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Abstract

The ubiquity of supply chains along with their increasingly interconnected structure
has ignited interest in studying supply chain networks through the lens of complex
adaptive systems. A particularly important characteristic of supply chains is the desirable
goal of sustaining their operation when exposed to unexpected perturbations. Applied
network science methods can be used to analyze topological properties of supply
chains and propose models for their growth. Network models focusing on the critical
aspect of supply chain resilience may provide insights into the design of supply
networks that may quickly recover from disruptions. This is vital for understanding both
static and dynamic structures of complex supply networks, and enabling management
to make informed decisions and prioritizing particular operations. This paper proposes
an action-based perspective for creating a compact probabilistic model for a given
real-world supply network. The action-based model consists of a set of rules (actions)
that a firm may use to connect with other firms, such that the synthesized networks are
topologically resilient. Additionally, it captures the heterogeneous roles of different
firms by incorporating domain specific constraints. Results analyzing the resilience of
networks subjected to node disruptions show that networks synthesized using the
proposed model can generally outperform its real-world counterpart.
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Introduction

Present day supply chain networks (SCNs) are profoundly interconnected structures that

emerge from a largely downstream exchange of goods between firms (manufacturers, dis-

tributors, retailers, etc.) that are involved in creating a set of final products. Connections

are formed or removed as firms use information from a local neighborhood to increase

the value they derive from the supply chain without any knowledge of the interconnec-

tion structure of the whole supply network. That is, the network itself emerges through

the local decisions of firms (Brintrup et al. 2016). Despite this realization, most indus-

trial operations are still built upon overly simplified (often highly linear) models (Brintrup

et al. 2015). Other gaps were identified in (Bellamy and Basole 2013) that suggest a focus

on supply chain structure, dynamics and design strategy. Subsequently, there might be a

tremendous unlocked potential in supply network efficiency that can be achieved through

a complex systems/networks perspective (Choi et al. 2001; Surana et al. 2005). Addition-

ally, three other major challenges have been identified as critical to the study of supply
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networks through the lens of complex networks (Pathak et al. 2007): (i) Researchers’ abil-

ity to comprehend the complex interactive nature of supply chain formation is limited,

especially as the network size increases; (ii) Effective metrics for the dynamic nature of

supply chain evolution are lacking; and (iii) developing theories to support supply chain

design principles in the presence of network adaptation is nontrivial.

Utilizing the knowledge of network science to study supply chain networks was first

suggested in (Choi et al. 2001), where various recommendations for future research direc-

tions on bridging the two research areas were laid out. Subsequent examinations of supply

chain networks through the lens of network science have primarily focused on ana-

lyzing topological characteristics of supply chains and providing summary statistics for

describing particular features. This is particularly useful since analysis of topological char-

acteristics of the interconnection structure of firms in a supply chain enables managers to

reflect on various aspects of the supply chain. For instance, (Kim et al. 2011; Borgatti and

Li 2009) investigated automobile manufacturer supply networks with the aim of under-

standing the implications of using well known social network measures in the context

of supply chains. Similarly, (Lomi and Pattison 2006) examined the network of automo-

tive firms in southern Italy and discovered high local clustering, while (Keqiang et al.

2008) had very similar observations for the Guangzhou automotive network. Though an

assortment of comparative investigations have been performed in other industry settings

revealing fascinating properties of the networks themselves, consensus on a standard

approach for designing supply networks remains generally elusive (Bellamy and Basole

2013). Though these surveys of real-world supply networks and their reported summary

statistics provide insights into predominant characteristics of supply chains, they provide

limited insight into the mechanisms by which these networks grow and evolve. A major

reason for this stagnation has been a lack of availability of real-world supply network data

to study, leading to a significant need for generators (algorithms for creating networks

with specific topological properties) capable of synthesizing realistic supply networks that

can be utilized to derive deeper insight into their best design principles. The ability of

a network generator to synthesize networks with similar underlying summary statistics

can help us understand the result of natural and deliberate perturbations on the overall

functionality of the supply chain.

Network generators provide a platform for deriving deeper insights into complex net-

works and the processes that give rise to their observed structures. Their origins can

be traced to random graphs (Erdös and Rényi 1959), which assume a constant number

of nodes and edge existence with uniform probability. Random graphs are unlikely to

be representative models of real-world systems, but a variety of better approaches have

since been proposed that define network growth dynamics and non-uniform edge exis-

tence (see (Fienberg 2012; Goldenberg et al. 2010; Barthélemy 2011; Newman 2003) for

a more comprehensive overview). Other popular network generators include the small-

wold model (Watts and Strogatz 1998) (i.e. a network in which nodes can reach other

nodes in a small number of steps), and scale-free model (Barabási and Albert 1999) (i.e.,

the probability P(k) ≈ k−α , for degree k with usually α ∈ (2, 3)). One of the most popular

statistical network models are the exponential random graphs (Strauss 1986; Wasserman

and Pattison 1996; Anderson et al. 1999). These models deal with link formation mecha-

nisms using conditional dependence, which states that the existence of links in a network

is shaped by the presence or absence of other links (and possibly node-level attributes)



Arora and Ventresca Applied Network Science  (2018) 3:19 Page 3 of 20

(Robins et al. 2007). These models have limited utility for synthesizing supply chain

networks due to the absence of mechanisms to incorporate real-world supply chain con-

straints. These methods have been shown to be highly unlikely to synthesize networks

that share a strong structural resemblance to actual supply networks and are woefully

insufficient to study the intricate nature of supply chains, therefore being unsuitable for

discovering new design principles (Bellamy and Basole 2013; Kim et al. 2011). Incorporat-

ing constraints on nodes (i.e., firms) is generally outside the capabilities of most existing

network generators, which is why most existing studies have concentrated on general

analyses with limited insight into new design principles (Bellamy and Basole 2013).

A particularly important characteristic of dynamic supply chains is the desirable goal

of sustaining their operation when exposed to unexpected disruptions. The goal of sup-

ply chain robustness is to sustain operation during such disruptions, whereas the goal

of supply chain resilience focuses on designing systems that quickly recover from these

disruptions. (Perera et al. 2015) suggests that the definition of resilience and robust-

ness should be established in parallel with the definition of disruption, and shows how

some of the important research in supply chains have accomplished this. These terms

are often used interchangeably in the literature, but in either case the impact may be sig-

nificant. For instance, according to a 2017 report by the Business Continuity Institute

(Alcantara et al. 2017) 75% of businesses experience at least one supply chain disruption

every 12 months (although they suggest the value is likely higher due to underreporting),

22% report cumulative losses of at least $1 million over this time, with 34% reporting

at least $270,000. Additionally, 55% reported a loss in productivity, 34% reported that

their service was impaired, and 32% reported a loss in revenue. These trends have led

to a shift in focus of research from supply chain efficiency to supply chain resilience

(Perera et al. 2015).

(Klibi et al. 2010) suggested that topological resilience should be assessed when design-

ing supply chains to ensure sustainable value creation. Robustness and resilience have

thus become important areas of study (for simplicity we refer to both as resilience). While

(Thadakamalla et al. 2004) was the first to use topology of SCNs for studying resilience,

subsequent papers like (Zhao et al. 2011b; Wang et al. 2015) provide supply chain design

insights by examining resilience against both random and targeted attacks. Numerous

specialized measures of resilience have also been proposed for supply chains (Barroso

et al. 2015), butmost analyses concentrate on empirical studies from a centralized context.

Outside of the supply chain network community, resilience has also attracted signifi-

cant attention (see for example (Gao et al. 2016)). A resilient supply chain should rapidly

and effectively respond to perturbations such as supply or demand fluctuations, or to

complete or partial failure of a subset of firms. However, being a complex system, adap-

tation to changes in the supply chain cannot be dictated by those overseeing or relying

upon it. Instead, structural resilience should exist as an outcome of the local linking deci-

sions of various firms within a supply chain without explicit awareness of the overall

structure.

A significant amount of research examining complex network models for supply chain

networks has focused on using straightforward and conventional strategies as models

for SCN evolution. To understand these network models, we first need to introduce two

concepts that are essential ingredients of any such approach: (i) each firm belongs to a

unique tier, which corresponds to its distance (number of hops in the networks) from the
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consumer in the final supply chain with a restriction that supply-demand relations occur

only between firms in adjacent tiers; (ii) every firm has a fixed role in the network, i.e.

it is a supplier, manufacturer, consumer etc. Most supply chain models categorize nodes

based on their tiers and roles, and then use these attributes to define attachment rules,

for example (Thadakamalla et al. 2004;Wang et al. 2015) use a heterogeneous preferential

linking mechanism that varies based on role of the firm, (Nair and Vidal 2011) proposes

an agent-based model that uses firm role and demands to form links, (Wen et al. 2012;

Mari et al. 2015) use restricted preferential attachment mechanism based on firm tiers.

Others usemore complicated linkingmechanisms such as, local selection and preferential

attachment (Li et al. 2013; Zhao et al. 2011b), random, preferential attachment and simi-

larity (Xuan et al. 2011), and fitness based attachment (Perera et al. 2017c). Though these

models incorporate basic features for modeling SCNs, their simple attachment mecha-

nisms cannot replicate the topology of real-world SCNs, as their capabilities are restricted

to synthesizing networks that reproduce a few characteristics like power law degree dis-

tributions. Further, only a few of these models focus on creating resilient SCN topologies,

without providing any insights into supply chain design principles. Thus, there is still a

significant gap in developing a generalizable network growth model that can generate

topologies mimicking real-world SCNs (Perera et al. 2017a, b).

Main contributions

In this paper, we focus on modeling of supply chain networks by utilizing the action-

based framework (Arora and Ventresca 2017) for learning a compact probabilistic model

for a given material flow SCN. The proposed framework can learn a compact model

using a single observation of a real-world supply network and the obtained parame-

ters can be used to synthesize, with high probability, statistically similar networks to a

given supply network. (Arora and Ventresca 2018) modified the action-based approach

for the supply chain context by considering directed networks and incorporating domain

specific constraints. Additionally, (Arora and Ventresca 2018) used the role of a firm

(manufacturer, supplier, distributor etc.) to infer constraints and growth mechanisms

for SCNs. Here instead we utilize tier information to impose linking constraints among

firms, while preserving the tiered structure of the target SCN. The modified network

generator that captures critical real-world constraints concerning rules by which firms

exchange goods is described in “Action-based networks” section. The novel framework is

then used for modeling and synthesizing 10 realistic supply networks in “Results” section.

The applicability of the framework for modeling real-world supply networks is tested,

and the resilience of the synthesized networks is analyzed by subjecting them to ran-

dom and targeted node disruptions. The probabilistic model can also be used to infer

growth mechanisms of real-world SCNs by examining the optimized parameters. Finally,

“Conclusions and future work” section concludes the paper with some conclusions and

directions for future research.

Action-based networks

The underlying goal of this research is to define an adequately robust procedure that

can synthesize networks exhibiting structural properties observed in real-world SCNs.

A network generator is considered to be synthesizing realistic networks if a topolog-

ical comparison between the synthesized and real networks is, with high likelihood,
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statistically similar across a subset of user-desired topological characteristics. In this

way, the objective isn’t to exactly replicate the topology of a given real-world network

because there is no utility in synthesizing isomorphic networks as it provides no addi-

tional insights. Further, given the input is a single SCN observation, strong assumptions

about the dynamical growth of the network need to be made, and the network generator

needs to be robust to any such assumptions. Finally, the parameters of the optimized net-

work generator should ideally provide additional insights into the local decisions of the

firms that might have lead to creation of the observed network topology.

The problem of discovering a network generator can be posed as a non-linear inverse

problem having the form S(T ) ⊢ F(M, ξ) (i.e. F(M, ξ) can be inferred from S(T )).

The target network T and set of p user-desired network structural properties S(T ) =

{s1(T ), . . . , sp(T )} of interest are given as input to the system. Therefore, the goal is

to infer M under the assumption that network formation is performed by the forward

operator F. Here, F is an algorithm capable of synthesizing networks based on a ran-

dom process ξ ∈ � that can be used to obtain a finite set of networks by repeated

simulation of F(M, ξ).

Alderson (2009) considered network generation as an optimization-based reverse-

engineering problem and concluded that a “good” forward model should consider both

the structure and function of the network (although a procedure to accomplish the task

was not given). An action-based network generator (ABNG) is proposed as the for-

ward operator F, which assumes that complex networks emerge through local interaction

among nodes that make linking decisions while completely ignoring the global network

topology. This assumption is particularly appropriate for modeling supply chain networks

because its overall structure can be understood as a self-organizing system that consists

of various entities engaging in localized decision making (Perera et al. 2017a). Given a

network observation, it might not be possible to uncover the exact reason(s) behind the

existence of a particular link/interaction among firms, but one could potentially list a

finite number of decision processes that might have lead to creation of a particular link. A

probability distribution on these decision processes can then be defined that can poten-

tially model the existence of that link with a high likelihood. For example, the exact reason

for interaction between two specific firms may not be known, but potential reasons for

the interaction can be enumerated and assigned a corresponding probability.

The inverse problem of identifying the probabilities when ABNG is used as the for-

ward operator can be formulated in an optimization-based framework, where the goal

is to minimize a cost function D that can serve as a metric to evaluate the difference

between the networks synthesized using ABNG and the given target network. Given an

appropriate probabilistic model with a viable set of decision processes, it seems logical

that a variety of network topologies can be synthesized. So, the fundamental idea behind

action-based networks is to define a unifying network generative process, which follows

from observations by (Zheng et al. 2014) who note that there must exist an assembling

algorithm to combine local mechanisms for emergence of different complex network

structures. Identifying such an assembling algorithm can help us distinguish between

local decision processes that are responsible for network growth from those that emerge

as byproducts of the network generation process.

Consider a network G = (V ,E), where V is the set of n firms {v1, . . . , vn} and E is the set

of directed edges showing material flow between firms in V. Let there exist an action set
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A = {a1, . . . , ak} containing k node actions, each representing a single decision process

for creating an edge (vi, vj) from a node vi ∈ V to any node vj ∈ V , where i �= j. Without

domain specific knowledge actions for choosing vj can be based on network topological

characteristics. For example, a set of four actions could be:

A =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a1 = probabilistically select vj based on its degree,

a2 = select a second neighbor vj uniformly at random,

a3 = select vj as node having highest Jaccard similarity to vi,

a4 = do not make an edge.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

Let P(A = al) be the probability that action al ∈ A is chosen by a node, implying that

nodes are homogeneous with respect to their probability of choosing actions to form con-

nections. However, actors in real-world networks are heterogeneous with respect to their

strategies for forming connections, thereby rendering this assumption unlikely to be true.

Hence, P(A = al) must be conditioned on the type of node, where the probability dis-

tribution over actions sufficiently differs between any two node types, and every node is

classified as being one and only one of the types. That is, let P(T = t) be a column vec-

tor storing the probability of a node being of type t = 1, . . . , d ≪ |V |. An action matrix

M =[P(A = al)|P(T = t)] can be used to define an action-based network generative

process for a given set of nodes V. M could be user-defined, learned from multiple net-

work observations, or optimized or estimated from even only one network observation

(Arora and Ventresca 2017). For a finite set S(T ) of user-chosen network characteristics,

the problem of determiningM can be formulated as:

minimize E [D [S(T ), S(F(M, ξ))]]

subject to
∑k

j=1
Mi,j = 1 ∀i = 1, . . . , d

∑d

i=1
Mi,k+1 = 1

Mi,j ≥ 0 ∀i = 1, . . . , d and ∀j = 1, . . . , k + 1

(1)

where D [S(T ), S(F(M, ξ))] is a measure to quantify the dissimilarity between a synthe-

sized network G = F(M, ξ) and target T based on network characteristics S(T ), and the

(k + 1)th column of M corresponds to P(T = t). It must be noted that synthesizing iso-

morphic graphs is the trivial solution to the problem in Eq. (1) and is not desirable. A

pictorial representation of this procedure can be seen in Fig. 1.

Action set for SCNs

While empirical studies have highlighted that it is highly unlikely that a real-world SCN

might have evolved through a single linking mechanism, it is possible to conceive growth

and design principles from the global properties of existing SCNs (Perera et al. 2017a).

The action-based framework provides a platform for probabilistically aggregating various

local linking mechanisms using a generative algorithm. Each action in ABNG serves as a

single linkingmechanism, which when combined with an appropriate synthesis algorithm

F(·) can synthesize networks exhibiting varying topological characteristics. In the context

of SCNs, an action is a decision process that a firm uses to select firms that it should

supply its materials to. The supply chain literature provides a rich source for potential

decision processes (Pathak et al. 2009; Xuan et al. 2011; Kim et al. 2011; Bellamy and

Basole 2013; Hearnshaw and Wilson 2013; Wang et al. 2015), while providing insights
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Fig. 1 A procedure for determining action matrixM: Network Synthesis probabilistically adds the required
number of edges starting from an empty network. Evaluating Generator Suitability compares a set of
synthesized networks to the target using the user-defined structural characteristics in order to determine the
representativeness of action matrixM. Finally using Optimization or Learning the action matrixM is
perturbed, and a set of best-fit solutions are retained. The process repeats until a termination criterion (e.g.,
number of iterations) is satisfied

regarding how to choose a set of actions that may lead to construction of topologically

resilient SCNs. The idea is to carefully choose actions for network synthesis at the micro

level such that the resilience of the whole supply network gets mirrored at the macro

level. The reason behind this choice is that creation of resilient structures is an expected

outcome of the local linking between nodes rather than a goal of the participating firms

(a firm is more likely to focus on its operational efficiency).

Recent research (Kim et al. 2015; Hearnshaw andWilson 2013) has suggested that exis-

tence of power law degree distributions in supply chain networks has a positive affect

on its resilience. Preferential attachment mechanisms have been shown to synthesize

networks that perform well under random failures and are among the most prominent

rules for making linking decisions, hence making them a perfect candidate for actions for

SCN modeling (Thadakamalla et al. 2004; Zhao et al. 2011b; Xuan et al. 2011; Mari et

al. 2015). Preferential attachment also leads to creation of networks exhibiting power law

degree distributions. A variety of preferential attachment mechanisms based on network

centrality metrics can potentially lead to creation of a few different hubs, hence dispers-

ing the influential nodes across the overall supply chain. Further, networks with power

law degree distributions that are formed by fractal mechanisms show greater resilience

against cascading failures as compared to those obtained from the simple preferential

attachment mechanisms.

Consequently, the action set A will include preferentially selecting a node based on

its out-degree, in-degree, vertex betweenness and closeness. These centrality metrics can

induce the creation of a diverse range of hub nodes leading to creation of an overall

resilient network structure. The use of network properties like betweenness and close-

ness for preferential linking can be seen as a proxy for more practical information such

as price, performance, and quality that are more relevant in the context of supply chains

(Jain et al. 2009; Li et al. 2013). A fractal mechanism based on difference in total degree

(resulting in repulsion between hub nodes) has also been shown to produce resilient

structures (Hearnshaw and Wilson 2013; Song et al. 2006), and is included as an action.
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It is possible that a firm does not prefer one particular firm over another based on the

actions described above, leading to an action corresponding to random selection among

the firms satisfying the tier constraints. An action is also based on connecting with closer

nodes1 with higher probability (Zhao et al. 2011b). Finally a firm might choose to not add

an edge, which is the final action in A. It should be noted that in the presence of no edges

in the network all actions become equivalent to a random action, i.e. randomly selecting

a firm satisfying the tier constraints. This is further explained along with the synthesis

algorithm in “Network synthesis” section.

Network synthesis

A forward operator F in case of ABNG is a generative algorithm F(M, n,m, ξ) that can

be used to synthesize networks containing n nodes and m edges using an action-based

model M. The generative algorithm synthesizes networks by first creating the set of

desired nodes, and then probabilistically assigning a node type t to each node according

to P(T = t). Monte Carlo simulation is then performed using the probabilities of node

actions from P(A = al|t). For example, a model of a simple preferential attachment net-

work will contain a single node type that has a sufficiently high probability for the action

of creating connections to nodes based on degree. Repeated sampling from P(A = al)will

yield a preferential attachment network, as desired. Increasingly complicated topological

properties will emerge with increased number of node types and variety of actions.

Importantly, the synthesis algorithm allows the network modeler to easily integrate

domain specific rules or constraints by implementing a problem specific set of node

actions (e.g., ways firms could interact with each other). Moreover, the modeler may wish

to ensure a specific network backbone, which can be easily accommodated by defining

the initial topology before executing the Monte Carlo simulation. Termination condi-

tions for the synthesis algorithm are user defined, e.g., certain number of edges created

or topological characteristics have satisfactorily emerged.

Incorporating tier constraints

Supply chain networks are formed from heterogeneous types of nodes, where each node

has a specialized task. Hence, extra care must be taken to appropriately capture criti-

cal real-world constraints concerning the rules firms use to exchange goods. Some are

trivial, while others are context-dependent. Failure to reasonably accommodate these

constraints in the generative process will severely limit its utility to providing only very

general insights into SCN design principles. Previous research has suggested that SCNs

should be modeled as tiered networks, where each tier contains nodes performing differ-

ent functional tasks and the constraints of edge formation apply to the entire set of nodes

in a particular tier (Bell et al. 2017, Hearnshaw andWilson 2013, Pathak et al. 2007, 2009,

Wang et al. 2015). As described in “Introduction” section, each firm in a supply chain

belongs to a unique tier, which corresponds to the number of hops from the consumer in

the final supply chain. For a network G = (V ,E), the set of nodes can be partitioned into

l tiers V = T0 ∪ · · · ∪Tl−1, such that for α �= β , Tα ∩Tβ = ∅,∀α,β ∈ {0, . . . , l− 1}. Simi-

larly, tiers also introduce constraints on the possible set of edges, such that a node vi ∈ Tα

(α ≥ 1) can only supply materials to a node vj ∈ Tα−1, i.e. supply-demand relations exist

only between firms in adjacent tiers. Algorithm 1 shows how ABNG is used to synthesize

tiered supply networks for a given action matrix M by restricting actions to select nodes

that satisfy tier constraints.
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Algorithm 1 Synthesis algorithm F(M, n,m, ξ) for target network T = (V ,E)

1: Create a network G = (V ′,E′) with V ′ = V and |E′| = ∅

2: Using P(T = t), probabilistically assign a node type t to each vi ∈ V ′

3: while |E′| < |E| do

4: Select a tier α ∈ {0, . . . , l − 1}, followed by a node vi ∈ Tα

5: Probabilistically select an action al for vi using P(A = al|t)

6: Add edge (vi, vj) to G as determined by al and satisfying vj ∈ Tα−1

7: end while

8: return G

Optimization and determining generator suitability

As seen in Eq. (1), the problem of finding an action matrix M is framed as a multiob-

jective problem. The decision to frame this within a multiobjective context is based on

numerous observations in network science literature arguing that it is a robust approach

to determining generator suitability (Pržulj 2007; Harrison et al. 2016; Fay et al. 2014;

Yaveroǧlu et al. 2015). To solve this multi-objective search problem, we implement Pareto

Simulated Annealing (PSA) (Czyzak and Jaszkiewicz 1998), as it is known to be a useful

metaheuristic capable of global optimization in a large search space in a fixed amount of

time. Additionally, only one evaluation of the objective function is required at each itera-

tion when compared with population-based algorithms, which require an evaluation for

each member of the population.

Choice of Objectives: An objective of the current research is to learn the action-based

model for a given SCN, while preserving its resilience properties. Network resilience

has emerged as a critical topic in supply chain research, and a summary of several met-

rics that may help understand supply network resilience can be seen in (Kim et al.

2015). Recent research (Zhao et al. 2011b; Thadakamalla et al. 2004) has uncovered the

importance of network topology in determining resilience of SCNs under random and

targeted disruptions, hence highlighting the importance of considering it as an essen-

tial component of SCN modeling. To preserve the structural and resilience properties

of the real-world SCN, the action-based framework uses the 2-sample Kolmogorov-

Smirnov statistic to quantify difference in distribution of node level properties between

the synthesized and target networks. In the current experiments, node betweenness, in-

degree and out-degree are utilized as the global network characteristics S(T ), but the

approach is indifferent to the choice of objectives, and other properties with alternative

approaches like KL-divergence or entropy-related measures can be used to quantify the

difference in distributions of network properties. The choice of objectives is based on

the efficacy of these measures to capture the essential structural features of a network,

especially in the the context of our action-based approach (Arora and Ventresca 2017).

(Kim et al. 2015) uses these network properties to understand supply network resilience

in different network structures.

Results

The approach described in “Action-based networks” section is used to infer action-based

models for each of the real-world SCNs listed in Table 1. Additionally, the action-based

framework was also used to synthesize supply networks that reflect the observations of
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empirical studies, such as power law degree distributions and disassortative mixing. The

inferred probabilistic models are also used to draw conclusions about the individual local

mechanisms that are primarily responsible for link formation in SCNs. The networks

synthesized using the learned models were then subjected to random and targeted dis-

ruptions of nodes, and evaluated against two resilience metrics. This provides an indirect

yet effective way of analyzing the ability of a network to remain functional under adverse

circumstances.

Dataset

We begin by describing the real-world supply chain dataset that was used in this research.

Supply chain data provided by (Willems 2008) and analyzed in (Perera et al. 2017b) has

been used to investigate the applicability of the proposed framework on different supply

chain networks. The dataset contains 38 multiechelon supply chains used for inven-

tory optimization purposes. The supply chains consist of firms with five different roles,

namely, parts (suppliers), manufacturers, transportation, distributors and retailers. Tier

information (the dataset used the term relative depth) is also available, and different sup-

ply chains have between 2 and 10 tiers. The SCNs described in this paper comprise actual

supply chain maps created by either company analysts or consultants. This makes the

dataset a perfect test bed for validating the efficiency and effectiveness of supply chain

models. 10 among the 38 were selected based on network density and size, and they are

listed in Table 1 along with eight relevant SCNproperties. Two of the SCNs are also shown

in Fig. 2 for visual representation. The SCNs shown in Fig. 2 both posses a tiered struc-

ture, but the interconnectedness among various tiers and the number of nodes in each

tier is very different in the two networks.

A key limitation of the SCN dataset is the absence of data on geographical locations

of individual firms. This information was not provided in the original dataset due to

confidentiality reasons. As discussed earlier, geographical location might play a signifi-

cant role in linking decisions of firms and its unavailability might significantly limit our

understanding of various structural features. Furthermore, this empirical study does not

Fig. 2 A visual representation of the tiered structure of the real-world supply networks obtained from the
dataset. The images correspond to supply chains of Computer Peripheral Equipment (left) and Perfumes,
Cosmetics, and Other Toilet Preparations (right)
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explore the dynamic nature of the SCNs since the dataset does not provide any infor-

mation pertaining to temporal changes in the SCN topology. Lastly, the dataset does

not provide information regarding amount of material flow between connected firms.

Although specific production capabilities of firms within each tier are known, no informa-

tion is available in relation to how much each upstream firm supplies to the downstream

firms. Nevertheless, the size of the dataset, both in terms of the number of networks

available and in terms of number of nodes in each network, make this a very attractive

dataset to study.

Modeling SCNs

To test the ability of ABNG to replicate distinct global network properties observed in

real-world SCNs, the generator was tested using 10 target networks from the dataset

described in “Dataset” section. The list of SCNs that were considered for modeling is

provided in Table 1 along with eight relevant network level metrics of the target networks

and the corresponding networks synthesized using ABNG. Figure 3 presents a summary

of the results, featuring heat maps for the 10 target networks. The solution closest to the

origin (based on 1-norm) was chosen as the action-based model and used to synthesize

20 networks. The mean dissimilarity values are recorded in the heat maps by comparing

the 2-sample Kolmogorov-Smirnov statistic value for betweenness, in-degree and out-

degree between the target and synthesized networks (these were used as objectives during

the optimization). Additionally, we also provide mean values of absolute deviation of the

average path length, network centralization and network heterogeneity between the tar-

get and synthesized networks (see (Kim et al. 2015; Perera et al. 2017a) for details and

definitions of these properties and their relevance in the context of supply chains).

As seen in Fig. 2, the target networks might impose strict constraints on how

nodes in two tiers are connected, for example the green and blue nodes in the

supply chain of Computer Peripheral Equipment have a one-to-one mapping. The

constraints imposed by such specialized sub-structures might lead to synthesis of dis-

connected networks using ABNG. Synthesis of SCNs that are not fully connected is

Fig. 3 Results of measures for the 10 SCNs modeled using ABNG. The solution closest to the origin (based on
1-norm) was chosen as the action-based model
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not a desirable outcome. To deal with this issue, a clean-up phase was devised to

ensure every node participating in the supply chain is connected to the synthesized

SCN. If the algorithmic procedure described in Algorithm 1 synthesizes a disconnected

network, the clean-up phase is initiated to create a connected supply chain by ran-

domly connecting a disconnected node to a node that is already a part of the overall

supply chain, while adhering to tier constraints described in “Incorporating tier con-

straints” section. The networks obtained after the clean-up phase are then subjected to

further analysis.

An action matrix corresponding to the solution closest to the origin (based on 1-

norm) obtained for three of the real-world SCNs is shown in Table 2. This can help

the user in making some conclusions about the structure of these networks and the

propensity with which each action is used to form links. ABNG was also used to syn-

thesize an artificial SCN with statistical properties observed in most empirical studies,

i.e. in and out degree distributions with power law coefficients α = 2 and disas-

sortative mixing among nodes (see Fig. 4 for a visual of the synthesized network).

The action matrices obtained for each of these networks have some similarities, but

with subtle differences. It can be seen that most of the SCNs have a correspond-

ing action-based model consisting of nodes belonging to only two or three differ-

ent node types, i.e. most of the firms use similar local mechanisms to form links.

A common observation is that “no action” tends to have high probability. A possi-

ble conclusion here is that only a few nodes add edges in a time step, leading to a

power law degree distribution in the network. Further, most networks use preferen-

tial attachment on in-degree, degree difference and betweenness as dominant mech-

anisms for forming links. This provides evidence that firms that get more supplies

tend to attract more connections, firms tend to link disassortatively and try to connect

with nodes in shortest paths. The SCN on computer storage devices is an exception

where nodes tend to link based on closeness and out-degree with higher probability.

It should be noted that the action based on distances does not get a high proba-

bility because the current version uses distance as number of hops in the network.

If geographical location is available in the dataset, this action is likely to have much

higher probability.

Table 2 The table shows optimized action matrix for a few SCNs

Network ↓ | Action→ PAOD PAID PADD PAB PAC Rand InvSD NA P(T = t)

Perfumes, cosmetics, and 0.000 0.174 0.015 0.108 0.037 0.076 0.158 0.432 0.188

Other toilet preparations 0.007 0.249 0.179 0.074 0.000 0.008 0.000 0.483 0.812

0.077 0.032 0.009 0.373 0.026 0.000 0.000 0.483 0.508

Power-driven handtools 0.053 0.193 0.236 0.223 0.096 0.021 0.178 0.000 0.091

0.018 0.000 0.000 0.094 0.023 0.010 0.000 0.855 0.401

0.266 0.000 0.388 0.024 0.082 0.089 0.000 0.151 0.203

Computer storage devices 0.226 0.017 0.143 0.116 0.167 0.017 0.314 0.000 0.186

0.205 0.000 0.208 0.169 0.229 0.123 0.066 0.000 0.611

Artificial SCN 0.020 0.001 0.000 0.183 0.000 0.000 0.000 0.796 0.851

0.132 0.156 0.251 0.091 0.132 0.071 0.108 0.059 0.149

The following actions were used: Preferential attachment on: out-degree (PAOD), in-degree (PAID), degree difference (PADD),
betweenness (PAB), closeness (PAC); Random selection (Rand); Inverse shortest distance (InvSD); and No action (NA)
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Fig. 4 A visual representation of the tiered structure of artificial SCN synthesized using ABNG replicating
basic SCN properties of power law degree distributions and disassortative mixing. The network consists of
1000 nodes (100, 200, 500, 200 nodes in tiers 0, 1 ,2, 3 respectively) and 7000 edges

Resilience analysis

The supply chain literature emphasizes that specific measures are required for evaluating

topological resilience of SCNs by incorporating the role of various nodes in the net-

work. Analytical measures of resilience commonly used in the network science literature

(Rubinov and Sporns 2010; Costa et al. 2005) are unable to account for node heterogene-

ity, which is a critical aspect in SCN modeling. For example, (Zhao et al. 2011a, b) point

out that in the context of SCNs, the distance between two supply nodes or two demand

nodes are not as important as that between a supply and a demand node. To tackle

this issue, researchers rely on simulation based metrics to analyze topological resilience

through customized metrics. The usual approach consists of simulating random or tar-

geted disruptions by removing nodes from the network. (Perera et al. 2017a) provides an

outline of the methodological framework that is typically used for analysis of topolog-

ical resilience of SCNs. This procedure consists of sequentially repeating the following

steps:(i) simulate node removal, and (ii) measure the relevant resilience metrics. This can

provide general insights into the topological aspects of SCN resilience.
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To incorporate the heterogeneous roles of firms for resilience analysis in SCN, the set

of nodes V can be divided into supply (VS) and demand (VD) nodes. We assume that the

final consumers are the demand nodes (VD = T0), and every other node is a supply node

(VS = V\VD). For a network to be resilient, the most important requirement is to ensure

that the demand nodes have access to at least one supply node. Supply availability rate

measures the percentage of demand nodes that have access to supply nodes, hence pro-

viding an estimate of whether the demand nodes have access to supplies for maintaining

normal operations. As shown in Eq. 2, the supply availability rate SA can be calculated as

the ratio of number of consumers that still have access to a supplier to the total number

of consumers.

SA =
|V ′

D|

|VD|
, where V ′

D =
{

vi ∈ VD|∃ vj ∈ VS : ∃ path between vi and vj
}

(2)

The second measure, size of the functional network, corresponds to the number of nodes

in the largest connected component that has at least one supply node, thus serving as a

measure of supply network connectivity. For calculating the size of the largest functional

network, we first need to find the largest connected component that satisfies the required

conditions. Let Vsub be the set of nodes in the remaining functional network, then a node

in Vsub should satisfy the following requirements:

(i) ∀vi, vj ∈ Vsub : ∃ path between vi and vj, and (ii) ∃vk ∈ Vsub : vk ∈ VS (3)

Once a set of measures for evaluating topological resilience of a network have been

decided, the sequential procedure described earlier can be used to perform analysis on

a network. In this research, we simulate random disruptions by randomly removing a

supply node from the network, and targeted disruptions remove a supply node with

the highest total degree (sum of in and out degree). Though we perform degree-based

targeted disruptions, variations that use different centrality measures can also be used.

Another useful technique to study the impact of removing nodes from a network is to

devise a classification scheme for nodes in a SCN with reference to resilience. This can be

achieved by altering the procedure outlined in (Savvopoulos and Moschoyiannis 2017) to

incorporate SCN resilience, but is out of scope for this study.

Figures 5, 6, 7, 8 and 9 show the effect of random and targeted removal of nodes from

the synthesized and real-world networks on supply availability and size of the functional

network under disruptions. The ABNG-synthesized network corresponds to those cre-

ated by the modeling procedure described in this paper (followed by the clean-up phase,

if required). Each blue line corresponds to the average resilience values of 20 synthesized

networks, with the highlighted region capturing the networks lying between the 5th and

95th quantile. It is interesting to note that average resilience of the networks synthesized

using our approach are generally comparable to or better than the considered real-world

networks under both disruption scenarios. (Perera et al. 2017b) analyzed the SCNs that we

use as target networks and concluded that the networks show high structural resilience.

This implies that the actions used in this research can be used tomake informed decisions

leading to design of resilient supply networks as the synthesized networks have resilience

comparable to the target networks.

The artificial SCN shown in Fig. 4 was also subjected to resilience analysis, and the

results can be seen in Fig. 10. It should be noted that because there were no constraints
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Fig. 5 Supply network of semiconductors and related devices

from a target network, the synthesized networks are fully connected. Another impor-

tant observation is that there is very little variation (small highlighted portion in Fig. 10)

because of the absence of real-world constraints on the network structure.

Overall, the proposed model is capable of synthesizing networks that are structurally

similar to real-world SCNs only by utilizing a few global network properties in form of

objective functions S(T ), and also incorporating context-dependent constraints on link

formation between firms in different tiers. The ability of the synthesized networks to

retain functionality under disruption demonstrates that the micro level linking decisions

(actions) of individual firms can be used in a probabilistic manner to synthesize topo-

logically resilient network structures. Using the information from node level actions and

Fig. 6 Supply network of power-driven handtool
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Fig. 7 Supply network of Electromedical and Electrotherapeutic Apparatus

corresponding probabilities can provide network designers with a better understanding of

supply chain dynamics, and hence make informed decisions regarding designing systems

that can retain functionality under disruptions.

Conclusions and future work

The objective of this research was to investigate the possibility of using a network model

to synthesize resilient supply networks capable of structurally replicating a given real-

world supply chain. The framework incorporates essential features of SCNs like node

heterogeneity by using tier information and allowing different mechanisms to connect

with firms. The results indicate that decisions by firms at the micro level can lead to

Fig. 8 Supply network of Computer Storage Devices
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Fig. 9 Supply network of Farm Machinery and Equipment

creation of networks that exhibit topological resilience, hence providing insights into net-

work design principles. The framework can be extended to capture dynamics of such

networks by adding features such as arrival of new nodes and rewiring of existing edges.

Information regarding node demands and incorporating tighter constraints on demand

fulfillment can make the model more representative of real-world SCNs, but the unavail-

ability of material flow data might hinder the progress in this direction. Availability of

demand data will also lead to synthesis of connected networks by ensuring that individual

demands are satisfied. Firm fitness (generally evaluated using profit or loss) is seen as an

important driving mechanism for supply chain evolution (Li et al. 2009, 2010) and can be

included as an additional action in future research, and also used as a metric for addition

Fig. 10 Artificial supply network
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and removal of firms/nodes in the network. This can effectively capture the dynamics of

supply chains and how the evolution of the network effects its resilience.

Endnotes
1This action is currently based on shortest distances in the network. If available, node

information about location of firms can also be used.
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