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The weak pixel counts surrounding the Bragg spots in a diffraction image are

important for establishing a model of the background underneath the peak and

estimating the reliability of the integrated intensities. Under certain circum-

stances, particularly with equipment not optimized for low-intensity measure-

ments, these pixel values may be corrupted by corrections applied to the raw

image. This can lead to truncation of low pixel counts, resulting in anomalies in

the integrated Bragg intensities, such as systematically higher signal-to-noise

ratios. A correction for this effect can be approximated by a three-parameter

lognormal distribution fitted to the weakly positive-valued pixels at similar

scattering angles. The procedure is validated by the improved refinement of an

atomic model against structure factor amplitudes derived from corrected micro-

electron diffraction (MicroED) images.

1. Introduction

The success of diffraction data analysis, and consequently the

quality of the final atomic model, hinges on accurate inte-

gration of the recorded Bragg reflections. The intensities of

these reflections decrease with increasing scattering angle

until the point where their peaks become indistinguishable

from the surrounding background (Bourenkov & Popov,

2006). Ignoring the effects of solvent scattering and artifacts

such as ice rings (Glover et al., 1991), the recorded counts of

pixels between the Bragg spots follow the same general

pattern; the greater the distance from the intersection point of

the direct beam with the detector surface, the smaller their

values. Because the background pixels around a reflection are

commonly used to estimate the noise contribution to the

integrated signal (Leslie, 1999), successful data reduction

generally requires that all pixel values are accurately

recorded, irrespective of their scattering angle and magnitude,

or whether they represent Bragg spots or not.

Many detector systems used to record diffraction data apply

corrections to the raw data before a rectified image is

presented to the experimenter for processing. The flat-field

calibration is one such correction. For CCD- and CMOS-based

detectors, this two-step procedure consists of dark-frame

correction, where a previously recorded, unexposed image is

subtracted, followed by multiplication with a gain image.

Dark-frame correction removes features that arise from the

small currents that flow through the sensor even when the

shutter is closed. The subsequent gain correction compensates

for the uneven response of individual pixels by ensuring that

the calibrated readout under uniform flat-field illumination is

featureless. In some cases, images are uninterpretable unless

these corrections are applied.
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A number of macromolecular crystal structures have

recently been solved by micro-electron diffraction (MicroED)

(Shi et al., 2013; Nannenga, Shi, Hattne et al., 2014; Rodriguez

et al., 2015; Yonekura et al., 2015). In our laboratory, diffrac-

tion datasets have been recorded by continuous rotation

(Nannenga, Shi, Leslie & Gonen, 2014) using a TVIPS

TemCam-F416 CMOS camera. During data collection the

crystal is slowly rotated in the electron beam and the accu-

mulated counts are rapidly read out at regular intervals

without interrupting the rotation of the sample. However, the

camera’s ‘rolling shutter’ mode (Stumpf et al., 2010) that

makes these measurements possible is primarily intended to

provide real-time visual feedback during data collection. The

camera does apply a flat-field correction, but the storage

format required to sustain the high data-transfer rates is

restricted to representing pixel values as unsigned 16 bit

integers. This causes problems for weak reflections, which are

typically observed at high resolution. Around these reflections

the raw counts on the detector may be comparable in

magnitude to those in the dark frame. Owing to random

fluctuations in the raw counts, dark-frame subtraction may

then yield very small or even negative values, which are

propagated through the subsequent gain correction. As

negative counts cannot be represented in the storage format,

they are truncated to zero, and information about the true,

negative value is lost. Generally, the effect is not immediately

apparent on visual inspection of the diffraction pattern, but

becomes clear in histograms of the low pixel values, which

feature a prominent peak at zero analog-to-digital units

(ADU) (Fig. 1a).

It is conceivable that the dark frame could be offset by some

constant to reduce the probability that dark subtraction yields

a negative number. This is not easily achievable without

altering the software used to control the camera. Modifying

the camera’s storage format to use signed integers is similarly

impractical. Disabling the flatfield correction altogether is

unattractive, since it would remove the ability to view cali-

brated diffraction images while they are being retrieved from

the camera. The remaining option is to attempt to recover as

much information as possible from the dataset. Here we

present a procedure to model the values of the truncated

pixels with zero counts from the histogram of the values of the

remaining pixels.

2. Methods

For a sufficiently large sample of weakly positive-valued

pixels, their histogram allows the distribution of the counts

around zero to be modeled. For diffraction patterns, the

parameters of the distribution of recorded counts across the

image depend on the scattering angle (Fig. 1b). Therefore

separate models are derived from pixels within a narrow

interval of scattering angles. The finite range of scattering

angles leads to heavy-tailed distributions, particularly at low

resolution where a larger spread of scattering angles is

necessary to provide an adequate sample size to model the

distribution. Invalid pixels, for example pixels in the shadow of

the beam stop, are not considered because they do not follow

the distribution of pixels that record electrons scattered from

the sample.

We use the lognormal distribution to model the behavior of

the low-valued pixels. The lognormal distribution is expected

where the observed counts are the result of independent

multiplicative processes in the detector (Kissick et al., 2010),

but in our case its use is primarily motivated by its quality of fit

to the experimental data (mean r.m.s.d. 327 ADU). The

probability density function f and cumulative distribution

function F of the lognormal distribution are given by

f ðxÞ ¼
1
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where � and � are the location and scale parameters,

respectively. A third parameter, �, is used to arbitrarily shift

the distribution, which allows the random variable it models to

take any real value >�, rather than just positive values.

Assuming the pixels in a given resolution range of a diffraction

image are independent and identically distributed, the prob-

ability of observing a pixel with true integer count I, such that

I> 0, can then be approximated:

PrðI � 0:5 � x< I þ 0:5Þ ¼
RIþ0:5

I�0:5

f ðxÞ dx ’ f ðIÞ: ð2Þ

The probability of observing a pixel with any value I � 0 is

given by

Prðx< 0:5Þ ¼
R0:5
�1

f ðxÞ dx ¼ Fð0:5Þ: ð3Þ

Let HðIÞ denote the number of pixels with value I in the

image. For any integer count I in the closed interval ½0; Imax�,

HðIÞ defines the observed histogram (Fig. 1). We assume that
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Figure 1
Distribution of the low counts in a typical MicroED image of proteinase
K collected by continuous rotation using the rolling shutter mode of the
camera. (a) The histogram in the second outermost shell between 1.5 and
1.7 Å for an uncorrected image, and (b) the histogram of the
corresponding corrected image. The continuous curves in (b) show the
fitted lognormal distributions in the two innermost (resolutions lower
than 4.7 Å in blue, resolutions between 3.4 and 4.7 Å in orange) and the
second outermost (black curve) resolution shells. As the resolution
increases, the mode and the variance of the distribution decrease.



any pixel with I> 0 is measured correctly; a pixel with I ¼ 0

could represent either a true value of zero or a negative value.

We seek the parameters �, � and � that maximize the prob-

ability of observing HðIÞ. This is equivalent to maximizing the

likelihood, or more conveniently, the log-likelihood, which in

our model is given by

logLð�; �; t j HÞ ¼ Hð0Þ log Fð0:5Þ þ
PImax

I¼1

HðIÞ log f ðIÞ: ð4Þ

This can be done using standard optimization algorithms such

as the BFGS implementation in the R environment (R Core

Team, 2015).

The recovered parameters define the maximum likelihood

lognormal distribution corresponding to the observed histo-

gram in the given resolution shell. Negative values are then

randomly assigned to the Hð0Þ pixels that were initially zero,

such that the histogram for I � 0 in the corrected image

conforms to the fitted distribution (Fig. 1b). Pixels with initi-

ally positive values remain unchanged (Fig. 2), and the

frequency of negative values agrees with the optimized model.

Only the spatial arrangement of the negative values is random.

Uncorrected images that do not contain any zero-valued

pixels will have Hð0Þ ¼ 0; the correction does not alter these

images in any way.

If the corrected image will be stored in a format that does

not support negative counts (e.g. SMV), an offset has to be

applied before the image is output. To preserve correct inte-

gration downstream, the integration software has to be made

aware of this offset (e.g. ADCOFFSET in MOSFLM).

Choosing the offset as the negated value of the smallest count

in all resolution shells of all images after correction allows

straightforward processing of the sweep.

The procedure was validated against MicroED images

collected from four crystals of proteinase K. Protein solutions

from Engyodontium album (Sigma-Aldrich, St Louis, MO,

USA) were prepared by combining 2 ml of protein solution

(50 mg ml�1) with 2 ml of precipitant solution (1.0–1.3 M

ammonium sulfate, 0.1 M Tris pH 8.0). Crystals in space group

P43212 with unit cell a = b = 67.3, c = 101 Å appeared in

hanging drops after equilibrating against the precipitant

solution for three days. MicroED images were recorded on a

transmission electron microscope (FEI) equipped with a field

emission gun and a TVIPS TemCam-F416 CMOS camera

using published protocols (Nannenga, Shi, Leslie & Gonen,

2014; Shi et al., 2016). At an acceleration voltage of 200 kVand

a camera length of 1.2 m (corresponding to a virtual detector

distance of 2.2 m) the detector can record reflections at

resolutions up to �1.75 Å at the edges and �1.25 Å in the

corners. The correction was applied to the images indepen-

dently in ten concentric annuli of approximately equal area.

Corrected datasets were indexed and integrated with

MOSFLM (Leslie & Powell, 2007). To ensure comparable

integration for the uncorrected and corrected datasets only

the missetting angles were optimized during integration. The

mosaicity was refined to convergence for each crystal sepa-

rately and then held constant during integration. All detector

parameters were fixed, and the measurement box was set to a

13 � 13 pixel box with a 4 pixel border and an 8 pixel corner

cutoff (Leslie, 1999). To allow the integration box to contain

zero-valued pixels for the uncorrected data, MOSFLM’s

NULLPIX parameter was set to�1. The intensities calculated

by summation integration were scaled and merged using

AIMLESS with default parameters (Evans & Murshudov,

2013). The upper resolution limit imposed during scaling lies

just inside the detector corners where the number of obser-

vations is barely large enough to permit merging statistics to

be calculated. This is beyond commonly employed resolution

cutoffs, but allows the effect of the correction on the weakest

high-resolution reflections to be evaluated.

The merged data were phased by molecular replacement in

MOLREP (Vagin & Teplyakov, 1997) using PDB ID 4woc

(Guo et al., 2015) as a search model, resulting in contrast

scores of 27.57 and 32.56 for the uncorrected and corrected
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Figure 2
A spot near the edge of the detector (d = 1.8 Å) (a) before and (b) after
correction. Pixels with initial counts >0 ADU are otherwise unchanged,
while zero-valued pixels exhibit counts �0 ADU in the corrected image.

Figure 3
MicroED structure of proteinase K at 1.75 Å resolution. (a) The overall
MicroED structure of proteinase K. (b) A five-residue fragment of the
final model refined against the data derived from the corrected images.
The SA composite omit map at 1.75 Å resolution is contoured at 1.0�
above the mean and shows a hole in the center of the tyrosine side chain.
The figures were generated using PyMol (Schrödinger, 2014).



data, respectively. Both models were refined with phenix.refine

(Afonine et al., 2012) using electron scattering factors (Colliex

et al., 2006), automatic water modeling and weight optimiza-

tion of the stereochemistry terms. Only reflections up to

1.75 Å were included in the refinement, because the comple-

teness of the merged dataset drops rapidly beyond the edges

of the detector [see Fig. 5(a) in x3]. The simulated annealing

(SA) composite omit map computed by CNS (Brunger, 2007)

clearly reveals depressions or even holes in the centers of the

aromatic side chains (Fig. 3).

3. Results and discussion

The correction only modifies the zero-valued pixels in an

image and it can never increase their values. Because the

mode of the fitted distribution tends to decrease with

increasing resolution (Fig. 1b), the number and magnitude of

the negative-valued pixels is expected to increase toward the

edges of the detector. This behavior is seen in the integrated

reflections (Fig. 4), with the exception of the low-resolution

reflections, where the decreased values of the pixels

surrounding the peaks lead to stronger integrated intensities

after background subtraction. For higher-resolution reflec-

tions, where corrected pixels may fall within the foreground,

the integrated intensities decrease as well. The magnitude of

the difference between the integrated intensities before and

after correction increases with resolution, and the corre-

sponding increase in the fraction of negative intensities (Fig. 4)

is consistent with this observation.

Compared to the uncorrected images, the corrected dataset

merged�2.5�more reflections (Table 1). The vast majority of

the rejections for the uncorrected images occur during inte-

gration owing to excessive background gradient (87%), indi-

cating problems modeling the background, where low pixel

counts are more abundant. Other rejections are mostly due to

incompletely recorded, partial reflections and ill-fitting peaks.

The smaller number of outlier rejections in the corrected

dataset is reflected in an increased completeness and multi-

plicity (Fig. 5a and Table 1).

Except for the reflections only observed in the corners of

the detector, the half-set correlation, CC1/2 (Karplus &

Diederichs, 2012), is marginally higher for the corrected

images than for the uncorrected images (Fig. 5b). Beyond the

edge of the detector CC1/2 is dominated by noise. The merging

R factors on the other hand are higher for the corrected

dataset than for the uncorrected images, and this is most

pronounced in the higher-resolution shells. At high resolution,

research papers

1032 Johan Hattne et al. � Modeling truncated pixel values in MicroED images J. Appl. Cryst. (2016). 49, 1029–1034

Figure 4
Effect of the procedure on the integrated intensities before scaling and
merging. The average change in the integrated unmerged intensities (blue
curve) is smoothly varying as a function of resolution. Except for at the
lowest resolutions, the intensities are consistently lower in the corrected
data, and the magnitude of the difference increases with resolution. The
horizontal dotted line at hIcorrected � Iuncorrectedi = 1 is added to aid
comparison. The fraction of negative intensities is larger in the corrected
data (orange curve) than in the uncorrected data (black curve). The
difference increases steadily until just beyond the edge of the detector,
which is marked by a vertical dotted line.

Table 1
Merging and refinement statistics for the uncorrected and corrected
datasets of proteinase K.

Both datasets were derived from the same 184 images collected from four
separate nanocrystals of proteinase K. The frames were exposed for �4 s
while the stage on which the crystals were mounted was continuously rotated
at 0.09� s�1. The models derived from the uncorrected and corrected images
contain 166 and 133 water molecules, respectively. Both models include two
sulfate ions. For CC1/2 > 0.30, AIMLESS estimates the resolution limits to be
2.01 and 1.96 Å for the uncorrected and corrected datasets, respectively. The
corresponding limits for hI/�Ii > 1.50 are 1.96 and 1.91 Å. Numbers in
parentheses refer to the highest-resolution shell for either merging or
refinement.

Uncorrected Corrected

Merging to 1.30 Å
Resolution (Å) 21.91–1.30 (1.32–1.30) 21.91–1.30 (1.32–1.30)
Rmerge 0.329 (0.513) 0.629 (2.671)
Rr.i.m. 0.403 (0.726) 0.727 (3.627)
Rp.i.m. 0.225 (0.513) 0.347 (2.429)
CC1/2 0.896 (0.490) 0.842 (0.080)
Total No. of observations 61 731 (254) 154 259 (1083)
hI/�Ii 2.2 (0.8) 2.0 (0.3)
Wilson B (Å2) 16.4 17.2

Refinement to 1.75 Å
Resolution (Å) 19.62–1.75 (1.82–1.75) 20.51–1.75 (1.81–1.75)
Completeness (%) 80.8 (71.2) 94.1 (94.0)
Multiplicity 2.5 (1.9) 4.5 (4.3)
Rwork (%) 22.7 (36.5) 21.7 (34.8)
Rfree (%) 27.3 (44.2) 26.6 (41.8)

Figure 5
Merging statistics as a function of resolution. (a) At high resolution hI/�Ii

is higher in the uncorrected dataset (black curve) than in the corrected
dataset (orange curve), and the values tend to zero only in the corrected
dataset. The horizontal dotted line at hI/�Ii = 1 is added to aid
comparison. Beyond the edge of the detector (vertical dotted line) the
completeness drops sharply for both the uncorrected (black dashed
curve) and the corrected (orange dashed curve) datasets. (b) CC1/2 is
slightly higher for the corrected images (orange curve) than for the
uncorrected images (black curve). Beyond the edge of the detector,
indicated by the vertical dotted line, the curves are dominated by noise.



individual pixel counts are more affected by noise, and their

variance is governed by fluctuations around low counts. In the

uncorrected dataset these fluctuations are diminished when

negative pixel counts are truncated, leading to artificially

homogenous integrated intensities and underestimated stan-

dard deviations for the very weakest Bragg spots. The

correction recovers some of this variance, and notably, hI/�Ii in

the highest-resolution shell, where reflections are not visually

discernible, drops twofold (Fig. 5a and Table 1).

With otherwise identical protocols, the overall Rwork and

Rfree values are lower by 1.0 and 0.7%, respectively, for the

model refined against the corrected dataset compared to those

for the uncorrected dataset. The correlation coefficients

between the observed and calculated structure factor ampli-

tudes are generally higher for the model refined against the

corrected data than for the model refined against the uncor-

rected data, and the effect is more pronounced at higher

resolution (Fig. 6a). Similarly, the atomic model refined

against the corrected data correlates better to its density map

calculated from reflections in the interval between 1.75 and

5.00 Å than the model refined against the corresponding

uncorrected data (Fig. 6b). However, the atomic coordinates

of the two models are very similar with an r.m.s.d. of 0.080 Å.

4. Conclusion

The systematic truncation of weak pixel values introduces

subtle anomalies in the integrated Bragg intensities, which

propagate to the refined model. In the present case, the arti-

facts are due to the data format’s inability to represent

negative counts. File formats restricted to unsigned integers

are common in crystallography, but it is conceivable that

similar problems could arise by other means. However,

modeling the counts of the low-valued pixels can help to

recover the true signal for the high-resolution reflections. For

stronger reflections, the benefit of the correction lies mainly in

a realistic appearance of the background surrounding the

peak, which provides a more accurate estimate of its relia-

bility. The end effect is that the merged reflections better

represent the amplitudes of the diffracting crystal’s scattering

factors. This in turn improves the quality of the final atomic

model. Depending on the particular implementation of the

spot-finding routine, the correction can also boost auto-

indexing and unit-cell determination of faint diffraction

datasets, where an artificially flat background otherwise yields

many spurious spots.

It must be noted that the pixel values that are lost in

truncation can never be truthfully recovered. Future advances

could improve the quality of the procedure introduced here,

but the correct negative values of the affected pixels are

fundamentally irretrievable. The procedure instead models

the corrupted counts, which limits the accuracy of the

correction to the quality of the model and the process used to

determine its parameters. While the reliance on a random

number generator for the spatial distribution of negative

counts is appropriate since it models the stochastic fluctua-

tions that initially lead to the negative, truncated pixel values,

it implies that the procedure is non-deterministic. Owing to

the local homogeneity of the detector, initial attempts at

exploiting per-pixel statistics instead for the assignment of the

negative counts have not been successful. However, separately

applying the correction to smaller regions can reduce the

impact of the random number generator. The current imple-

mentation limits the structure of these areas to concentric

annuli, but this could be extended to arbitrary shapes, which

together cover the surface of the detector.

Ideally, a diffraction measurement would be conducted such

that the need for the correction described here would never

arise. In emerging methods such as MicroED, which often rely

on hard- and software originally developed and optimized for

different purposes, this is not always immediately possible.

Future developments in MicroED will address these difficul-

ties by, for example, determining how to use the camera in a

different mode that allows signed integers to be recorded.

The corrected data and the model refined against them are

available under PDB id 5i9s and EMDB id EMD-8077. The

uncorrected data have been deposited with the Structural

Biology Data Grid (Meyer et al., 2016) under doi 10.15785/

SBGRID/262. The procedure will be included in an upcoming

release of our conversion tools for MicroED diffraction

images (Hattne et al., 2015).
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Alexis Rohou, Hervé Rouault and Timothee Lionnet (Janelia

Research Campus) for valuable discussions.

References

Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd, J. J.,
Moriarty, N. W., Mustyakimov, M., Terwilliger, T. C., Urzhumtsev,
A., Zwart, P. H. & Adams, P. D. (2012). Acta Cryst. D68, 352–367.

research papers

J. Appl. Cryst. (2016). 49, 1029–1034 Johan Hattne et al. � Modeling truncated pixel values in MicroED images 1033

Figure 6
Correlation coefficients of the refined model. (a) Particularly at high
resolution, CCwork (solid curves) and CCfree (dashed curves) are generally
higher for the model refinement against the corrected dataset (orange
curves) than for the model refined against the uncorrected dataset (black
curves). (b) For all 279 residues of proteinase K, the real-space
correlation coefficient for the corrected data in the resolution range
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