‑base stemmer [63]. Ameta et
al. also suggested a similar kind of lightweight stemmer [64]. Aswani et al. offered a mor‑
phological study for inflectional forms of the Hindi language, which was extended to the
Gujarati language [65]. In all previous approaches, authors have focused on suffix removal
to reduce the word to its root. We perform mainly three operations for transforming inflec‑
tional forms to a lemma: removing suffixes, appending suffixes, and removal followed by
appending of characters.

For the Gujarati language, lemmatization is more accurate in transforming the in‑
flected word into the root word. It involves not only the removal of suffixes but also
appending some pattern or characters to the inflected word or the operations one after
another. There is a remarkable set of research tasks stemming from the Gujarati language,
such as hybrid stemmer of Gujarati [66], Gujarati lightweight stemmer [64], and rule‑based
stemmer [63]. However, research on lemmatization has not gained much consideration
comparatively.

Apart from the research mentioned above, there is hardly any work found in the lit‑
erature that directly addresses the problems of lemmatization in the Gujarati language. In
this article, we propose an automata‑based approach for lemmatizing Gujarati text. Be‑
sides the automata‑based approach, list‑based (known as rule‑based) and hash‑based ap‑
proaches have also been explored for lemmatization across various languages. We aim
to design an automata‑based lemmatizer that can transform different inflectional forms to
their root word with less computational complexity than the list‑based approach.

The different inflectional words are generated by applying one or more transforma‑
tion rules to their respective dictionary form or lemma. An inflectional word can be formed
by appending a valid suffix to its lemma ('મહાપુરુષ' can form the lemma 'મહાપુરુષોથી' by
appending the suffix 'ઓથી'). Moreover, sometimes removal followed by addition may re‑
sult in the formation of a valid inflectional form ('છોકરો' can form the lemma'છોકરાઓનુ')
by appending the suffix 'નુ') or sometimes none of the mentioned cases. Lemmas can be
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derived by reversing the corresponding process of generation of inflectional forms from
their root words.

4. Latent Dirichlet Allocation (LDA)
In Latent Dirichlet Allocation, each document in the corpus of M document is mod‑

eled as a multinomial distribution of K hidden topics, and each topic is a multinomial
distribution of the vocabulary of V words. Topic modeler inputs the number of topics, K.
The document‑topic distribution θd is drawn from Dirichlet distribution Dir[α], where α is
a hyperparameter vector variable with the value (α1, α2, . . . , αk), which can be estimated.
In the same way, the topic–word distribution, ϕk, is drawn from the Dirichlet distribution
Dir [β].

The Latent Dirichlet Allocation can be represented graphically by the Bayesian net‑
work. The plate notation of LDA has been depicted in Figure 4. The node represents the
random variable, and the edge represents the influence of one variable on another. The
complete document generative process θd and ϕk has been shown in Algorithm 1. For the
nth word of document d, a topic assignment Zn,d is drawn from θd, and a word identity is
drawn from the corresponding topic, ϕW|Zd

. Henceforth, the whole generative process is
given by

θd ∼ Dir(α) Zd,n ∼ Mul(θd)

ϕk ∼ Dir(β) Wd,n ∼ Mul(ϕk)

Figure 4. Plate notation for LDA generative algorithm [1].

Algorithm 1: Generative algorithm for LDA.
Input: Dataset, K topics, Hyperparameters α and β
Output: Topic files, Topic word distribution, Document topic distribution
for All topics k ∈ [1, K] do

// sample the probability distribution of words for each topic
sample mixture components ϕ⃗k ∼ Dir(β⃗);

end
for all documents m ∈ [1, M] do

// proportion of topics for each document
sample mixture proportion θ⃗m ∼ Dir(⃗α);
// Length of documents in the corpus is normally distributed
sample document length Nm ∼ Poisson(ξ);
for all words n ∈ [1, Nm] in document m do

// assign the topic to each word
sample topic index Zm,n ∼ Mult(θ⃗m);
// identify the word identity from a probability distribution

of words
sample term for words Wm,n ∼ Mult( ⃗ϕZm,n);

end
end
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5. Experimental Setup
We used the TDIL dataset to assess our lemmatization approach’s efficiency. The

dataset was made available with Part‑of‑Speech (PoS) tagging, but we wanted to consider
something other than PoS tagging, as it is optional. Therefore, we filtered the PoS tags to
get a compatible dataset for our experimental purposes. We experimented with evaluating
two metrics: the improvement in the semantic coherence of topics and the success rate of
lemmatization. Initially, the lemmatization process was evaluated in terms of accuracy.
We provided the dataset and measured how many words were correctly lemmatized and
how many were lemmatized incorrectly. We also considered words that did not need any
lemmatization separately. In other words, no rule should apply to such words.

5.1. Preprocessing and Vocabulary Size: An Analysis
Although preprocessing of the dataset is a self‑explanatory part of the text analysis,

it may uncover the detailed statistical properties of the corpus under study. Moreover,
preprocessing is also language‑dependent. Hence, a specific set of preprocessing steps is
required for a given language to know the values of some critical parameters such as the
number of tokens in the corpus, vocabulary size, type‑to‑token ratio (TTR), etc. In TTR,
tokens denote the total number of words in a corpus regardless of how often they are re‑
peated. The term “type” concerns the number of distinct words in a corpus. We performed
preprocessing for the dataset under study. The preprocessor component comprises several
steps, as depicted in Table 6. As shown in Table 6, stopwords removal remarkably reduced
the size of the dataset in terms of the total number of tokens and discrete words. We com‑
piled a list of more than 800 Gujarati language stopwords to eliminate them.

Table 6. Tokens, vocabulary, and TTR.

Preprocessing Steps No. of Tokens Vocabulary Size % of Tokens in Vocabulary TTR

After tokenization 1,167,630 89,696 7.681885529 0.077
After stopwords removal 870,521 89,003 10.22410717 0.102
After punctuation removal 746,292 889.87 11.92388502 0.119
Alphanumeric to alphabetic word 746,292 86,271 11.5599524 0.116
After single‑letter word removal 620,133 86,098 13.8837959 0.139
After lemmatization 620,133 50,043 8.069720528 0.081

The punctuation marks and alphanumeric words are typical cases in many languages.
However, Gujarati text might contain Gujarati and English digits blended in the text, so
we have taken care to remove the digits of both languages. We also found several words
in alphanumeric form, so we transformed them into alphabetic forms by removing mixed
digits from such words. However, they are rare in number, and this did not decrease
the number of tokens and vocabulary size. The next step is particular to Gujarati text, as
the Gujarati corpus contains single‑letter words. Table 7 depicts the most frequent single‑
letter words in the Gujarati language. These words do not contribute to topic modeling
and are not part of the stopwords. The crucial part is that we performed lemmatization
on the resultant corpus. It reduced the inflectional forms to their root words, known as
the lemma.

Table 7. Single letter words.

Word Probability Word Probability

’કે’ (Kē / Whether) 0.003833333 ’જો’ (Jō / If) 0.000750000
’છે’ (Chhē / Is) 0.025166667 ’જ’ (Ja / Only) 0.002500000
’જ’ે (Jē / Whom) 0.001083333 ’ન’ (Na / No) 0.001000000
’તે’ (Tē / That) 0.001666667 ’બે’ (Bē / Two) 0.001166667
’એ’ (Ē / That) 0.000833333 ’તો’ (Tō / Then) 0.001833333
’આ’ (Ā / This) 0.004250000 ’હંુ’ (Hu� / I) 0.000416667
’છો’ (Chho / Is) 0.000833333 ’શ્રી’ (Shree / Mr.) 0.001583333
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We have achieved a remarkable reduction in the vocabulary size, as shown in Figure 5.
Moreover, after each preprocessing step, one can observe a notable decrease in the number
of tokens. Most importantly, the lemmatization left the vocabulary size at 8.07% of the total
number of tokens. The vocabulary size was 7.29% before any preprocessing action, but the
number of tokens columns was very high. That itself could lead to the heavy computation
of inference of the topic. Meanwhile, there is a negligible reduction in vocabulary after the
removal of digits and the transformation of alphanumeric words to alphabetic.

Figure 5. Size of vocabulary.

As shown in Figure 5, although the lemmatization process does not reduce the num‑
ber of tokens, it reduces vocabulary size by 58% because instead of eliminating the to‑
kens from the collection, it transforms them to their respective lemma form. Similarly,
there were several alphanumeric words in the corpus. We removed the blended digits
from those alphanumeric words, leaving behind the alphabetic words. The alphanumeric
words might occur due to typing errors. However, we did not perform any tasks for re‑
moving the words that occur less frequently than some number N; for example, when N
is 3. Other authors have removed words with some lower and upper bounds in frequency
in most information retrieval research. For example, the words that occur fewer than three
times and more than 500 times are to be removed. In most cases, these words get removed
in one of the previous preprocessing steps, such as stopword elimination or single‑letter
word removal.

5.2. Evaluation of the Proposed Lemmatizer Approach
To evaluate the technique, we prepared a lemma‑annotated dataset constructed from

the dataset itself. This lemma‑annotated dataset was constructed with the help of words
found frequently in articles based on terms that appear in all four categories of the dataset.
They are dictionary words. As mentioned earlier, we did not include single‑letter words,
stopwords, or punctuation marks in the lemma‑annotated dataset, as they have been re‑
moved from the preprocessed dataset. We took 2000 lemmas for the experiment, achieved
by stratified sampling. On applying the lemmatizer, we achieved 78.6% accuracy. The
outcome of the experiment is regardless of Part‑of‑Speech tagging.

5.3. Overly General Topics
Several decision criteria could identify overly general topics. A topic model may con‑

sist of different categories of overly general topics. An extensive topic needs to make sense
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thematically. These themes include a collection of words that have no semantic connection
to one another, to put it simply. For example, a topic might cover a significant fraction of
the words in the vocabulary. Table 8 depicts an overly general topic, which comprises
11% of vocabulary words. Such topics are very general and do not convey any specific
concept. On the other hand, an interpretable topic comprises semantically relevant words.
Therefore, one can find some meaning in it, as shown in Table 9. A meaningful topic con‑
tains a tiny fraction of the words in the vocabulary, such as 1% to 2%; on the other hand,
a few topics may be very common, as they are present in many documents. Furthermore,
uninterpretable topics can also be identified by the number of tokens assigned to the top‑
N words of the topic. Therefore, the word length, i.e., the average number of characters
present in the words of the topic, plays a significant part in determining the interpretability
of the topic.

Table 8. Global topic or overly general topic.

Word Frequency Word Frequency

ટેક્સ (Ṭēksa/Tax) 231 જાહેર (Jāhēra/Public) 67
વરસાદ (Varasāda/Rain) 191 બળૠોજકે્ટ (Prōjēkṭa/Project) 57
ગુજરાત (Gujarāta/Gujarat) 189 રકમ (Rakama/Amount) 46
જાહેર (Jāhēra/Public) 182 જમીન (Jamin/Soil) 45
સરકાર (Sarakāra/Government) 170 યોગ (Yoga/Yoga) 39
યોગ (Yōga/Yoga) 147 ગુજરાતમાં (Gujarātamām/In Gujarat) 35
શરૂ (Śarū/Start) 138 પ્લાન (Plan/Plan) 31
ભારતીય (Bhāratīya/Indian) 136 વષૉળૠ (Varṣē/Year) 30
ભારત (Bhārata/India) 126 શિક્ત (Śakti/Power) 27
બુલેટ (Bulēṭa/Bullet) 121 એફઆઇઆઈ (Ēpha’ā’ī’ā’ī/FII) 25
પાણી (Pāṇī/Water) 118 સમયસર (Samaysara/On time) 25
અમદાવાદ (Amadāvāda/Ahmedabad) 114 મહદૠદવ (Mahtava/Importance) 24
બળૠવેશ (Pravēśa/Entry) 112 િવધુર (Vidhura/Widower) 19
તલાક (Talāka/Divorce) 112 મુંબઈ (Mumbaī́ /Mumbai) 18
સ્માટર્ફોન (Smārṭaphōna/Smartphone) 108 . . . . . .
િનણર્ય (Nirṇaya/Decision) 107 . . . . . .
બાહુબલી (Bāhubalī/Bahubali) 106 . . . . . .

Table 9. Interpretable topica.

Word Frequency Word Frequency

ધમર્ (Dharma/Religion) 86 સાક્ષાત (Sākṣāta/Confirmed) 18
આનંદ (Ānanda/Happiness) 41 પૂજાપાઠ (Pūjāpāṭha/Worship) 18
ઈસૠર (Īśvara/God) 37 જાગૃિત (Jāgrti/Awareness) 18
યહુદી (Yahudī/Jew) 32 સાંબળૠદાિયક (Sāmpradāyika/Sectarian) 18
કમર્કાંડ (Karmakāṇḍa/Ritual) 22 બળૠેમ (Prēma/Love) 18
નૈિતક (Naitika/Moral) 21 િઘળૠસ્તી (Khristī/Christian) 16
શ્રધ્ધા (Śrad’dhā/Devotion) 21 ઇસ્લામ (Islāma/Islam) 16
આધ્યાિત્મક (Ādhyātmika/Spiritual) 20 જીવન (Jīvana/Life) 9
ધાિમર્ક (Dhārmika/Religious) 20 બળૠત્યે (Pratyē/Towards) 8
મુલ્યો (Mulyō/Values) 19 માણસ (Māṇasa/Human) 8

Distance from a Global Corpus‑Level Topic
A topic is a probability distribution of words in the vocabulary of a corpus. Each word

in the corpus follows with a specific probability. When topics are inferred from the corpus,
the words in the topic also carry the probability values. Here topics are soft clusters so
that a word may appear in more than one topic with different probability values. Ideally,
words forming the topic are semantically relevant to one other.
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5.4. Semantic Coherence Measurement Methods
5.4.1. Pointwise Mutual Information (PMI)

To calculate the collocation, PMI might be used. First, though, it serves as a statistical
indicator of the proximity of two words. To track the co‑occurrence, we changed the sliding
window’s word count to 5. The PMI of each set of provided word pairs is then determined
by computing (word1, word2). The PMI of any two terms in a topic model has calculated
the difference between the likelihood of their co‑occurrence given their joint probability
distribution and their discrete distributions, assuming that events are unrelated to one
another [67–69]. It can be written mathematically, as shown.

PMI(word1, word2) = log
P(word1, word2)

P(word1)P(word2)
(1)

The word order does not affect the PMI score for that pair of words. The measurements
for PMI (word1, word2) and PMI remain symmetric (word2, word1). The explanation is
that since documents are viewed as a “bag of words” (BOW), the sequence in which words
appear does not matter. The word order should be emphasized in the reference corpus too.
Both positive and negative values could be assigned to the PMI score. If the PMI value is
zero, the words are considered to have no relationship with the reference corpus. On the
other hand, PMI is greatest when there is a close relationship between the terms.

5.4.2. Normalized Pointwise Mutual Information (NPMI)
The extension of the PMI method is Normalized PMI. It is similar to PMI except that

the score of NPMI takes a value between [−1,+1], in which –1 conveys no occurrence
together, 0 indicates independence, and 1 indicates complete co‑occurrence [68,69].

NPMI(word1, word2) =
PMI(word1, word2)

−logP(word1, word2)
(2)

5.4.3. Log Conditional Probability (LCP)
Log conditional probability (LCP) is one‑sided, while PMI is a symmetric coherence

measurement.
LCP(word1, word2) = log

P(word1, word2)

P(word2)
(3)

5.5. Distance Measurement Methods
The divergence of the topics from some predefined, overly general topic types has

been measured. There are two types of metrics for cluster analysis. Supervised evaluation
metrics use the labeled samples. On the other hand, unsupervised evaluation does not
check the accuracy of the learned model. In this paper, several divergence measures are
used to check the efficacy of the proposed techniques.

5.5.1. Hellinger Distance
Hellinger distance between two discrete probability distributions P and Q can be de‑

fined as,

HD(P, Q) =
1√
2

√√√√ k

∑
i=1

(
√

pi −
√

qi)
2 (4)

where P = (p1, p2, . . . pk) and Q = (q1, q2, . . . qk).

5.5.2. Jaccard Distance
The Jaccard similarity measures the similarity between finite sample sets. It is the

intersection of sets divided by the union of sample sets. Here, cardinality represents the
number of elements in a set, denoted by |a|. Suppose you want to find Jaccard’s similarity
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between two sets, a and b. It is the ratio of the cardinality of a ∪ b and a ∩ b.

J(a, b) = |Intersection(a, b)| / |Union(a, b)| (5)

Although it seems very simple, it applies to the topic modeling. First, it fetches out the
standard terms between two topics and the entire distinct terms. Then, it takes the ratio of
common and distinct terms; the results serve as the Jaccard similarity. Finally, by taking
the complement, likewise in cosine, the Jaccard distance can be measured.

6. Results
6.1. Distance Measurement from Global Topic

The distance measurement mentioned above is used to analyze the quality of topic
models. We framed the global topic as the frequency distribution of words in the vocab‑
ulary. We used the Hellinger distance to compute the distance of topics from the global
topic. The distance between the topic model and the topic model with lemmatized terms
has been compared. An experiment examined the effect of lemmatization on vocabulary
size and inferred topic quality. We inferred 100 topics by iterating 500 times over the cor‑
pus, document by document, and word by word. The distance of topics from the global
topic, the list of words in the vocabulary, and the corresponding frequency have been com‑
puted using the Hellinger and Jaccard distance measurement techniques.

Table 10 shows the average of 100 topics inferred from the corpus before and after
lemmatization. The test outcomes found that the distance of topics modeled over the lem‑
matized corpus is more than that of the unlemmatized corpus. This is because interpretabil‑
ity and semantic coherence are the parameters correlated with a distance of topics from
the predefined global topic. Therefore, it can be concluded that topics learned through the
lemmatized text are more significant than topics learned through unlemmatized text.

Table 10. The distance between topics for the unlemmatized and lemmatized corpus.

No. of
Tokens Vocabulary

Inference
Time

(in Seconds)

Distance Measurement

Unlemmatized Lemmatized

Hellinger Jaccard Hellinger Jaccard

604,389 85,463 33.14 0.476 0.970 0.491 0.993
561,648 42,722 29.63 0.495 0.968 0.546 0.998
531,870 27,533 26.77 0.481 0.982 0.520 0.996
512,085 21,238 22.15 0.489 0.982 0.517 0.999
496,373 17,310 18.92 0.495 0.982 0.528 1.000
483,108 14,657 16.55 0.492 0.983 0.526 0.999

The distance of the topic model before performing the lemmatization of words was
compared with lemmatized corpus topic model. Table 10 comprises the experimental out‑
comes. The distance of lemmatized topics was increased; specifically, the Hellinger dis‑
tance inscreased by 3% to 5% and the Jaccard distance by more than 2%. It can be inferred
that modeling topics in lemmatized text made them more interpretable and meaningful.
Moreover, the distance got wider with the shrinkage of the vocabulary size.

Comparing individual distance values, Figure 6a,b depicts the Hellinger and Jaccard
distance of 10 topics from the very general topic, respectively. Each topic of lemmatized
text falls farther from the global topic than the topics discovered from the unlemmatized
text in both cases. The Hellinger distance increased from 1% to 9%, while the Jaccard dis‑
tance showed a distance difference within the range of 1% to 3%.
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(a) (b)

Figure 6. Distance comparison between unlemmatized and lemmatized topics for first 10 topics.
(a) Hellinger distance measurement; (b) Jaccard distance measurement.

6.2. The Semantic Coherence Score
We used the Pointwise Mutual Information (PMI), Normalized PMI (NPMI), and Log

Conditional Probability methods for the semantic coherence measurement. The semantic
coherence of the topics showed improvement after the lemmatization process. All three
methods found an increase in the coherence score. In addition to distance measurements,
the semantic coherence scores also support that topic models become more interpretable
if topics are modeled in the lemmatized text. The coherence value increases as well with
the reduction in the size of the vocabulary. The semantic coherence was enhanced up to
3% with LCP and PMI methods and up to 6% for NPMI. Although the topic models found
a slight improvement in the semantic coherence values with a decrease in the vocabulary
size, the inference time decreased remarkably. Hence, topics learned from lemmatized text
are more meaningful than those from unlemmatized text.

We computed the semantic coherence value for 10 topics individually for each tech‑
nique described. Figure 7a–c depicts the comparison of the coherence value of the unlem‑
matized text topic model with the lemmatized text topic model. The coherence improve‑
ment increased within the range of 2% to 11% for LCP, 2% to 9% for PMI, and up to 1% to
3% for NPMI, while the overall enhancement is lower compared to the 10 topics. However,
several topics did not improve semantically. Moreover, the coherence values decreased for
a few topics as well. These points caused the average enhancement to have lower values
than the first 10 topics.

(a) (b) (c)

Figure 7. Semantic coherence value comparison between unlemmatized and lemmatized topics for
the first 10 topics. (a) Log Conditional Probabilities; (b) Pointwise Mutual Information; (c) Normal‑
ized PMI.

7. Conclusions
In this paper, we have proposed a DFA‑based lemmatization approach for Gujarati

text. The proposed method comprises more than 59 rules for lemmatizing Gujarati text.
We have managed to lemmatize 83% of words correctly. To examine the effect of the pro‑
posed lemmatization approach on text analysis, we applied LDA for inferring topics from
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a text corpus. We showed that the vocabulary size was reduced drastically when lemma‑
tization was involved, although the number of tokens did not decrease. The experimental
outcomes revealed that the interpretability of topics increased when the corpus was lem‑
matized. The topics became more precise and meaningful. This finding was supported
by the Hellinger distance and Jaccard distance. Moreover, the semantic coherence mea‑
surements supported improving the quality of topics. Our three techniques, PMI, NPMI,
and LCP, reported an increase in the coherence value. Furthermore, topics were found
to be more specialized when they were modeled from the lemmatized corpus. Moreover,
the semantic association among the topics’ words has also been enhanced. A generalized
approach can be developed for any text corpus in the future. For example, a set of rules
can achieve lemmatization for news articles, discussion forums, textbooks, novels, social
media text domains, etc.
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